какие силы воздействуют на пулю при ее полете
Какие силы воздействуют на пулю при ее полете
3.5. Общие сведения о внешней баллистике
Вылетев из канала ствола под действием пороховых газов, пуля движется по инерции. Пуля при полете в воздухе подвергается действию двух сил: силы тяжести и силы сопротивления воздуха. Сила тяжести заставляет пулю постепенно понижаться, а сила сопротивления воздуха непреравно замедляет движение пули и стремится опрокинуть ее. В результате действия этих сил скорость полета пули постепенно уменьшается, а ее траектория представляет собой по форме неравномерно изогнутую кривую линию.
Траекторией называется кривая линия, описываемая центром тяжести пули в полете (рис.
Рис. 11. Траектория полета пули (вид сбоку)
Сопротивление воздуха полету пули (рис. 12) вызывается тем, что воздух представляет собой упругую среду, поэтому на движение в этой среде затрачивается часть энергии пули. Сила сопротивления воздуха вызывается тремя основными причинами: трением воздуха, образованием завихрений и образованием баллистической волны.
Рис. 12. Образование силы сопротивления воздуха
Примыкающий к поверхности пули слой воздуха, в котором движение частиц изменяется от скорости пули до нуля, называется пограничным слоем. Этот слой воздуха, обтекая пулю, отрывается от поверхности и не успевает сразу же сомкнуться за донной частью. За донной частью пули образуется разреженное пространство, вследствие чего появляется разность давлений на головную и донную части. Эта разность создает силу, направленную в сторону, обратную движению пули, и уменьшающую скорость ее полета. Частицы воздуха, стремясь заполнить разрежение, образовавшееся за пулей, создают завихрение.
Пуля при полете сталкивается с частицами воздуха и заставляет их колебаться. Вследствие
этого перед пулей повышается плотность воздуха и образуются звуковые волны. Поэтому полет пули сопровождается характерным звуком. При скорости полета пули, меньшей скорости звука, образование этих волн оказывает незначительное влияние на ее полет, так как волны распростроняются быстрее скорости полета пули. При скорости полета пули, большей скорости звука, от набегания звуковых волн друг на друга создается волна сильно уплотненного воздуха – баллистическая волна, замедляющая скорость полета пули, так как пуля тратит часть своей энергии на создание этой волны.
Равнодействующая всех сил, образующихся вследствие влияния воздуха на полет пули, составляет силу сопротивления воздуха. Точка приложения силы сопротивления называется
Действие силы сопротивления воздуха на полет пули очень велико, оно вызывает уменьшение скорости и дальности полета пули. Величина силы сопротивления воздуха зависит от скорости полета, формы и калибра пули, а также от ее поверхности и плотности воздуха. Сила сопротивления воздуха возрастает с увеличением скорости полета пули, ее калибра и плотности воздуха. При сверхзвуковых скоростях полета пули, когда основной причиной сопротивления воздуха является образование уплотнения воздуха перед головной частью (баллистической волны), выгодны пули с удлиненной остроконечной головной частью. Чем глаже поверхность пули, тем меньше сила трения и сила сопротивления воздуха.
Под действием начальных возмущений в момент вылета пули из канала ствола между осью пули и касательной к траектории образуется угол (σ) и сила сопротивления воздуха действует не вдоль оси пули, а под углом к ней, стремясь не только замедлить движение пули, но и опрокинуть ее (рис. 13).
Для того чтобы пуля не опрокидывалась под действием силы сопротивления воздуха, ей придают с помощью нарезов в канале ствола быстрое вращательное движение. Например, при выстреле из автомата Калашникова скорость вращения пули в момент вылета из канала ствола равна около 3000 оборотов в секунду.
Рис. 13.Действие силы сопротивления воздуха на полет пули: ЦТ – центр тяжести; ЦС – центр сопротивления воздуха
При полете быстро вращающейся пули в воздухе происходят следующие явления. Сила сопротивления воздуха стремится повернуть пулю головной частью вверх и назад. Но головная часть пули в результате быстрого вращения согласно свойству гироскопа стремится сохранить приданное положение и отклониться не вверх, а весьма незначительно в сторону своего вращения под прямым углом к направлению действия силы сопротивления воздуха, т. е. вправо. Как только головная часть пули отклонится вправо, изменится направление действия силы сопротивления воздуха – она стремится повернуть головную часть пули вправо и назад, но поворот головной части пули произойдет не вправо, а вниз и т. д. Так как действие силы сопротивления воздуха
непрерывно, а направление ее относительно пули меняется с каждым отклонением оси пули, то головная часть пули описывает окружность, а ее ось – конус с вершиной в центре тяжести.
Происходит так называемое медленное коническое, или прецессионное, движение, и пуля летит головной частью вперед, т. е. как бы следит за изменением кривизны траектории (рис. 14).
Рис. 14. Медленное коническое движение пули
Пуля с потоком воздуха сталкивается больше нижней частью, и ось медленного конического движения отклоняется в сторону вращения (вправо при правой нарезке ствола). Отклонение пули от плоскости стрельбы в сторону ее вращения называется деривацией (рис. 15).
Рис. 15. Деривация (вид траектории сбоку)
Влиянию каких сил подвергается пуля при полете в воздухе?
Пуля при полете в воздухе подвергается действию двух сил: силы тяжести и силы сопротивления воздуха. Сила тяжести заставляет пулю постепенно понижаться, а сила сопротивления воздуха непрерывно замедляет движение пули и стремится опрокинуть ее. В результате действия этих сил скорость полета пули постепенно уменьшается, а ее траектория представляет собой по форме неравномерно изогнутую кривую линию. Сопротивление воздуха полету пули вызывается тем, что воздух представляет собой упругую среду и поэтому на движение в этой среде затрачивается часть энергии пули.
| |
Сила сопротивления воздуха вызывается тремя основными причинами: трением воздуха, образованием завихрений и образованием баллистической волны.
6\3-66. Какая ветвь траектории короче и круче и почему?
К особенностям траектории следует отнести то, что её часть от вершины до точки падения (нисходящая ветвь) короче и круче её части от точки вылета до вершины (восходящая ветвь), а угол падения больше угла бросания; очевидно, что конечная скорость пули всегда меньше начальной, и время полёта по восходящей ветви траектории, естественно, всегда меньше, чем по нисходящей.
67. Какую кривизну имеет траектория?
68. Что называется наводкой и из каких элементов она слагается?
Чтобы направить пулю в цель, необходимо после установки прицела на нужное деление придать оси канала ствола определенное направление в горизонтальной и вертикальной плоскостях. Действия, выполняемые при этом, называются наводкой, или прицеливанием.
Придание оси канала ствола определенного положения в вертикальной плоскости называется вертикальной наводкой. Она выполняется путем выравнивания вершины мушки с краями гривки прорези и совмещения ее с точкой прицеливания.
Таким образом, горизонтальная и вертикальная наводки выполняются с помощью прицельных приспособлений.
Линия, идущая от глаза стрелка через середину прорези прицела на уровне с ее краями и вершину мушки в точку прицеливания, является линией прицеливания.
Прямая линия, соединяющая середину прорези прицела с вершиной мушки, называется прицельной линией.
Угол, образуемый линией прицеливания и линией возвышения, представляет собой угол прицеливания.
Точка пересечения нисходящей ветви траектории с линией прицеливания называется точкой падения.
Расстояние от точки вылета до пересечения траектории с линией прицеливания принято называть прицельной дальностью.
Пробивное действие пули?
Способность пули проникать сквозь преграду. Определяется путём, пройденным пулей по баллистической траектории в преграде (внутри цели). Необходимо различать преграды по свойствам, а также способность пули сохранять без изменения своё положение в раневом канале и с изменением положения пули в раневом канале — с потерей устойчивости и без потери устойчивости.
Характеристики
Пробивное действие пуль патрона 7,62×54 мм R: [1] [2]
§ Стальной шлем пробивается пулей со стальным сердечником на дистанции 1700 м.
§ Бронежилет IV класса защиты (по российскому ГОСТ Р 50744-95) пробивается пулей со стальным сердечником на дистанции 1200 м.
§ Броня толщиной 7 мм при угле встречи 90° пробивается бронебойно-зажигательной пулей на дистанции 550 м.
§ Бруствер из плотно утрамбованного снега пробивается всеми типами [3] пуль на дистанции 1000 м на глубину 70-80 см.
§ Земляная преграда из свободно насыпанного супесчаного грунта пробивается всеми типами пуль на дистанции 1000 м на глубину25-30 см.
§ Сухие сосновые брусья размерами 20×20 см, скреплённые в штабелях, пробивается всеми типами пуль на дистанции 1200 м на глубину 20 см.
§ Кирпичная кладка пробивается всеми типами пуль на дистанции 200 м на глубину 10-12 см.
Деривация пули: описание, особенности и интересные факты
Термин «деривация» имеет в обиходе много значений. Образован он латинским словом derivative, что означает «отведение», «отклонение». Под термином в общем понимании понимают отклонение от траектории, уход от основополагающих значений.
Деривация в военной области
Силы, действующие на пулю
Вам будет интересно: Оболочечная пуля: особенности, характеристики и виды
Пули при движении по траектории после выхода из ствола испытывают действие сил тяжести и воздушного сопротивления. Первая сила всегда направлена вниз, заставляя брошенное тело снижаться.
Сила воздушного сопротивления, постоянно воздействуя на пулю, замедляет ее поступательное движение и всегда направлена навстречу. Она делает все возможное, для того чтобы летящее тело опрокинуть, направить его головную часть назад.
Вам будет интересно: Мужской феминизм: определение и примеры из жизни
Вследствие воздействия указанных сил движение пули происходит не в соответствии с линией бросания, а по неравномерной, изогнутой кривой, находящейся ниже бросковой линии, которая называется траекторией.
Сила сопротивления воздуха обязана своим возникновением нескольким факторам, а именно: трению, завихрениям, баллистической волне.
Пуля и трение
Воздушные частицы, непосредственно соприкасающиеся с пулей (снарядом), благодаря контакту с ее поверхностью движутся вместе с ней. Следующий за первым слоем воздушных частиц слой вследствие вязкости воздушной среды тоже начинает двигаться. Однако с меньшей скоростью.
Этот слой передает движение очередному и так далее. До тех пор, пока воздушные частицы перестают испытывать воздействие, скорость их относительно летящей пули становится равной нулю. Воздушная среда, начиная от непосредственно контактирующей с пулей (снарядом) и заканчивая той, в которой скорость частиц становится равна 0, называется слоем пограничным.
Процессы в пограничном слое
Вам будет интересно: Самый дальний выстрел из снайперской винтовки: мировые рекорды
Пограничный слой, окружающий летящее тело, при достижении его дна отрывается. При этом возникает пространство разряжения. Образуется разность давлений, воздействующая на голову пули и ее дно. Этот процесс порождает силу, вектор которой направлен в противоположную движению сторону. Воздушные частицы, врываясь в разреженную область, создают области завихрения.
Баллистическая волна
В полете пуля воздействует с воздушными частицами, которые, сталкиваясь, начинают колебаться. От этого возникают воздушные уплотнения. Они образуют звуковые волны. Вследствие этого полет пули сопровождается характерным звуком. После того, как пуля начинает двигаться со скоростью, которая меньше звуковой, возникающее уплотнение опережает ее, убегая вперед, серьезного влияния на полет не оказывая.
Но при полете, в котором скорость пули или снаряда выше звуковой, волны звука набегают друг на друга, образуют уплотненную волну (баллистическую), что пулю замедляет. Расчеты показывают, на фронте давление на нее баллистической волны составляет около 8-10 атмосфер. Чтобы его преодолеть, затрачивается основная часть энергии летящего тела.
Иные факторы, влияющие на полет пули
Кроме сил воздушного сопротивления и тяжести, на пулю воздействуют: давление атмосферы, температурные значения среды, направление ветра, воздушная влажность.
Атмосферное давление на поверхности Земли неравномерно относительно уровня моря. С повышением на 100 метров оно снижается приблизительно на 10 мм ртутного столба. Вследствие этого стрельба, которая идет на высоте, осуществляется в условиях пониженной силы сопротивления и воздушной плотности. Это приводит к увеличению дальности полета.
Все указанные выше силы и факторы воздействуют на пулю под углами к ней. Их влияние направлено на то, чтобы опрокинуть движущееся тело. Поэтому для предотвращения опрокидывания пули (снаряда) в полете им придают при выходе из канала ствола вращательное движение. Оно образуется посредством наличия в стволе нарезов.
Вращающаяся пуля приобретает гироскопические свойства, которые позволяют сохранять летящему телу в пространстве свое положение. При этом пуля получает возможность оказывать сопротивление воздействию внешних сил на значительный отрезок своего пути, сохранять заданное положение оси. Однако вращающаяся в полете пуля отклоняется от прямолинейного направления движения, что вызывает деривацию.
Гироскопический эффект и эффект Магнуса
Эффектом Магнуса называется физическое явление, которое возникает при обтекании вращающейся пули потоком воздуха. Вращающееся тело создает вокруг себя вихревое движение и разности давлений, из-за чего возникает сила, имеющая векторное направление, перпендикулярное потоку воздуха.
Причины деривации и ее значение
Деривация растет относительно дистанции стрельбы непропорционально. Вместе с увеличением дальность полета пули, деривация имеет тенденцию к постепенному росту. Поэтому траектория пули, если смотреть на нее сверху, являет собой линию, у которой кривизна постоянно нарастает.
При стрельбе на расстоянии в 1 км деривация оказывает существенное влияние на отклонение пули. Так в стандартных справочниках таблица 3 пули 7,62 х 39 деривацию показывает в размере порядка 40-60 см. Однако многочисленные исследования специалистов в области баллистики приводят к выводу, что деривацию следует учитывать только на дистанциях более 300 м.
Факторы, влияющие на деривацию
Деривация подвергается влиянию определенных факторов, а именно:
В целях уменьшения эффекта деривации вращением пули в полете в настоящее время разработаны специальные пули. У них своеобразная внутренняя структура с подобранными центрами масс и тяжести.
Внешняя баллистика. Траектория и ее элементы
Во время выстрела пуля, получив под действием пороховых газов при вылете из канала ствола некоторую начальную скорость, стремится по инерции сохранить величину и направление этой скорости, а граната, имеющая реактивный двигатель, движется по инерции после истечения газов из реактивного двигателя. Если бы полет пули (гранаты) совершался в безвоздушном пространстве, и на нее не действовала бы сила тяжести, пуля (граната) двигалась бы прямолинейно, равномерно и бесконечно. Однако на пулю (гранату), летящую в воздушной среде, действуют силы, которые изменяют скорость ее полета и направление движения. Этими силами являются сила тяжести и сила сопротивления воздушной среды.
Вследствие совместного действия этих сил пуля теряет скорость и изменяет направление своего движения, перемещаясь в воздушной среде по кривой линии, проходящей ниже направления оси канала ствола.
Движение пули, а следовательно, и фигура траектории зависят от многих условий. Пуля при полете в воздухе подвергается действию двух сил: силы тяжести и силы сопротивления воздуха. Сила тяжести заставляет пулю постепенно понижаться, а сила сопротивления воздуха непрерывно замедляет движение пули и стремится опрокинуть ее. В результате действия этих сил скорость полета постепенно уменьшается, а ее траектория представляет собой по форме неравномерно изогнутую кривую линию.
Действие силы тяжести
Действие силы сопротивления воздушной среды
На первый взгляд кажется маловероятным, чтобы воздух, обладающий такой малой плотностью, мог оказывать существенное сопротивление движению пули и этим значительно уменьшать ее скорость. Однако сопротивление воздуха оказывает сильное тормозящее действие на пулю, в связи с чем она теряет свою скорость. Сопротивление воздуха полету пули вызывается тем, что воздух представляет собой упругую среду и поэтому на движение в этой среде затрачивается часть энергии пули. Сила сопротивления воздуха вызывается тремя основными причинами: трением воздуха, образованием завихрений и образованием баллистической волны.
Как показывают фотоснимки пули, летящей со сверхзвуковой скоростью (свыше 340 м/сек), перед ее головной частью образуется уплотнение воздуха. От этого уплотнения расходится во все стороны головная волна. Частицы воздуха, скользя по поверхности пули и срываясь с ее боковых стенок, образуют за донной частью пули зону разреженного пространства, вследствие чего появляется разность давлений на головную и донную части. Эта разность создает силу, направленную в сторону, обратную движению пули и уменьшающую скорость ее полета. Частицы воздуха, стремясь заполнить пустоту, образовавшуюся за пулей, создают завихрение, в результате чего за дном пули тянется хвостовая волна.
Уплотнение воздуха впереди головной части пули тормозит ее полет; разреженная зона позади пули засасывает ее и этим еще больше усиливает торможение; ко всему этому стенки пули испытывают трение о частицы воздуха, что также замедляет ее полет. Равнодействующая этих трех сил и составляет силу сопротивления воздуха.
Равнодействующая (суммарная) всех сил, образующихся вследствие влияния воздуха на полет пули (гранаты), составляет силу сопротивления воздуха. Точка приложения силы сопротивления называется центром сопротивления.
Действие на пулю сопротивления воздуха
Величина силы сопротивления воздуха зависит от скорости полета, формы и калибра пули, а также от ее поверхности и плотности воздуха.
Сила сопротивления воздуха возрастает с увеличением калибра пули, скорости ее полета и плотности воздуха.
Для того чтобы сопротивление воздуха меньше тормозило пулю во время полета, вполне очевидно, что нужно уменьшить ее калибр и увеличить ее массу. Эти соображения и привели к необходимости использования в стрелковом оружии пуль продолговатой формы, а с учетом сверхзвуковых скоростей полета пули, когда основной причиной сопротивления воздуха является образование уплотнения воздуха перед головной частью (баллистической волны), выгодны пули с удлиненной остроконечной головной частью. При дозвуковых скоростях полета гранаты, когда основной причиной сопротивления воздуха является образование разреженного пространства и завихрений, выгодны гранаты с удлиненной и суженной хвостовой частью.
Чем глаже поверхность пули, тем меньше сила трения и сила сопротивления воздуха.
Разнообразие форм современных пуль во многом определяется необходимостью уменьшить силу сопротивления воздуха.
Если бы полет пули совершался в безвоздушном пространстве, то направление ее продольной оси было бы неизменным и пуля падала бы на землю не головной частью, а дном.
Однако при действии на пулю силы сопротивления воздуха полет ее будет совсем иным. Под действием начальных возмущений (толчков) в момент вылета пули из канала ствола между осью пули и касательной к траектории образуется угол, и сила сопротивления воздуха действует не вдоль оси пули, а под углом к ней, стремясь не только замедлить движение пули, но и опрокинуть ее. В первый момент, когда пуля вылетает из канала ствола, сопротивление воздуха только тормозит ее движение. Но как только пуля начинает под действием силы тяжести опускаться вниз, частицы воздуха начнут давить не только на головную часть, но и на боковую поверхность ее.
Чем больше пуля будет опускаться, тем больше она будет и подставлять сопротивлению воздуха свою боковую поверхность. А так как частицы воздуха оказывают на головную часть пули значительно большее давление, чем на хвостовую, они стремятся опрокинуть пулю головной частью назад.
Однако вращательное движение пули, столь необходимое для придания ей устойчивости во время полета, имеет и свои отрицательные стороны.
Ось медленного конического движения несколько отстает от касательной к траектории (располагается выше последней). Следовательно, пуля с потоком воздуха сталкивается больше нижней частью, и ось медленного конического движения отклоняется в сторону вращения (вправо при правой нарезке ствола). В результате сложения этих двух вращательных движений возникает новое движение, отклоняющее ее головную часть в сторону от плоскости стрельбы. При этом одна боковая поверхность пули подвергается давлению частиц воздуха больше, чем другая. Такое неодинаковое давление воздуха на боковые поверхности пули и отклоняет ее в сторону от плоскости стрельбы. Постоянное боковое отклонение вращающейся пули в сторону ее вращения от плоскости стрельбы называется деривацией.
Устойчивость гранаты в полете обеспечивается наличием стабилизатора, который позволяет перенести центр сопротивления воздуха назад, за центр тяжести гранаты. Вследствие этого сила сопротивления воздуха поворачивает ось гранаты к касательной к траектории, заставляя гранату двигаться головной частью вперед.
Для улучшения кучности некоторым гранатам придают за счет истечения газов медленное вращение. Вследствие вращения гранаты моменты сил, отклоняющие ось гранаты, действуют последовательно в разные стороны, поэтому кучность стрельбы улучшается.
Таким образом, причинами деривации являются: вращательное движение пули, сопротивление воздуха и понижение под действием силы тяжести касательной к траектории. При отсутствии хотя бы одной из этих причин деривации не будет.
Траектория и ее элементы
Для изучения траектории пули (гранаты) приняты следующие определения.
Расстояние от точки вылета до пересечения траектории с линией прицеливания называется прицельной дальностью. Кратчайшее расстояние от любой точки траектории до линии прицеливания называется превышением траектории над линией прицеливания. Прямая, соединяющая точку вылета с целью, называется линией цели. Расстояние от точки вылета до цели по линии цели называется наклонной дальностью. При стрельбе прямой наводкой линия цели практически совпадает с линией прицеливания, а наклонная дальность с прицельной дальностью.
Точка пересечения траектории с поверхностью цели (земли, преграды) называется точкой встречи. Угол, заключенный между касательной к траектории и касательной к поверхности цели (земли, преграды) в точке встречи, называется углом встречи. За угол встречи принимается меньший из смежных углов, измеряемый от 0 до 90°.
Форма траектории и ее практическое значение
ФОРМА траектории зависит от величины угла возвышения. Между горизонтальной дальностью полета пули и углом бросания существует определенная зависимость. С увеличением угла возвышения высота траектории и полная горизонтальная дальность полета пули увеличиваются, но это происходит до известного предела. За этим пределом высота траектории продолжает увеличиваться, а полная горизонтальная дальность начинает уменьшаться.
Траектории, образуемые при углах бросания больше угла наибольшей дальности (35-90°), называются навесными.
Настильность траектории характеризуется наибольшим ее превышением над линией прицеливания. Для данной дальности траектория тем более настильна, чем меньше она поднимается над линией прицеливания. Кроме того, о настильности траектории можно судить по величине угла падения: траектория тем более настильна, чем меньше угол падения.
Настильность траектории влияет на величину дальности прямого выстрела, поражаемого, прикрытого и мертвого пространства.
Выстрел, при котором траектория не поднимается над линией прицеливания выше цели на всем своем протяжении, называется прямым выстрелом.
Дальность прямого выстрела зависит от высоты цели и настильности траектории. Чем выше цель и чем настильнее траектория, тем больше дальность прямого выстрела. И тем на большем протяжении местности цель может быть поражена с одной установкой прицела.
Сергей Монетчиков
Фото Владимира Николайчука
иллюстрации из архива автора
Братишка 10-2009