альфа излучение в чем измеряется

Немножко про радиацию

Вред радиации

Каков ответ на вопрос «вредна ли радиация»? Такой же, как и на вопросы «вредна ли температура?» или «вреден ли свет?». Вредно не само явление, а выход его численных параметров за оптимальные для жизни пределы. Многочисленные опыты на животных показали небольшое увеличение средней продолжительности жизни, усиление иммунитета и т.д. при некотором дополнительном, относительно природного, облучении. Они же показали уменьшение всех этих параметров при дальнейшем увеличении дозы радиации. Разумеется, не было никакой универсальной для всех видов животных дозы, дающей оптимальный результат, у всех она разная. Никто не знает, какой уровень радиации был бы идеальным для человека, т.к. для этого пришлось бы поставить контролируемые опыты на десятках тысяч людей.

Какова чувствительность человека к радиационному облучению? Достаточно низкая. Природный уровень радиации в разных уголках планеты меняется крайне значительно. Если в среднем по всей Земле человек получает дозу 2,4 мЗв в год, то в некоторых местах — лишь 1 мЗв, а в других — 10, а то и 15-20 с лишним. Но никаких достоверных данных, показывающих, что этот разброс оказывает влияние на здоровье, не обнаружено. Так, например, повышенным дозам облучения подвергаются жители Швейцарии, которая славится высокой продолжительностью жизни своих граждан. Ещё больше дозы радиации получают космонавты — около 0,5 мЗв в… день! Т.е. за месяц они получают столько, сколько жители самых радиоактивных уголков планеты за год.

Конечно, это не повод лезть на экскурсию под саркофаг четвёртого энергоблока ЧАЭС. Там вы за минуту получите дозу больше, чем за месяц на МКС, а такое облучение совершенно достоверно оказывает крайне неблагоприятное влияние на продолжительность жизни. Но и бояться всего и вся тоже не стоит.

Единицы измерения радиации

В прошлом разделе я всюду использовал единицу «мЗв». Это — «миллизиверт». Давайте разберёмся, что это такое, и какие вообще единицы измерения тут есть.

Начнём с того, что на слуху — рентгена (Р). В рентгенах измеряется только исключительно рентгеновское и гамма-излучение. Этой единицей измеряют так называемую экспозиционную дозу, т.е. то, сколько ионов рождает излучение в сухом воздухе. Она предельно удобна при измерениях с помощью ионизационной камеры, т.к. этот тип датчика измеряет именно количество ионов (точнее — их суммарный заряд). Дозу в рентгенах можно получить напрямую, в то время как все остальные дозы измеряются опосредованно, оставляя простор для ошибок измерений. Но, с другой стороны, эта доза не указывает напрямую то, какой вред излучение наносит человеку, да и для бета- и альфа-излучения с прочими нейтронами ею пользоваться нельзя, она для них не определена.

Следующая единица — это рад. Рад — это единица поглощённой дозы любого излучения. Т.е. то, сколько энергии ионизирующего излучения поглотила единица массы вещества. Рад равен 100 эрг на 1 грамм или 0,01 Дж на 1 кг. Также в радах измеряется керма. Керма — это сколько кинетической энергии получают заряженные частицы вещества при поглощении этим веществом ионизирующего излучения, не несущего заряд (гамма, нейтроны). В большинстве случаев поглощённая доза и керма весьма точно совпадают, так что не забивайте себе этим голову. Если воздух поглотит 0,88 рад гамма-излучения, то в нём появится ионов на 1 Р. Можно условно сказать, что 1 Р = 0,88 рад, а 1 рад гамма-излучения равен 1,14 Р. Впрочем, т.к. всё равно воздух неточно соответствует тканям человека, да и ткани есть разные, плюс погрешность дозиметров редко бывает меньше 20%, обычно считают 1 Р = 1 рад. Недостатком рада, а точнее — поглощённой дозы, является то, что она не учитывает существенно разное действие на организм различных видов излучения.

Следующая единица — это биологический эквивалент рада (бэр). Бэр — это единица эквивалентной дозы. Т.е. тут учитывается, что быстрые нейтроны при той же энергии нанесут в 10, а альфа-частицы — в 20 раз больше вреда организму, чем гамма- или бета-излучение. Соответствующие коэффициенты есть (или могут быть получены) для абсолютно любых видов ионизирующего излучения. Также в бэрах измеряется эффективная доза, в которой учитывается различная чувствительность разных органов. Если человек облучается полностью равномерно, то эквивалентная и эффективная доза совпадают, но в случае, если какие-то части тела облучаются сильнее, а какие-то слабее, могут быть заметные различия. Так, например, руки выдерживают весьма большие дозы, а вот спинной мозг очень чувствителен к облучению. В бэрах также измеряется амбивалентный эквивалент дозы — такая «сферическая доза в вакууме». Без шуток, она определена для 30 см шара строго нормированного состава, используется для всяких тестов, моделирования и т.д.

Далее у нас идёт грей (Гр). Грей — это аналог рада в системе СИ. 1 Гр = 1 Дж/кг = 100 рад.

Ну и, наконец, зиверт (Зв). Это — аналог бэра в СИ. 1 Зв = 100 бэр. Соответственно, мЗв, который я использовал в первом разделе, равен 0,001 Зв или 0,1 бэр.

Кроме дозы есть ещё активность радиоактивного вещества. Т.е. то, сколько распадов в нём происходит за определённое время. Активность измеряют либо в кюри (Ки), либо в беккерелях (Бк). Кюри — активность одного грамма радия-226, очень большая величина. Беккерель — один распад в секунду, очень малая величина. 1 Ки = 37 ГБк.

Чтобы было проще ориентироваться, приведу некоторые числа:
— уровень гамма-радиации в моей комнате примерно 7 мкР/ч, 0,07 мкГр/ч и 0,07 мкЗв/ч (мощности соответственно экспозиционной, поглощённой и эквивалентной доз). Уровень гамма-радиации на отделанных гранитом платформах Московского метро примерно вдвое выше (плюс доза альфа-облучения лёгких от повышенного уровня радона);
— единовременная доза, при которой может начаться лучевая болезнь — 100 Р, 1 Гр и 1 Зв;
— активность природного радиоактивного калия-40 в банане составляет примерно 20 Бк, в килограмме бананов — 130 Бк.

Приборы измерения радиации

В принципе есть огромное количество разных приборов и методов измерения радиации, но я тут расскажу только о том, с чем в принципе может столкнуться человек, не работающий в соответствующих направлениях.

В магазинах вы можете встретить «индикаторы радиоактивности», «дозиметры» и «дозиметры-радиометры».

Первые — это приборы, которые не проходят сколько-нибудь существенных испытаний и вообще на точность измерений не претендуют. Почти всегда они сделаны на базе счётчика Гейгера типа СБМ-20. Реже — на базе миниатюрного СБМ-21 или на базе чувствительных к альфа-излучению счётчиков, например Бета-1 или Бета-2. Многие считают, что такие приборы могут занижать показания. Некоторые «профессионалы» заявляют, что при низкой энергии гамма-излучения, на уровне 30-100 кэВ, приборы на СБМ-20 и СБМ-21 занижают в разы, а ниже вообще не фиксируют. Мой же опыт показывает, что всё с точностью до наоборот: при низкой энергии гамма-излучения (опыты ставились с 59 кэВ) они в разы завышают свои показания. Конечно, гамма-излучение совсем низкой энергии они не зафиксируют, но оно и не представляет большой опасности, т.к. поглощается ещё в коже. Бета-1 и Бета-2 фиксируют все виды излучения, причём ещё сильнее завышают показания при низкой энергии гамма-излучения.

Дозиметром честный производитель обычно называет прибор, точности измерения которым уделялось какое-никакое внимание. Чаще всего они тоже сделаны на базе СБМ-20, но тот уже закрыт специальным съёмным фильтром, который ослабляет гамма-излучение низкой энергии и полностью поглощает бета-излучение. Это позволяет точно измерить уровень гамма-излучения в широком диапазоне энергий. Также эти приборы обычно умеют интегрировать показания за длительное время, показывая не только мощность дозы, но и саму дозу. Приборы по-лучше содержат датчики Бета-1, Бета-2 или другие со слюдяным окном для бета-излучения низкой энергии и альфа-излучения, тоже оснащены фильтрами. Совсем дорогие приборы могут использовать полупроводниковые или сцинтилляторные датчики, которые имеют огромную чувствительность к гамма-излучению и не просто фиксируют частицы, а измеряют их энергию. Это позволяет максимально точно измерить дозу, а некоторые модели даже умеют определять изотопы, которые вызывают облучение. Впрочем, полупроводники и сцинтилляторы могут сыграть злую шутку: у них чувствительность очень сильно зависит от энергии, так что измерять её не просто можно, а обязательно нужно. И нужно качественно учесть зависимость чувствительности от энергии. Если такой датчик воткнули в прибор только для громкой надписи «сцинтилляторный», то точность измерений у него может быть хуже, чем у дешёвых индикаторов радиоактивности.

Дозиметр-радиометр — это прибор, который кроме дозы гамма-излучения измеряет ещё и поток бета-частиц (при соответствующих датчиках — и альфа). Два предыдущих пункта тоже фиксируют бета-излучение (дозиметры — при снятом фильтре), но они продолжают пересчитывать показания в рентгены или зиверты, как если бы это было гамма-излучение. Результат получается абсолютно неправильным: если для гамма-излучения вероятность фиксации частицы счётчиком Гейгера прямо пропорциональна его энергии в довольно широком диапазоне (где-то от 0,3 до 1,5 МэВ), причём этот диапазон расширяется фильтрами вниз где-то до 0,03-0,05 МэВ, то для бета-излучения ничего подобного нет. В первом приближении выше определённой границы энергии датчик фиксирует почти все бета-частицы, а ниже — ни одной. Аналогично и с альфа-излучением (если счётчик его в принципе фиксирует). Радиометру же можно «сказать», что ты сейчас измеряешь бета-излучение, и тогда он будет пересчитывать показания в число частиц на квадратный сантиметр площади сечения датчика в единицу времени. Сначала измеряешь с фильтром, чтобы выяснить гамма-фон, потом без него, вычитаешь из второго первое — и вот поток бета-частиц. Для альфа всё тоже самое, только там ещё добавляется второй фильтр, который задерживает его, но пропускает бета-частицы. Иногда он встроен, иногда надо самому брать подручный, типа листа бумаги.

Есть ещё программные дозиметры для смартфонов, использующие закрытую непрозрачным материалом фотокамеру в роли эрзац детектора. Они реально работают, но по моему опыту ждать от них точности не приходится, могут ошибаться в разы в любую сторону.

Стоит также отметить, что при небольших уровнях радиации показания всех приборов оказываются не слишком точными: они фиксируют за цикл измерения лишь порядка десятка частиц, так что статистическая погрешность становится сравнимой с измеряемой величиной. Если сейчас прибор показывает 0,07 мкЗв/ч, а через минуту — 0,14 мкЗв/ч, это абсолютно не значит, что уровень радиации возрос в два раза. Скорее всего он как был 0,10 мкЗв/ч, так и остался.

Ещё замечание на счёт собственно измерений: нужно их проводить так, чтобы датчик прибора можно было считать точечным. Т.е. либо источник радиации, либо расстояние от него до датчика должно быть в разы больше самого датчика. Если вы тыкаете каплей радиевой краски на кончике тумблера в центр какой-нибудь Бета-2, то в разных точках датчика уровень радиации отличается на несколько порядков. Что датчик в таких условиях измеряет — «одному Богу известно». Измерения «на поверхности» допустимы либо для больших источников (загрязнённый грунт, например), либо когда мы не стремимся именно измерить, а лишь с максимальной чувствительностью зафиксировать факт наличия излучения.

альфа излучение в чем измеряется. Смотреть фото альфа излучение в чем измеряется. Смотреть картинку альфа излучение в чем измеряется. Картинка про альфа излучение в чем измеряется. Фото альфа излучение в чем измеряется
Индикатор радиоактивности на месте радиоактивного заражения

альфа излучение в чем измеряется. Смотреть фото альфа излучение в чем измеряется. Смотреть картинку альфа излучение в чем измеряется. Картинка про альфа излучение в чем измеряется. Фото альфа излучение в чем измеряется
Профессиональный сцинтилляторный дозиметр на месте радиоактивного заражения (уровень радиации — цифры внизу)

альфа излучение в чем измеряется. Смотреть фото альфа излучение в чем измеряется. Смотреть картинку альфа излучение в чем измеряется. Картинка про альфа излучение в чем измеряется. Фото альфа излучение в чем измеряется
Программный дозиметр. В данном конкретном случае в 3-4 раза занижает показания

Радиация в быту

Также эти все вещи совершенно законно использовать без специальных разрешений: лишь однажды мне попался манометр, уровень излучения которого выходил за допустимые для безлицензионного использования пределы (1 мкЗв/ч на расстоянии 10 см от поверхности), но он был от истребителя МИГ-21. Впрочем, законы у нас в стране выполняются не-очень… «Специалисты» запросто могут заявить, что всё, что имеет уровень радиации более 30 мкР/ч прямо на поверхности, необходимо изымать. А судьи не очень-то разбираются в таких тонкостях, как нормы радиационной безопасности… Имеется как минимум один прецедент, когда у человека суд отобрал объектив, и не посадили только потому, что он про его радиоактивность не знал. По всем официальным нормам этот объектив можно было использовать.

Реально большую опасность представляют только промышленные источники радиации, действующие рентгеновские аппараты и неконтролируемые аварийные выбросы. К счастью, столкнуться с ними простому человеку не так-то просто. Хотя история прецеденты знает…

альфа излучение в чем измеряется. Смотреть фото альфа излучение в чем измеряется. Смотреть картинку альфа излучение в чем измеряется. Картинка про альфа излучение в чем измеряется. Фото альфа излучение в чем измеряется
Плутониевый источник из датчика дыма РИД-1. Тот самый, про который рассказывают страшилки в статье, спровоцировавшей написание этого текста. Пока цел, существенной опасности не представляет.

альфа излучение в чем измеряется. Смотреть фото альфа излучение в чем измеряется. Смотреть картинку альфа излучение в чем измеряется. Картинка про альфа излучение в чем измеряется. Фото альфа излучение в чем измеряется
Относительно безопасный прибор с радиевой подсветкой

альфа излучение в чем измеряется. Смотреть фото альфа излучение в чем измеряется. Смотреть картинку альфа излучение в чем измеряется. Картинка про альфа излучение в чем измеряется. Фото альфа излучение в чем измеряется
Большое скопление относительно безопасных приборов может быть уже не таким безопасным

альфа излучение в чем измеряется. Смотреть фото альфа излучение в чем измеряется. Смотреть картинку альфа излучение в чем измеряется. Картинка про альфа излучение в чем измеряется. Фото альфа излучение в чем измеряется
Редкий пример прибора с радиевой подсветкой, в десяток с лишним раз выходящий за допустимые пределы

альфа излучение в чем измеряется. Смотреть фото альфа излучение в чем измеряется. Смотреть картинку альфа излучение в чем измеряется. Картинка про альфа излучение в чем измеряется. Фото альфа излучение в чем измеряется
Промышленный источник, который может представлять реальную опасность

альфа излучение в чем измеряется. Смотреть фото альфа излучение в чем измеряется. Смотреть картинку альфа излучение в чем измеряется. Картинка про альфа излучение в чем измеряется. Фото альфа излучение в чем измеряется
Заражённая местность

альфа излучение в чем измеряется. Смотреть фото альфа излучение в чем измеряется. Смотреть картинку альфа излучение в чем измеряется. Картинка про альфа излучение в чем измеряется. Фото альфа излучение в чем измеряется
Результат неконтролируемого аварийного выброса полвека назад

альфа излучение в чем измеряется. Смотреть фото альфа излучение в чем измеряется. Смотреть картинку альфа излучение в чем измеряется. Картинка про альфа излучение в чем измеряется. Фото альфа излучение в чем измеряется
Активная зона ядерного реактора

Источник

Виды радиоактивных излучений

альфа излучение в чем измеряется. Смотреть фото альфа излучение в чем измеряется. Смотреть картинку альфа излучение в чем измеряется. Картинка про альфа излучение в чем измеряется. Фото альфа излучение в чем измеряется

Навигация по статье:

Радиация и виды радиоактивных излучений, состав радиоактивного (ионизирующего) излучения и его основные характеристики. Действие радиации на вещество.

Что такое радиация

Для начала дадим определение, что такое радиация:

Радиоактивное (ионизирующее) излучение можно разделить на несколько типов, в зависимости от вида элементов из которого оно состоит. Разные виды излучения вызваны различными микрочастицами и поэтому обладают разным энергетическим воздействие на вещество, разной способностью проникать сквозь него и как следствие различным биологическим действием радиации.

Альфа излучение

альфа излучение в чем измеряется. Смотреть фото альфа излучение в чем измеряется. Смотреть картинку альфа излучение в чем измеряется. Картинка про альфа излучение в чем измеряется. Фото альфа излучение в чем измеряется

Альфа (α) излучение возникает при распаде нестабильных изотопов элементов.

Альфа частицы обладают большой массой и излучаются с относительно невысокой скоростью в среднем 20 тыс. км/с, что примерно в 15 раз меньше скорости света. Поскольку альфа частицы очень тяжелые, то при контакте с веществом, частицы сталкиваются с молекулами этого вещества, начинают с ними взаимодействовать, теряя свою энергию и поэтому проникающая способность данных частиц не велика и их способен задержать даже простой лист бумаги.

Однако альфа частицы несут в себе большую энергию и при взаимодействии с веществом вызывают его значительную ионизацию. А в клетках живого организма, помимо ионизации, альфа излучение разрушает ткани, приводя к различным повреждениям живых клеток.

Из всех видов радиационного излучения, альфа излучение обладает наименьшей проникающей способностью, но последствия облучения живых тканей данным видом радиации наиболее тяжелые и значительные по сравнению с другими видами излучения.

Облучение радиацией в виде альфа излучения может произойти при попадании радиоактивных элементов внутрь организма, например, с воздухом, водой или пищей, а также через порезы или ранения. Попадая в организм, данные радиоактивные элементы разносятся током крови по организму, накапливаются в тканях и органах, оказывая на них мощное энергетическое воздействие. Поскольку некоторые виды радиоактивных изотопов, излучающих альфа радиацию, имеют продолжительный срок жизни, то попадая внутрь организма, они способны вызвать в клетках серьезные изменения и привести к перерождению тканей и мутациям.

Радиоактивные изотопы фактически не выводятся с организма самостоятельно, поэтому попадая внутрь организма, они будут облучать ткани изнутри на протяжении многих лет, пока не приведут к серьезным изменениям. Организм человека не способен нейтрализовать, переработать, усвоить или утилизировать, большинство радиоактивных изотопов, попавших внутрь организма.

Нейтронное излучение

альфа излучение в чем измеряется. Смотреть фото альфа излучение в чем измеряется. Смотреть картинку альфа излучение в чем измеряется. Картинка про альфа излучение в чем измеряется. Фото альфа излучение в чем измеряется

Не обладая зарядом, нейтронное излучение сталкиваясь с веществом, слабо взаимодействует с элементами атомов на атомном уровне, поэтому обладает высокой проникающей способностью. Остановить нейтронное излучение можно с помощью материалов с высоким содержанием водорода, например, емкостью с водой. Так же нейтронное излучение плохо проникает через полиэтилен.

Нейтронное излучение при прохождении через биологические ткани, причиняет клеткам серьезный ущерб, так как обладает значительной массой и более высокой скоростью чем альфа излучение.

Бета излучение

альфа излучение в чем измеряется. Смотреть фото альфа излучение в чем измеряется. Смотреть картинку альфа излучение в чем измеряется. Картинка про альфа излучение в чем измеряется. Фото альфа излучение в чем измеряется

Бета (β) излучение возникает при превращении одного элемента в другой, при этом процессы происходят в самом ядре атома вещества с изменением свойств протонов и нейтронов.

При бета излучении, происходит превращение нейтрона в протон или протона в нейтрон, при этом превращении происходит излучение электрона или позитрона (античастица электрона), в зависимости от вида превращения. Скорость излучаемых элементов приближается к скорости света и примерно равна 300 000 км/с. Излучаемые при этом элементы называются бета частицы.

Имея изначально высокую скорость излучения и малые размеры излучаемых элементов, бета излучение обладает более высокой проникающей способностью чем альфа излучение, но обладает в сотни раз меньшей способность ионизировать вещество по сравнению с альфа излучением.

Бета радиация с легкостью проникает сквозь одежду и частично сквозь живые ткани, но при прохождении через более плотные структуры вещества, например, через металл, начинает с ним более интенсивно взаимодействовать и теряет большую часть своей энергии передавая ее элементам вещества. Металлический лист в несколько миллиметров может полностью остановить бета излучение.

Если альфа радиация представляет опасность только при непосредственном контакте с радиоактивным изотопом, то бета излучение в зависимости от его интенсивности, уже может нанести существенный вред живому организму на расстоянии несколько десятков метров от источника радиации.

Если радиоактивный изотоп, излучающий бета излучение попадает внутрь живого организма, он накапливается в тканях и органах, оказывая на них энергетическое воздействие, приводя к изменениям в структуре тканей и со временем вызывая существенные повреждения.

Некоторые радиоактивные изотопы с бета излучением имеют длительный период распада, то есть попадая в организм, они будут облучать его годами, пока не приведут к перерождению тканей и как следствие к раку.

Гамма излучение

альфа излучение в чем измеряется. Смотреть фото альфа излучение в чем измеряется. Смотреть картинку альфа излучение в чем измеряется. Картинка про альфа излучение в чем измеряется. Фото альфа излучение в чем измеряется

Гамма радиация сопровождает процесс распада атомов вещества и проявляется в виде излучаемой электромагнитной энергии в виде фотонов, высвобождающихся при изменении энергетического состояния ядра атома. Гамма лучи излучаются ядром со скоростью света.

Когда происходит радиоактивный распад атома, то из одних веществ образовываются другие. Атом вновь образованных веществ находятся в энергетически нестабильном (возбужденном) состоянии. Воздействую друг на друга, нейтроны и протоны в ядре приходят к состоянию, когда силы взаимодействия уравновешиваются, а излишки энергии выбрасываются атомом в виде гамма излучения

Гамма излучение обладает высокой проникающей способностью и с легкостью проникает сквозь одежду, живые ткани, немного сложнее через плотные структуры вещества типа металла. Чтобы остановить гамма излучение потребуется значительная толщина стали или бетона. Но при этом гамма излучение в сто раз слабее оказывает действие на вещество чем бета излучение и десятки тысяч раз слабее чем альфа излучение.

Рентгеновское излучение

Рентгеновское излучение сходно по действию с гамма излучением, но обладает меньшей проникающей способностью, потому что имеет большую длину волны.

Рассмотрев различные виды радиоактивного излучения, видно, что понятие радиация включает в себя совершенно различные виды излучения, которые оказывают разное воздействие на вещество и живые ткани, от прямой бомбардировки элементарными частицами (альфа, бета и нейтронное излучение) до энергетического воздействия в виде гамма и рентгеновского излечения.

Каждое из рассмотренных излучений опасно!

Сравнительная таблица с характеристиками различных видов радиации

характеристикаВид радиации
Альфа излучениеНейтронное излучениеБета излучениеГамма излучениеРентгеновское излучение
излучаютсядва протона и два нейтронанейтроныэлектроны или позитроныэнергия в виде фотоновэнергия в виде фотонов
проникающая способностьнизкаявысокаясредняявысокаявысокая
облучение от источникадо 10 смкилометрыдо 20 мсотни метровсотни метров
скорость излучения20 000 км/с40 000 км/с300 000 км/с300 000 км/с300 000 км/с
ионизация, пар на 1 см пробега30 000от 3000 до 5000от 40 до 150от 3 до 5от 3 до 5
биологическое действие радиациивысокоевысокоесреднеенизкоенизкое

Как видно из таблицы, в зависимости от вида радиации, излучение при одной и той же интенсивности, например в 0.1 Рентген, будет оказать разное разрушающее действие на клетки живого организма. Для учета этого различия, был введен коэффициент k, отражающий степень воздействия радиоактивного излучения на живые объекты.

Коэффициент k
Вид излучения и диапазон энергийВесовой множитель
Фотоны всех энергий (гамма излучение)1
Электроны и мюоны всех энергий (бета излучение)1
Нейтроны с энергией 20 МэВ (нейтронное излучение)5
Протоны с энергий > 2 МэВ (кроме протонов отдачи)5
Альфа-частицы, осколки деления и другие тяжелые ядра (альфа излучение)20

Чем выше «коэффициент k» тем опаснее действие определенного вида радиции для тканей живого организма.

Видео: Виды радиации

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *