алгоритм для чего предназначен для
Алгоритм
Из Википедии — свободной энциклопедии
Алгори́тм (лат. algorithmi — от имени среднеазиатского математика Аль-Хорезми [1] ) — конечная совокупность точно заданных правил решения некоторого класса задач или набор инструкций, описывающих порядок действий исполнителя для решения определённой задачи. В старой трактовке вместо слова «порядок» использовалось слово «последовательность», но по мере развития параллельности в работе компьютеров слово «последовательность» стали заменять более общим словом «порядок». Независимые инструкции могут выполняться в произвольном порядке, параллельно, если это позволяют используемые исполнители.
Ранее в русском языке писали «алгорифм», сейчас такое написание используется редко, но тем не менее имеет место исключение (нормальный алгорифм Маркова).
Часто в качестве исполнителя выступает компьютер, но понятие алгоритма необязательно относится к компьютерным программам, так, например, чётко описанный рецепт приготовления блюда также является алгоритмом, в таком случае исполнителем является человек (а может быть и некоторый механизм, например ткацкий или токарный станок с числовым управлением, и пр.).
Можно выделить алгоритмы вычислительные (далее речь в основном идёт о них), и управляющие. Вычислительные, по сути, преобразуют некоторые начальные данные в выходные, реализуя вычисление некоторой функции. Семантика управляющих алгоритмов существенным образом может отличаться и сводиться к выдаче необходимых управляющих воздействий либо в заданные моменты времени, либо в качестве реакции на внешние события (в этом случае, в отличие от вычислительного алгоритма, управляющий может оставаться корректным при бесконечном выполнении).
Понятие алгоритма относится к первоначальным, основным, базисным понятиям математики. Вычислительные процессы алгоритмического характера (арифметические действия над целыми числами, нахождение наибольшего общего делителя двух чисел и т. д.) известны человечеству с глубокой древности. Однако в явном виде понятие алгоритма сформировалось лишь в начале XX века.
Частичная формализация понятия алгоритма началась с попыток решения проблемы разрешения (нем. Entscheidungsproblem ), которую сформулировал Давид Гильберт в 1928 году. Следующие этапы формализации были необходимы для определения эффективных вычислений [2] или «эффективного метода» [3] ; среди таких формализаций — рекурсивные функции Геделя — Эрбрана — Клини 1930, 1934 и 1935 гг., λ-исчисление Алонзо Чёрча 1936 г., «Формулировка 1» Эмиля Поста 1936 года и машина Тьюринга.
Информационные технологии копия 2
Основы алгоритмизации и технологии программирования
Понятие алгоритма и его свойства
Каждый из нас постоянно решает множество задач: как быстрее обраться на работу, как лучше спланировать дела текущего дня и многие другие. Некоторые задачи мы решаем автоматически, так как на протяжении многих лет привыкли к их выполнению, другие требуют длительного размышления над решением, но в любом случае, решение каждой задачи всегда делится на простые действия.
Любой алгоритм существует не сам по себе, а предназначен для определенного исполнителя (человека, робота, компьютера, языка программирования и т.д.). Свойством, характеризующим любого исполнителя, является то, что он умеет выполнять некоторые команды. Совокупность команд, которые данный исполнитель умеет выполнять, называется системой команд исполнителя. Алгоритм описывается в командах исполнителя, который будет его реализовывать. Объекты, над которыми исполнитель может совершать действия, образуют так называемую среду исполнителя. Исходные данные и результаты любого алгоритма всегда принадлежат среде того исполнителя, для которого предназначен алгоритм.
Значение слова «алгоритм» очень схоже со значениями слов «рецепт», «метод», «процесс». Однако, в отличие от рецепта или процесса, алгоритм характеризуется следующими свойствами: дискретностью, массовостью, определенностью, результативностью, формальностью.
Дискретность (разрывность – противоположно непрерывности) – это свойство алгоритма, характеризующее его структуру: каждый алгоритм состоит из отдельных законченных действий, говорят: «Делится на шаги».
Массовость – применимость алгоритма ко всем задачам рассматриваемого типа, при любых исходных данных. Например, алгоритм решения квадратного уравнения в области действительных чисел должен содержать все возможные исходы решения, т.е., рассмотрев значения дискриминанта, алгоритм находит либо два различных корня уравнения, либо два равных, либо делает вывод о том, что действительных корней нет.
Определенность (детерминированность, точность) – свойство алгоритма, указывающее на то, что каждый шаг алгоритма должен быть строго определен и не допускать различных толкований; также строго должен быть определен порядок выполнения отдельных шагов. Помните сказку про Ивана-царевича? «Шел Иван-царевич по дороге, дошел до развилки. Видит большой камень, на нем надпись: «Прямо пойдешь – голову потеряешь, направо пойдешь – жену найдешь, налево пойдешь – разбогатеешь. Стоит Иван и думает, что дальше делать». Таких инструкций алгоритм содержать не может.
Результативность – свойство, состоящее в том, что любой алгоритм должен завершаться за конечное (может быть очень большое) число шагов. Вопрос о рассмотрении бесконечных алгоритмов остается за рамками теории алгоритмов.
Формальность – это свойство указывает на то, что любой исполнитель, способный воспринимать и выполнять инструкции алгоритма, действует формально, т.е. отвлекается от содержания поставленной задачи и лишь строго выполняет инструкции. Рассуждать «что, как и почему» должен разработчик алгоритма, а исполнитель формально (не думая) поочередно исполняет предложенные команды и получает необходимый результат.
Способы описания алгоритмов
Рассмотрим следующие способы описания алгоритма: словесное описание, псевдокод, блок-схема, программа.
Словесное описание представляет структуру алгоритма на естественном языке. Например, любой прибор бытовой техники (утюг, электропила, дрель и т.п.) имеет инструкцию по эксплуатации, т.е. словесное описание алгоритма, в соответствии которому данный прибор должен использоваться.
Никаких правил составления словесного описания не существует. Запись алгоритма осуществляется в произвольной форме на естественном, например, русском языке. Этот способ описания не имеет широкого распространения, так как строго не формализуем (под «формальным» понимается то, что описание абсолютно полное и учитывает все возможные ситуации, которые могут возникнуть в ходе решения); допускает неоднозначность толкования при описании некоторых действий; страдает многословностью.
Псевдокод – описание структуры алгоритма на естественном, частично формализованном языке, позволяющее выявить основные этапы решения задачи, перед точной его записью на языке программирования. В псевдокоде используются некоторые формальные конструкции и общепринятая математическая символика.
Строгих синтаксических правил для записи псевдокода не существует. Это облегчает запись алгоритма при проектировании и позволяет описать алгоритм, используя любой набор команд. Однако в псевдокоде обычно используются некоторые конструкции, присущие формальным языкам, что облегчает переход от псевдокода к записи алгоритма на языке программирования. Единого или формального определения псевдокода не существует, поэтому возможны различные псевдокоды, отличающиеся набором используемых слов и конструкций.
Блок-схема – описание структуры алгоритма с помощью геометрических фигур с линиями-связями, показывающими порядок выполнения отдельных инструкций. Этот способ имеет ряд преимуществ. Благодаря наглядности, он обеспечивает «читаемость» алгоритма и явно отображает порядок: выполнения отдельных команд. В блок-схеме каждой формальной конструкции соответствует определенная геометрическая фигура или связанная линиями совокупность фигур.
Рассмотрим некоторые основные конструкции, использующиеся для построения блок-схем (рис. 1).
(1) Блок, характеризующий начало/конец алгоритма (для подпрограмм – вызов/возврат);
(8) Блок – решение (проверка условия или условный блок);
(9) Блок, описывающий блок с параметром;
(10) Блок – границы цикла, описывающий циклические процессы типа: «цикл с предусловием», «цикл с постусловием»;
Описания алгоритма в словесной форме, на псевдокоде или в виде блок-схемы допускают некоторый произвол при изображении команд. Вместе с тем она настолько достаточна, что позволяет человеку понять суть дела и исполнить алгоритм. На практике исполнителями алгоритмов выступают компьютеры. Поэтому алгоритм, предназначенный для исполнения на компьютере, должен быть записан на «понятном» ему языке, такой формализованный язык называют языком программирования.
Программа – описание структуры алгоритма на языке алгоритмического программирования. Программа на языке декларативного программирования представляет собой совокупность описанных знаний и не содержит явного алгоритма исполнения.
Основные алгоритмические конструкции
Элементарные шаги алгоритма можно объединить в следующие алгоритмические конструкции: линейные (последовательные), разветвляющиеся, циклические и рекурсивные.
Линейная алгоритмическая конструкция
Линейной называют алгоритмическую конструкцию, реализованную в виде последовательности действий (шагов), в которой каждое действие (шаг) алгоритма выполняется ровно один раз, причем после каждого i- гo действия (шага) выполняется (i+ 1)-е действие (шаг), если i-e действие – не конец алгоритма.
Опишем алгоритм сложения двух чисел на псевдокоде в виде блок-схемы (рис. 2).
Разветвляющаяся алгоритмическая конструкция
Разветвляющейся (или ветвящейся) называется алгоритмическая конструкция, обеспечивающая выбор между двумя альтернативами в зависимости от значения входных данных. При каждом конкретном наборе входных данных разветвляющийся алгоритм сводится к линейному. Различают неполное (если – то) и полное (если – то – иначе) ветвления. Полное ветвление позволяет организовать две ветви в алгоритме (то или иначе), каждая из которых ведет к общей точке их слияния, так что выполнение алгоритма продолжается независимо от того, какой путь был выбран (рис. 3). Неполное ветвление предполагает наличие некоторых действий алгоритма только на одной ветви (то), вторая ветвь отсутствует, т.е. для одного из результатов проверки никаких действий выполнять не надо, управление сразу переходит к точке слияния (рис. 4).
Рассмотрим стандартный алгоритм поиска наибольшего (наименьшего) значения среди нескольких заданных. Основная идея алгоритма сводится к следующему: за наибольшее (наименьшее) принимаем значение любого из данных. Поочередно сравниваем оставшиеся данные с наибольшим (наименьшим). если окажется, что очередное значение входного данного больше (меньше) наибольшего (наименьшего), то наибольшему (наименьшему) присваиваем это значение. Таким образом, сравнив все входные данные, найдем наибольшее (наименьшее) среди них. Алгоритм использует неполное ветвление.
Заданы три числа. Найти значение наименьшего из них Заданные числа обозначим: а, b, с; результирующее наименьшее – min. На рис. 5 представлена блок-схема алгоритма решения данной задачи.
Алгоритмическая конструкция «Цикл»
Циклической (или циклом) называют алгоритмическую конструкцию, в кoтoрoй некая, идущая подряд группа действий (шагов) алгоритма может выполняться несколько раз, в зависимости от входных данных или условия задачи. Группа повторяющихся действий на каждом шагу цикла называется телом цикла. Любая циклическая конструкция содержит себе элементы ветвящейся алгоритмической конструкции.
Арифметический цикл
В арифметическом цикле число его шагов (повторений) однозначно определяется правилом изменения параметра, которое задается с помощью начального (N) и конечного (К) значений параметра и шагом (h) его изменения. Т.е., на первом шаге цикла значение параметра равно N, на втором – N + h, на третьем – N + 2h и т.д. На последнем шаге цикла значение параметра не больше К, но такое, что дальнейшее его изменение приведет к значению, большему, чем К.
Вывести 10 раз слово «Привет!».
Параметр цикла обозначим i, он будет отвечать за количество выведенных слов. При i=1 будет выведено первое слово, при i=2 будет выведено второе слова и т. д. Так как требуется вывести 10 слов, то последнее значение параметра i=10. В заданном примере требуется 10 раз повторить одно и то же действие: вывести слово «Привет!». Составим алгоритм, используя арифметический цикл, в котором правило изменения параметра i=1,10, 1. т. е. начальное значение параметра i=1; конечное значение i=10; шаг изменения h=1. На рис. 6 представлена блок-схема алгоритма решения данной задачи.
Цикл с предусловием
Количество шагов цикла заранее не определено и зависит от входных данных задачи. В данной циклической структуре сначала проверяется значение условного выражения (условие) перед выполнением очередного шага цикла. Если значение условного выражения истинно, исполняется тело цикла. После чего управление вновь передается проверке условия и т.д. Эти действия повторяются до тех пор, пока условное выражение не примет значение ложь. При первом же несоблюдении условия цикл завершается.
Блок-схема данной конструкции представлена на рис. 7 двумя способами: с помощью условного блока а и с помощью блока границы цикла б. Особенностью цикла с предусловием является то, что если изначально условное выражение ложно, то тело цикла не выполнится ни разу.
Цикл с постусловием
Как и в цикле с предусловием, в циклической конструкции с постусловием заранее не определено число повторений тела цикла, оно зависит от входных данных задачи. В отличие от цикла с предусловием, тело цикла с постусловием всегда будет выполнено хотя бы один раз, после чего проверяется условие. В этой конструкции тело цикла будет выполняться до тех пор, пока значение условного выражения ложно. Как только оно становится истинным, выполнение команды прекращается. Блок-схема данной конструкции представлена на рис. 8 двумя способами: с помощью условного блока а и с помощью блока управления б.
Рекурсивный алгоритм
Рекурсивным называется алгоритм, организованный таким образом, что в процессе выполнения команд на каком-либо шаге он прямо или косвенно обращается сам к себе.
Простые типы данных: переменные и константы
Переменная – есть именованный объект (ячейка памяти), который может изменять свое значение. Имя переменной указывает на зн ачение, а способ ее хранения и адрес остаются скрытыми от программиста. Кроме имени и значения, переменная имеет тип, определяющий, какая информация находится в памяти. Тип переменной задает:
Объем памяти для каждого типа определяется таким образом, чтобы в него можно было поместить любое значение из допустимого диапазона значений данного типа. Например, тип «байт» может принимать значения от О до 255, что в двоичном коде (255(10)=11111111(2)) соответствует ячейке памяти длиной в 8 бит (или 1 байт).
В описанных выше алгоритмах (примеры 1-3) все данные хранятся в виде переменных. Например, инструкция «Ввод двух чисел а, b » означает введение пользователем значений двух переменных, а инструкция «К=К + 1» означает увеличение значения переменной К на единицу.
Если переменные присутствуют в программе, на протяжении всего времени ее работы – их называют статическими. Переменные, создающиеся и уничтожающиеся на разных этапах выполнения программы, называют динамическими.
Все остальные данные в программе, значения которых не изменяются на протяжении ее работы, называют константами или постоянными. Константы, как и переменные, имеют тип. Их можно указывать явно, например, в инструкции «К=К+1» 1 есть константа, или для удобства обозначать идентификаторами: pi=3,1415926536. Только значение pi нельзя изменить, так как это константа, а не переменная.
Структурированные данные и алгоритмы их обработки
Одномерный массив (шкаф ящиков в один ряд) предполагает наличие у каждого элемента только одного индекса. Примерами одномерных массивов служат арифметическая (аi) и геометрическая (bi) последовательности, определяющие конечные ряды чисел. Количество элементов массива называют размерностью. При определении одномерного массива его размерность записывается в круглых скобках, рядом с его именем. Например, если сказано: «задан массив A (10)», это означает, что даны элементы: a 1 , a 2 , …, a 10 . Рассмотрим алгоритмы обработки элементов одномерных массивов.
Ввод элементов одномерного массива осуществляется поэлементно, в порядке, необходимом для решения конкретной задачи. Обычно, когда требуется ввести весь массив, порядок ввода элементов не важен, и элементы вводятся в порядке возрастания их индексов. Алгоритм ввода элементов массива А(10) представлен на рис.9.
В заданном числовом массиве A(l0) найти наибольший элемент и его индекс, при условии, что такой элемент в массиве существует, и единственный.
Обозначим индекс наибольшего элемента т. Будем считать, что первый элемент массива является наибольшим (т = 1). Сравним поочередно наибольший с остальными элементами массива. Если оказывается, что текущий элемент массива а i (тот, c которым идет сравнение) больше выбранного нами наибольшего ат, то считаем его наибольшим (т=i) (рис.10).
Рассмотрим двумерный массив (шкаф с множеством ящиков, положение которых определяется двумя координатами – по горизонтали и по вертикали). В математике двумерный массив (таблица чисел) называется матрицей. Каждый ее элемент имеет два индекса а ij , первый индекс i определяет номер строки, в которой находится элемент (координата по горизонтали), а второй j – номер столбца (координата по вертикали). Двумерный массив характеризуется двумя размерностями N и М, определяющими число строк и столбцов соответственно (рис. 11).
Задана матрица символов (100х100), представляющая собой карту ночного неба; звездам на карте соответствует символы «*». Определить: сколько звезд на карте?
Алгоритм решения задачи достаточно прост, необходимо перебрать все элементы матрицы и посчитать, сколько среди них символов «*». Обозначим К переменную – счетчик. На рис 13. представлена блок-схема решения этой задачи.
АЛГОРИТМ — что это. Понятие, свойства, структура и виды
Алгоритм. Практически все в нашем мире подчиняется каким-то законам и правилам. Современная наука не стоит на месте, благодаря чему человечеству известна масса формул и алгоритмов, следуя которым, можно рассчитать и воссоздать множество действий и строений, созданных природой, и воплотить в жизнь идеи, придуманные человеком. В этой статье мы разберем основные понятия алгоритма.
История появления алгоритмов
Алгоритм — понятие, появившиеся в XII веке. Само слово «алгоритм» происходит от латинской интерпретации имени известного математика среднего востока Мухаммеда аль Хорезми, который написал книгу «Об индийском счете». В этой книге описано, как правильно записывать натуральные числа, используя арабские цифры, и приведено описание алгоритма действий столбиком над такими числами.
В XII веке книга «Об индийском счете» была переведена на латинский язык, тогда-то и появилось данное определение.
Взаимодействие алгоритма с человеком и машиной
Создание алгоритма требует творческого подхода, поэтому новый список последовательных действий может создать только живое существо. А вот для исполнения уже существующих инструкций фантазию иметь не обязательно, с этим справится даже бездушная техника.
Отличным примером точного исполнения заданной инструкции является пустая микроволновая печь, которая продолжает работать, несмотря на отсутствие пищи внутри нее.
Субъект или объект, которому не обязательно вникать в суть алгоритма, называется формальным исполнителем. Человек тоже может стать формальным исполнителем, однако в случае нерентабельности того или иного действия мыслящий исполнитель может все сделать по-своему. Поэтому основными исполнителями являются компьютеры, микроволновые печи, телефоны и другая техника. Понятие алгоритма в информатике имеет самое важное значение. Каждый алгоритм составляется с расчетом на конкретного субъекта, с учетом допустимых действий. Те объекты к которым субъект может применить инструкции, составляют среду исполнителя.
Практически все в нашем мире подчиняется каким-то законам и правилам. Современная наука не стоит на месте, благодаря чему человечеству известна масса формул и алгоритмов, следуя которым, можно рассчитать и воссоздать множество действий и творений природы и воплотить в жизнь идеи, придуманные человеком. В этой статье мы разберем основные понятия алгоритма.
Что такое алгоритм?
Большинство действий, которые мы выполняем в течение своей жизни, требуют соблюдений ряда правил. От того, насколько верное представление имеет человек о том что, как и в какой последовательности он должен сделать, зависит качество и результат выполнения поставленных перед ним задач. С детства родители пытаются выработать в своем чаде алгоритм основных действий, например: проснуться, заправить постель, умыться и почистить зубы, сделать зарядку, позавтракать и т. д., список, который человек всю жизнь выполняет с утра тоже можно считать своеобразным алгоритмом.
Алгоритм — это понятие, обозначающее подборку инструкций, которые необходимо выполнять человеку для того, чтобы решить определенную задачу.
Вообще, алгоритм имеет множество определений, несколько ученых характеризуют его по-разному.
Если алгоритм, применяемый человеком ежедневно, у каждого свой, и может изменятся в зависимости от возраста и ситуаций, в которых оказывается исполнитель, то свод действий, которые нужно выполнить для решения математической задачи или для использования техники, един для всех и всегда остается неизменным.
Существует разное понятие алгоритма, виды алгоритмов тоже разнятся — к примеру, для человека, который преследует какую-либо цель, и для техники.
В наш век информационных технологий люди ежедневно выполняют свод инструкций, созданных до них другими людьми, ведь техника требует при использовании точного исполнения ряда действий. Поэтому основная задача преподавателей в школах — научить детей пользоваться алгоритмами, быстро схватывать и изменять уже существующие правила в соответствии со сложившейся ситуацией. Структура алгоритма является одним из тех понятий, которое изучается на уроке математики и информатики в каждой школе.
Основные свойства алгоритма
Часто в школах, чтобы дать детям более понятное описание алгоритмов, учителя приводят в пример приготовление пищи по кулинарной книге, изготовление лекарства по рецепту или процесс мыловарения на основе мастер-класса. Однако, учитывая второе свойство алгоритма, в котором говорится о том, что каждый пункт алгоритма должен быть настолько понятным, чтобы его мог выполнить абсолютно любой человек и даже машина, можно прийти к выводу что любой процесс, требующий проявления хоть какой-то фантазии, алгоритмом назвать нельзя. А готовка и рукоделие требуют определенных навыков и хорошо развитого воображения.
Существуют разные типы алгоритмов, но есть три основных.
Цикличный алгоритм
В таком типе некоторые пункты повторяются по несколько раз. Список действий, которые необходимо повторить для достижения цели, называется телом алгоритма.
Итерация цикла — это выполнение всех пунктов, входящих в тело цикла. Части цикла, которые постоянно выполняются определенное количество раз, называются циклом с фиксированным числом итераций.
Те части цикла, частота повторения которых зависит от ряда условий, называются неопределёнными.
Самый простой вид цикла — это фиксированный.
Линейные типы алгоритмов
Инструкции таких схем выполняются однократно в той последовательности, в которой они представлены. Например, линейным алгоритмом можно считать процесс заправки постели или чистки зубов. Также к этому типу относятся математические примеры, где присутствуют лишь действия сложения и вычитания.
Разветвляющийся алгоритм
В разветвляющимся типе есть несколько вариантов действий, какое из них будет применено, зависит от условия.
Пример. Вопрос: «Идет дождь?» Варианты ответов: «Да» или «Нет». Если «да» — откройте зонт, если «нет» — положите зонт в сумку.
Вспомогательный алгоритм
Вспомогательный алгоритм можно использовать в других алгоритмах, указав лишь его название.
Термины, встречающиеся в алгоритмах
Условие находится между словами «если» и «тогда».
Например: если вы знаете английский язык, тогда нажмите один. В этом предложении условием будет часть фразы «вы знаете английский язык».
Данные — сведения, которые несут определенную смысловую нагрузку и представлены в таком виде, чтобы их можно было передавать и использовать для данного алгоритма.
Алгоритмический процесс — решение задачи по алгоритму с применением определенных данных.
Структура алгоритма
Алгоритм может иметь различную структуру. Для того чтобы описать алгоритм, понятие которого зависит и от его строения, можно воспользоваться целым рядом различных способов, например: словесный, графический, с помощью специально разработанного алгоритмического языка.
Какой из способов будет использован, зависит от нескольких факторов: от сложности задачи, от того, насколько нужно детализировать процесс решения задачи и т. д.
Графический вариант построения алгоритма
Графический алгоритм — понятие, подразумевающие под собой разложение действий, которые нужно выполнить для решения определенной задачи, по определенным геометрическим фигурам.
Графические схемы изображаются не как попало. Для того чтобы их мог понять любой человек применяются чаще всего блок-схемы и структурограммы Насси-Шнейдермана.
Также блок-схемы изображаются в соответствии с ГОСТ-19701-90 и ГОСТ-19.003-80.
Графические фигуры, применяемые в алгоритме, делятся на:
В графическом алгоритме геометрические фигуры, используемые для обозначения данных, называются блоками.
Все блоки идут в последовательности «сверху вниз» и «слева направо» — это правильное направление потока. При правильной последовательности линии, соединяющие между собой блоки, не показывают направление. В остальных случаях направление линий обозначается с помощью стрелок.
У правильной схемы алгоритма не должно быть больше одного выхода из обрабатывающих блоков и менее двух выходов из блоков, отвечающих за логические операции и проверку выполнения условий.
Как правильно построить алгоритм?
Структура алгоритма, как было сказано выше, должна строиться по ГОСТ, иначе она не будет понятна и доступна окружающим.
Общая методика по записи включает в себя следующие пункты:
При составлении алгоритма следует отметить действия, которые позволят производить нужные для решения задачи действия над выбранными данными. Примерный вид алгоритма:
Правильное построение схемы существенно облегчит вычисление алгоритмов.
Геометрические фигуры, отвечающие за разные действия в алгоритме
Горизонтально расположенный овал — начало и конец (знак завершения).
Горизонтально расположенный прямоугольник — вычисление или другие действия (знак процесса).
Горизонтально расположенный параллелограмм — ввод или вывод (знак данных).
Горизонтально расположенный ромб — проверка условия (знак решения).
Вытянутый, горизонтально расположенный шестиугольник — модификация (знак подготовки).
Модели алгоритмов представлены ниже на рисунке.
Формульно-словестный вариант построения алгоритма.
Формульно-словестные алгоритмы записываются в произвольной форме, на профессиональном языке той области, к которой относится задача. Описание действий таким способом осуществляют с помощью слов и формул.
Понятие алгоритма в информатике
В компьютерной сфере все строится на алгоритмах. Без четких указаний, введенных в виде специального кода, не будет работать ни одна техника или программа. На уроках информатики ученикам стараются дать основные понятия алгоритмов, научить пользоваться ими и самостоятельно их создавать.
Создание и использование алгоритмов в информатике — процесс более творческий, чем, например, выполнение указаний к решению задачи в математике.
Существует также специальная программа «Алгоритм», которая помогает людям, несведущим в области программирования, создавать свои собственные программы. Такой ресурс сможет стать незаменимым помощником для тех, кто делает первые шаги в информатике и хочет создавать свои игры или любые другие программы.
С другой стороны, любая программа — алгоритм. Но если алгоритм несет в себе лишь действия, которые нужно выполнять, вставляя свои данные, то программа уже несет в себе готовые данные. Еще одно отличие — это то, что программа может быть запатентована и являться частной собственностью, а алгоритм нет. Алгоритм — понятие более обширное, нежели программа.
Вывод
В этой статье мы разобрали понятие алгоритма и его виды, узнали, как правильно записывать графические схемы.