атомный реактор что это такое
Принцип работы и устройство ядерного реактора
Наступила бурная, но недолгая эпоха пара, которую сменила еще более фантастическая эпоха электричества. Города наполнялись светом, а цеха – гулом невиданных доселе машин, приводимых в движение электродвигателями. Тогда казалось, что прогресс достиг своего апогея.
Все изменилось в конце XIX века, когда французский химик Антуан Анри Беккерель совершенно случайно обнаружил, что соли урана обладают радиоактивностью. Спустя 2 года, его соотечественники Пьер Кюри и его супруга Мария Склодовская-Кюри получили из них радий и полоний, причем уровень их радиоактивности в миллионы раз превосходил показатели тория и урана.
Эстафету подхватил Эрнест Резерфорд, детально изучивший природу радиоактивных лучей. Так начинался век атома, явивший на свет свое любимое дитя – атомный реактор.
Типы ядерных реакторов
Их основное назначение – поддерживать контролируемую ядерную реакцию, производящую электроэнергию. На некоторых реакторах производятся изотопы. Если кратко, то они представляют собой устройства, в недрах которых одни вещества превращаются в другие с выделением большого количества тепловой энергии. Это своеобразная «печь», где вместо традиционных видов топлива «сгорают» изотопы урана – U-235, U-238 и плутоний (Pu).
В отличии, к примеру, от автомобиля, рассчитанного на несколько видов бензина, каждому виду радиоактивного топлива соответствует свой тип реактора. Их два – на медленных (с U-235) и быстрых (c U-238 и Pu) нейтронах. На большинстве АЭС установлены реакторы на медленных нейтронах. Помимо АЭС, установки «трудятся» в исследовательских центрах, на атомных субмаринах и опреснителях морской воды.
Как устроен реактор
Операторы контролируют работу установки с помощью двух важнейших систем – регулирования цепной реакции и дистанционной системы управления. Если возникает нештатная ситуация, мгновенно срабатывает аварийная защита.
Как работает реактор
Атомное «пламя» невидимо, так как процессы происходят на уровне деления ядер. В ходе цепной реакции тяжелые ядра распадаются на более мелкие фрагменты, которые, будучи в возбужденном состоянии, становятся источниками нейтронов и прочих субатомных частиц. Но на этом процесс не заканчивается. Нейтроны продолжают «дробиться», в результате чего высвобождается большая энергия, то есть, происходит то, ради чего и строятся АЭС.
Основная задача персонала – поддержание цепной реакции с помощью управляющих стержней на постоянном, регулируемом уровне. В этом его главное отличие от атомной бомбы, где процесс ядерного распада неуправляем и протекает стремительно, в виде мощнейшего взрыва.
Что произошло на Чернобыльской АЭС
Одна из основных причин катастрофы на Чернобыльской АЭС в апреле 1986 года – грубейшее нарушение эксплуатационных правил безопасности в процессе проведения регламентных работ на 4-м энергоблоке. Тогда из активной зоны было одновременно выведено 203 графитовых стержня вместо 15, разрешенных регламентом. В итоге, начавшаяся неуправляемая цепная реакция завершилась тепловым взрывом и полным разрушением энергоблока.
Реакторы нового поколения
За последнее десятилетие Россия стала одним из лидеров мировой ядерной энергетики. На данный момент госкорпорация «Росатом» ведет строительство АЭС в 12 странах, где возводятся 34 энергоблока. Столь высокий спрос – свидетельство высокого уровня современной российской ядерной техники. На очереди — реакторы нового 4-го поколения.
«Брест»
Один из них – «Брест», разработка которого ведется в рамках проекта «Прорыв». Ныне действующие системы разомкнутого цикла работают на низкообогащенном уране, после чего остается большое количество отработанного топлива, подлежащего захоронению, что требует огромных затрат. «Брест» — реактор на быстрых нейтронах уникален замкнутым циклом.
В нем отработанное топливо после соответствующей обработки в реакторе на быстрых нейтронах опять становится полноценным топливом, которое можно загружать обратно в ту же установку.
«Брест» отличает высокий уровень безопасности. Он никогда не «рванет» даже при самой серьезной аварии, очень экономичен и экологически безопасен, поскольку повторно пользуется своим «обновленным» ураном. Его также невозможно использовать для наработки оружейного плутония, что открывает широчайшие перспективы по его экспорту.
ВВЭР-1200
ВВЭР-1200 – инновационный реактор поколения «3+» мощностью 1150 МВт. Благодаря своим уникальным техническим возможностям, он обладает практически абсолютной эксплуатационной безопасностью. Реактор в изобилии оснащен системами пассивной безопасности, которые сработают даже в отсутствии электроснабжения в автоматическом режиме.
Одна из них – система пассивного отведения тепла, которая автоматически активируется при полном обесточивании реактора. На этот случай предусмотрены аварийные гидроемкости. При аномальном падении давления в первом контуре в реактор начинается подача большого количества воды, содержащей бор, которая гасит ядерную реакцию и поглощает нейтроны.
Еще одно ноу-хау находится в нижней части защитной оболочки – «ловушка» расплава. Если все же в результате аварии активная зона «потечет», «ловушка» не позволит разрушиться защитной оболочке и предотвратит попадание радиоактивных продуктов в грунт.
Ядерный реактор работает слаженно и четко. Иначе, как известно, будет беда. Но что там творится внутри? Попытаемся сформулировать принцип работы ядерного (атомного) реактора кратко, четко, с остановками.
Градирни АЭС
Ядерная реакция – это процесс превращения (деления) атомных ядер при взаимодействии их с элементарными частицами и гамма-квантами.
Ядерные реакции могут проходить как с поглощением, так и с выделением энергии. В реакторе используются вторые реакции.
Ядерный реактор – это устройство, назначением которого является поддержание контролируемой ядерной реакции с выделением энергии.
Реактор
История создания атомного реактора
В 1946 году заработал первый советский реактор, запущенный под руководством Курчатова. Корпус этого реактора представлял собой шар семи метров в диаметре. Первые реакторы не имели системы охлаждения, и мощность их была минимальной. К слову, советский реактор имел среднюю мощность 20 Ватт, а американский – всего 1 Ватт. Для сравнения: средняя мощность современных энергетических реакторов составляет 5 Гигаватт. Менее чем через десять лет после запуска первого реактора была открыта первая в мире промышленная атомная электростанция в городе Обнинске.
Принцип работы ядерного (атомного) реактора
Приведем ниже схему работы ядерного реактора.
Схема ядерного реактора на АЭС
Как мы уже говорили, при распаде тяжелого ядра урана образуются более легкие элементы и несколько нейтронов. Образовавшиеся нейтроны сталкиваются с другими ядрами, также вызывая их деление. При этом количество нейтронов растет лавинообразно.
Цепная реакция
Вопрос в том, как это сделать? В реакторе топливо находится в так называемых тепловыделяющих элементах (ТВЭЛах). Это стержни, в которых в виде небольших таблеток находится ядерное топливо. ТВЭЛы соединены в кассеты шестигранной формы, которых в реакторе могут быть сотни. Кассеты с ТВЭЛами располагаются вертикально, при этом каждый ТВЭЛ имеет систему, позволяющую регулировать глубину его погружения в активную зону. Помимо самих кассет среди них располагаются управляющие стержни и стержни аварийной защиты. Стержни изготовлены из материала, хорошо поглощающего нейтроны. Так, управляющие стержни могут быть опущены на различную глубину в активной зоне, тем самым регулируя коэффициент размножения нейтронов. Аварийные стержни призваны заглушить реактор в случае чрезвычайной ситуации.
ТВЭЛы, помещенные в топливную кассету
Ядерное топливо
Критическая масса – это необходимая для начала цепной ядерной реакции масса делящегося вещества.
При помощи ТВЭЛов и управляющих стержней в ректоре сначала создается критическая масса ядерного топлива, а потом реактор в несколько этапов выводится на оптимальный уровень мощности.
В данной статье мы постарались дать Вам общее представление об устройстве и принципе работы ядерного (атомного) реактора. Если у Вас остались вопросы по теме или в университете задали задачу по ядерной физике – обращайтесь к специалистам нашей компании. Мы, как обычно, готовы помочь Вам решить любой насущный вопрос по учебе. А пока мы этим занимаемся, Вашему вниманию очередное образовательное видео!
Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.
Ядерный реактор для чайников: замыкание топливного цикла в двухкомпонентной ядерной энергетике
БН-800 на Белоярской АЭС — один из двух в мире действующих реакторов на быстрых нейтронах. Выведен на номинальную мощность в 2015 году
Под катом — рассказ про устройство классических ядерных реакторов на тепловых нейтронах, принцип работы ядерных реакторов на быстрых нейтронах (в мире их всего два, и оба в России) и замыкание ядерного топливного цикла.
Уверена, это будет интересно тем, кому пришелся по вкусу рассказ про международную стройку 500-мегаваттного термоядерного реактора ITER.
Наш рассказчик — Алексей Германович Горюнов, заведующий кафедрой и руководитель отделения ядерно-топливного цикла инженерной школы ядерных технологий из томского Политеха, который прочитал лекцию про двухкомпонентную энергетику в томской Точке кипения.
Сегодняшний рассказ — о новых технологиях мирного атома: замыкании ядерно-топливного цикла и двухкомпонентной ядерной энергетике.
Но начнем с того, как ядерно-топливный цикл функционирует сейчас.
Классический топливный цикл
В больших реакторах, преобладающих в ядерной энергетике, таких как водо-водяной ВВР-1000 или канальный РБМК-1000, отработанное топливо не перерабатывают. Его хранят в бассейнах выдержки реакторов, а потом перевозят на площадку долговременного хранения на базе горно-химического комбината.
Базовый процесс получения топлива дорогой, а сырье — исчерпаемый ресурс, поэтому человечество напряженно решает задачу по замыканию топливного цикла — это когда из ядерных отходов опять производят топливо. Сейчас эта схема существует лишь в небольшом сегменте ядерной энергетики — в транспортных и исследовательских реакторах.
Давайте теперь посмотрим на устройство современных реакторов.
Ядерные реакторы на тепловых нейтронах
Схематично атомную станцию с ядерным реактором на тепловых нейтронах можно представить так:
Далее мы будем говорить о так называемом ядерном острове, куда входит реакторная часть. Рассмотрим, какие реакторы используются в настоящее время, а какие могут быть запущены в ближайшем будущем.
Условная схема ядерной электростанции
Реактор — это устройство, в активной зоне которого осуществляется контролируемая самоподдерживающаяся цепная реакция деления ядер тяжелых элементов, в частности урана-235. Сегодня наиболее распространены водо-водяные энергетические блоки. На картинке — схема как раз такого реактора.
Условная схема электростанции с водо-водяным реактором
Реактор находится в защищенном корпусе и примыкает к отдельному зданию, где размещают традиционные энергетические узлы — турбинный зал и другие, которые есть в обычных теплоэнергетических станциях.
Обычно в реакторах используют четыре нити охлаждения для повышения надежности. Первый контур охлаждения реактора включает сам реактор, а также главные циркуляционные насосы. Их число соответствует количеству нитей охлаждения — четыре. На каждой из нитей охлаждения установлен парогенератор, который отделяет первый контур реактора от второго, содержащего теплоноситель, поступающий в традиционный остров.
Энергетическая установка с реактором ВВР
Общий вид самого реактора:
Стоит отметить, что это корпусной реактор, такая конструкция позволяет достичь высоких показателей по безопасности.
Ядерные реакторы на быстрых нейтронах
Сначала немного физики. Напомню, изотопы — это элементы, имеющие одинаковые атомные номера, но разный атомный вес. Самое интересное, что они имеют разные свойства. К примеру, уран-238 практически не делится в реакторах на тепловых нейтронах, а уран-235 — делится. Чтобы описать вероятность деления изотопа, в ядерной физике используют понятие «сечение деления».
Сечение реакции деления ядер изотопов урана, плутония и тория в зависимости от энергии нейтронов
Рисунок наглядно показывает, что для урана-235 и плутония-239 мы можем создать цепную реакцию, используя как тепловые, так и быстрые нейтроны. А уран-238 в левой части графика (где находятся тепловые нейтроны) делиться не будет. В природе же распространен в основном изотоп урана-238, который нельзя напрямую использовать в реакторе на тепловых нейтронах. Урана-235 в природе содержится очень мало, а для получения топлива необходимо проводить дорогостоящее обогащение.
Реактор на быстрых нейтронах позволяет уйти от процедуры обогащения по урану-235. Но технически все не так просто.
В реакторе на тепловых нейтронах, как и в целом во всех современных энергетических установках, в качестве теплоносителя используют воду. Именно она переносит тепловую энергию к турбинам. С ней понятно, как работать, какие использовать конструкционные материалы. Однако из ядерной физики мы знаем, что вода замедляет быстрые нейтроны, появляющиеся при делении ядер.
Поэтому в реакторе на быстрых нейтронах в качестве теплоносителя, как правило, используются жидкие металлы, что существенно усложняет конструкцию.
Здесь приходится решать целый пласт научных и опытно-конструкторских задач, в том числе — разрабатывать новые материалы.
Наиболее вероятная реакция в реакторе на быстрых нейтронах — поглощение нейтрона изотопом урана-238 — показана на схеме ниже.
Уран-235 и плутоний-239 схожи по своим свойствам. На базе этих ядер мы вполне можем получить цепную реакцию: поглощая как быстрые, так и медленные нейтроны, ядра будут делиться, испуская вторичные, третичные нейтроны и т.д.
Исторически сложилось, что наиболее проработанные на сегодняшний день реакторы на быстрых нейтронах — БН-600 и БН-800.
А Россия — единственная страна в мире, имеющая действующие промышленные ядерные реакторы на быстрых нейтронах.
Их устройство намного сложнее, чем у двухконтурного водо-водяного реактора на тепловых нейтронах, поскольку в качестве теплоносителя используют жидкий натрий с температурой плавления
Схема энергоблока с реактором на быстрых нейтронах
В реакторах с натриевым теплоносителем мы не можем использовать двухконтурную схему, где первый контур заполнен натрием, а второй — водой, поскольку случайное взаимодействие облученного натрия с водой приведет к особо тяжелым последствиям. В ходе реакции этих двух веществ выделяется взрывоопасный водород, и в случае взрыва нейтрализовать фонящий натрий будет крайне проблематично. Поэтому используют трехконтурную схему. Первый контур — натриевый (на рисунке он показан красным в центре реактора), потом теплообменник и еще один (промежуточный) натриевый контур (желтый цвет), позволяющий снизить степень облучения натрия, и только в третьем контуре используется вода, установлена турбина, тепловые части и остальное оборудование. Три контура усложняют как эксплуатацию реактора, так и управление им.
Следующий шаг — БРЕСТ
Энергокомплекс БРЕСТ-300 — следующий этап развития. Создается он в рамках росатомовского проекта «Прорыв». Вместо натрия в качестве теплоносителя используют свинец (tплав. 327℃). Это позволяет, как и в водо-водяных реакторах, использовать всего два контура, упрощает управление и повышает энергоэффективность.
Конструкция этого реактора обеспечивает так называемую естественную безопасность: на этом реакторе невозможна авария из-за неконтролируемого появления нейтронов, приводящего к цепным реакциям (разгона реактора по мощности).
На этот реактор возлагают большие надежды. В нем можно «сжигать» делящиеся элементы и нарабатывать плутоний, а потом использовать его для замыкания ядерно-топливного цикла.
Цель замыкания — постепенно исключить часть цепочки, связанную с добычей урана его обогащением, а также повторно использовать ядерные отходы.
Двухкомпонентная энергетика — это решение задачи по уменьшению количества обогащенного природного урана, необходимого для работы всех этих реакторов. Она еще не достигла пика своего развития — это то, чем будет заниматься поколение сегодняшних школьников.
В настоящее время в реакторах на быстрых нейтронах мы начинаем нарабатывать делящиеся элементы, которые впоследствии позволят загружать сюда топливо, не обогащенное по урану-235.
БН-600 и БН-800 уже работают на так называемом МОКС-топливе (MOX — Mixed-Oxide fuel) — смеси, включающей оксиды плутония-239 и урана. Причем реакторы могут работать как на топливе, обогащенном по урану-235 — и в этом случае нарабатывать плутоний-239, — так и на плутонии.
Частично замкнутый цикл использования ядерного топлива
На базе Опытно-демонстрационного центра в Северске, а в будущем и завода ФТ-2 в Железногорске, есть хранилище отработанного ядерного топлива. Сейчас на финальной стадии разработки находится технология, которая позволит переработать топливо после реактора ВВР и вернуть из него в цикл уран и плутоний. Задачу переработки решают весьма интересно: уран и плутоний не разделяют, а передают на производство в смешанном виде. В итоге мы получаем тепловыделяющие сборки для реакторов, содержащие регенерированный уран и плутоний, а также добавленный туда природный уран, обогащенный по изотопу-235.
Конечно, полного замыкания ядерно-топливного цикла здесь нет, но этот подход позволяет снизить затраты на обогащение.
Кроме того, делящиеся элементы, которые мы будем извлекать из отработанного в реакторах ВВР топлива, пойдут на топливные циклы быстрых реакторов.
Сейчас уже отработана схема загрузки в реактор БН-800 МОКС-топлива, содержащего плутоний-239 и уран-238, его путь на рисунке ниже показан красной линией.
Схема подразумевает использование отработанного ядерного топлива (ОЯТ) из реактора ВВЭР совместно с оксидным топливом с ураном-235 после реакторов БН. В ходе переработки мы выделяем смесь плутония и урана, которая идет на изготовление МОКС-топлива. А отработанное МОКС-топливо перерабатывают вместе с топливом после реактора РБМК.
Получается, что мы начинаем с обычной загрузки реакторов оксидным топливом на базе урана-235 и постепенно, нарабатывая плутоний-239 в быстром реакторе, вытесняем его МОКС-топливом.
Мы не сможем сразу перейти с традиционных реакторов на быстрые, потому что для каждого реактора на быстрых нейтронах придется построить инфраструктуру по переработке топлива, которая в первое время не будет загружена, ведь реакторы должны наработать топливо, которое впоследствии будет перерабатываться. А в схеме выше заложен плавный переход от существующих реакторов к быстрым. Эта схема подразумевает наработку плутония на реакторе БН-800. В перспективе должны появиться более мощные и более рентабельные установки — БН-1200, которые воплотят двухкомпонентность нашей ядерной энергетики на ближайшее десятилетие и стратегию того же Росатома.
Но интереснее то, что происходит в проекте БРЕСТ. Реактор такого типа с электрической мощностью 300 МВт уже начали возводить в Северске. Вокруг него построят комплекс, который позволит решать задачи регенерации топлива, т.е. все процессы в рамках замыкания топливного цикла будут сосредоточены в одном месте.
На начальном этапе будет нужна подпитка природным или обедненным ураном, как отмечено на картинке. Не имея нужного объема плутония, мы можем, как и в предыдущей схеме, стартовать, используя комбинированное топливо, и постепенно нарабатывать плутоний, переходя на замкнутый цикл.
На этот реактор возлагают большие надежды: упомянутый выше естественный контур защиты не позволяет разогнать его до тяжелых аварий. Но здесь придется столкнуться с рядом проблем. Задачи, связанные с наработкой плутония, уже в какой-то степени решали. А вот переработка ядерного топлива после быстрых реакторов — вопрос открытый. Здесь нужно обеспечить короткую выдержку топлива: оно горячее и с высоким радиационным фоном. Нужно создавать новые технологические процессы, отрабатывать их на стендах и внедрять.
Если задача по замыканию ядерного топливного цикла будет решена, то в масштабах жизни человека мы получим практически неисчерпаемый источник энергии.
Параллельно необходимо довести до конца решение задачи по выводу отходов из цикла без нарушения естественного радиационного баланса Земли. Проектируемый топливный цикл должен обеспечить возврат ровно того же количества радиации, которое мы извлекли. Теоретически эта задача просчитана и может быть решена. Дело за практикой.
АЭС: как это работает?
Атомная электроэнергетика – современный и быстро развивающийся способ добычи электричества. А вы знаете, как устроены атомные станции? Каков принцип работы АЭС? Какие типы ядерных реакторов сегодня существуют? Постараемся детально рассмотреть схему работы АЭС, вникнуть в устройство ядерного реактора и узнать о том, насколько безопасен атомный способ добычи электроэнергии.
Как устроена АЭС?
Любая станция – это закрытая зона вдалеке от жилого массива. На ее территории находятся несколько зданий. Самое главное сооружение – здание реактора, рядом с ним расположен машинный зал, из которого реактором управляют, и здание безопасности.
Схема АЭС невозможна без ядерного реактора. Атомный (ядерный) реактор – это устройство АЭС, которое призвано организовать цепную реакцию деления нейтронов с обязательным выделением энергии при этом процессе. Но каков принцип работы АЭС?
Вся реакторная установка помещается в здание реактора, большую бетонную башню, которая скрывает реактор и в случае аварии удержит в себе все продукты ядерной реакции. Эту большую башню называют контейнтмент, герметичная оболочка или гермозона.
Гермозона в новых реакторах имеет 2 толстые бетонные стенки – оболочки.
Внешняя оболочка толщиной в 80 см обеспечивает защиту гермозоны от внешних воздействий.
Внутренняя оболочка толщиной в 1 метр 20 см имеет в своем устройстве специальные стальные тросы, которые увеличивают прочность бетона почти в три раза и не дадут конструкции рассыпаться. С внутренней стороны она выложена тонким листом специальной стали, которая призвана служить дополнительной защитой контейнтмента и в случае аварии не выпустить содержимое реактора за пределы гермозоны.
Такое устройство атомной станции позволяет выдержать падение самолета весом до 200 тонн, 8 бальное землетрясение, торнадо и цунами.
Впервые герметичная оболочка была сооружена на американской АЭС Коннектикут Янки в 1968 году.
Полная высота гермозоны – 50-60 метров.
Из чего состоит атомный реактор?
Чтобы понять принцип работы ядерного реактора, а значит и принцип работы АЭС, нужно разобраться в составляющих реактора.
Топливо для АЭС
На чем работает АЭС? Топливо для АЭС – это химические элементы, обладающие радиоактивными свойствами. На всех атомных станциях таким элементом выступает уран.
Обогащенный уран
Что делать в этом случае? Уран решили обогащать. Обогащение урана это процесс, когда в нем остается много нужных 235х изотопов и мало ненужных 238х. Задача обогатителей урана – из 0.7% сделать почти 100% урана-235.
Обогатить уран можно с помощью двух технологий – газодиффузионной или газоцентрифужной. Для их использования уран, добытый из руды, переводят в газообразное состояние. В виде газа его и обогащают.
Урановый порошок
Обогащенный урановый газ переводят в твердое состояние – диоксид урана. Такой чистый твердый 235й уран выглядит как большие белые кристаллы, которые позже дробят в урановый порошок.
Урановые таблетки
Урановые таблетки – это твердые металлические шайбы, длиной в пару сантиметров. Чтобы из уранового порошка слепить такие таблетки, его перемешивают с веществом – пластификатором, он улучшает качество прессования таблеток.
Прессованные шайбы запекают при температуре 1200 градусов по Цельсию более суток, чтобы придать таблеткам особую прочность и устойчивость к высоким температурам. То, как работает АЭС, напрямую зависит от того, насколько хорошо спрессовали и запекли урановое топливо.
Запекают таблетки в молибденовых ящиках, т.к. только этот металл способен не расплавиться при «адских» температурах свыше полутора тысяч градусов. После этого урановое топливо для АЭС считается готовым.
Что такое ТВЭЛ и ТВС?
Активная зона реактора внешне выглядит как огромный диск или труба с дырками в стенках (в зависимости от типа реактора), раз в 5 больше человеческого тела. В этих дырках находится урановое топливо, атомы которого и проводят нужную реакцию.
Цирконий выбран материалом для производства ТВЭЛов благодаря его тугоплавкости и антикоррозийности.
Тип ТВЭЛов зависит от типа и строения реактора. Как правило, строение и назначение ТВЭЛов не меняется, разными могут быть длина и ширина трубки.
В одну циркониевую трубку автомат загружает более 200 урановых таблеток. Всего в реакторе одновременно работают около 10 миллионов урановых таблеток.
ТВС – тепловыделяющая сборка. Работники АЭС называют ТВС пучками.
Одна ТВС за 4 года эксплуатации вырабатывает столько же энергии как при сжигании 670 вагонов угля, 730 цистерн с природным газом или 900 цистерн, груженных нефтью.
Сегодня ТВС производят в основном на заводах России, Франции, США и Японии.
Чтобы доставить топливо для АЭС в другие страны, ТВС запечатывают в длинные и широкие металлические трубы, из труб выкачивают воздух и специальными машинами доставляют на борта грузовых самолетов.
Атомная электростанция: принцип работы
Каков принцип работы АЭС? Принцип работы АЭС базируется на цепной реакции деления атомов радиоактивного вещества – урана. Эта реакция происходит в активной зоне ядерного реактора.
Если не вдаваться в тонкости ядерной физики, принцип работы АЭС выглядит так:
После пуска ядерного реактора из ТВЭЛов извлекаются поглощающие стержни, которые не дают урану вступить в реакцию.
Как только стрежни извлечены, нейтроны урана начинают взаимодействовать друг с другом.
Когда нейтроны сталкиваются, происходит мини-взрыв на атомном уровне, выделяется энергия и рождаются новые нейтроны, начинает происходить цепная реакция. Этот процесс выделяет тепло.
Тепло отдается теплоносителю. В зависимости от типа теплоносителя оно превращается в пар или газ, которые вращают турбину.
Турбина приводит в движение электрогенератор. Именно он по факту и вырабатывает электрический ток.
Если не следить за процессом, нейтроны урана могут сталкиваться друг с другом до тех пор, пока не взорвут реактор и не разнесут всю АЭС в пух и прах. Контролируют процесс компьютерные датчики. Они фиксируют повышение температуры или изменение давления в реакторе и могут автоматически остановить реакции.
Чем отличается принцип работы АЭС от ТЭС (теплоэлектростанций)?
Различия в работе есть только на первых этапах. В АЭС теплоноситель получает тепло от деления атомов уранового топлива, в ТЭС теплоноситель получает тепло от сгорания органического топлива (угля, газа или нефти). После того, как или атомы урана, или газ с углём выделили тепло, схемы работы АЭС и ТЭС одинаковы.
Типы ядерных реакторов
То, как работает АЭС, зависит от того, как именно работает ее атомный реактор. Сегодня есть два основных типа реакторов, которые классифицируются по спектру нейронов:
Реактор на медленных нейтронах, его также называют тепловым.
Для его работы используется 235й уран, который проходит стадии обогащения, создания урановых таблеток и т.д. Сегодня реакторов на медленных нейтронах подавляющее большинство.
Реактор на быстрых нейтронах.
За этими реакторами будущее, т.к. работают они на уране-238, которого в природе пруд пруди и обогащать этот элемент не нужно. Минус таких реакторов только в очень больших затратах на проектирование, строительство и запуск. Сегодня реакторы на быстрых нейтронах работают только в России.
Теплоносителем в реакторах на быстрых нейтронах выступает ртуть, газ, натрий или свинец.
Реакторы на медленных нейтронах, которыми сегодня пользуются все АЭС мира, тоже бывают нескольких типов.
Организация МАГАТЭ (международное агентство по атомной энергетике) создало свою классификацию, которой пользуются в мировой атомной энергетике чаще всего. Так как принцип работы атомной станции во многом зависит от выбора теплоносителя и замедлителя, МАГАТЭ базировали свою классификацию на этих различиях.
С химической точки зрения оксид дейтерия идеальный замедлитель и теплоноситель, т.к. ее атомы наиболее эффективно взаимодействуют с нейтронами урана по сравнению с другими веществами. Попросту говоря, свою задачу тяжелая вода выполняет с минимальными потерями и максимальным результатом. Однако ее производство стоит денег, в то время как обычную «легкую» и привычную для нас воду использовать куда проще.
Несколько фактов об атомных реакторах…
Одна обечайка (элемент конструкции) ядерного реактора весит 150 тонн. В одном реакторе таких элементов 6.
Водо-водяной реактор
Все водо-водяные реакторы в мире за все годы их эксплуатации в сумме уже успели набрать более 1000 лет безаварийной работы и ни разу не давали серьезных отклонений.
Структура АЭС на водо-водяных реакторах, подразумевает, что между ТВЭЛами циркулирует дистиллированная вода, нагретая до 320 градусов. Чтобы не дать ей перейти в парообразное состояние ее держат под давлением в 160 атмосфер. Схема АЭС называет ее водой первого контура.
Нагретая вода попадает в парогенератор и отдает свое тепло воде второго контура, после чего снова «возвращается» в реактор. Внешне это выглядит так, что трубки воды первого контура соприкасаются с другими трубками – воды второго контура, они передают тепло друг другу, но воды не контактируют. Контактируют трубки.
Таким образом, исключена возможность попадания радиации в воду второго контура, которая будет далее участвовать в процессе добычи электричества.
То, как работают АЭС далее, уже хорошо известно — вода второго контура в парогенераторах превращается в пар, пар вращает турбину, а турбина приводит в движение электрогенератор, который вырабатывает электроэнергию.
Безопасность работы АЭС
Узнав принцип работы АЭС мы должны понимать как же устроена безопасность. Устройство АЭС сегодня требует повышенного внимания к правилам безопасности.
Затраты на безопасность АЭС составляют примерно 40% от общей стоимости самой станции.
В схему АЭС закладываются 4 физических барьера, которые препятствуют выходу радиоактивных веществ. Что должны делать эти барьеры? В нужный момент суметь прекратить ядерную реакцию, обеспечивать постоянный отвод тепла от активной зоны и самого реактора, предотвращать выход радионуклеидов за пределы контайнмента (гермозоны).
Если, несмотря на устройство АЭС с множеством степеней защиты, охладить активную зону реактора в нужный момент не удастся, и температура топлива возрастет до 2600 градусов, то в дело вступает последняя надежда системы безопасности – так называемая ловушка расплава.
Дело в том, что при такой температуре дно корпуса реактора расплавится, и все остатки ядерного топлива и расплавленных конструкций стекут в специальный подвешенный над активной зоной реактора «стакан».
Ловушка расплава охлаждаема и огнеупорна. Она наполнена так называемым «жертвенным материалом», который постепенно останавливает цепную реакцию деления.
Таким образом, схема АЭС подразумевает несколько степеней защиты, которые практически полностью исключают любую возможность аварии.