автоматика в электрике что это
Разновидности электрических автоматических выключателей
Проводку и электрические приборы защищает автоматический выключатель. Это обязательный прибор, без установки которого пользование электричеством не допустимо согласно ПУЭ. Выключатели изготавливаются для подключения к однофазным (220 вольт) и трехфазным (380 вольт) сетям. Различают приборы, используемые для цепей постоянного либо переменного токов, или их комбинации. Рассмотрим, для чего применяются и какие бывают автоматы.
Назначение приборов
Основная функция, возлагаемая на автоматические выключатели, сводится к защите кабеля от коротких замыканий и его перегрузки. Кроме этого, в комплекс задач для устройства входит:
Важно правильно подбирать тип электрических автоматов с учетом технических характеристик сети, так как частое отключение электросети чревато губительными последствиями для подключенных приборов.
Для этого стоит понять, как работает автоматический выключатель. Прибор, рассчитанный на высокую мощность, не всегда уместен, так как опасная ситуация для бытового помещения может не распознаться. Сила тока, выходящая за пределы допустимой для кабеля нормы, чаще не определяется автоматическим выключателем как аварийное положение. Тогда короткое замыкание может вызываться расплавлением изоляции, но к этому времени есть риск возникновения возгорания. Устройство автоматического выключателя меньшей мощностью способно часто и регулярно останавливать подачу напряжения на потребителя. В результате автомат перестанет функционировать из-за выхода из строя контактов.
Разновидности по полюсам
Автоматы могут иметь от 1 до 4 полюсов, что определяется мощностью подключаемого электрооборудования и количеством фаз сети.
Классификация по числу полюсов автоматических выключателей:
Для четырехжильного кабеля устанавливаются только трех- и четырехполюсные автоматы выключения.
Классификация по времятоковому показателю
Количество ложных срабатываний автоматов при неравномерной нагрузке на сеть оптимизируется благодаря разной скорости реагирования на превышение номинального тока. Зависимость времени отключения сети от силы протекающего тока определяет следующие виды автоматических выключателей:
Это самые распространенные типы. Ряд производственных моделей дополнен еще тремя группами: L, K и Z.
Классификация по конструкции
Существует три вида автоматов защиты сети:
Разделение по номинальной отключающей возможности
По критериям, определяющим значение тока короткого замыкания, при котором выключатель сработает с последующим отключением поступающего потребителю напряжения, выделяют три разновидности:
Для бытового назначения чаще применяется 6000 А.
Типы расцепителей
В защиту включают электромагнитный и термический расцепитель. Работа каждого элемента автономна и не зависит от состояния друг друга.
Тепловой расцепитель представляет собой металлическую пластину, назначение которой — реагирование на нагрев. Для включения прибора пластина должна остыть до исходной допустимой температуры.
Принцип действия автоматического выключателя зависит от конкретной ситуации.
Рабочий режим
Электрические автоматы включаются поднятием рычага управления. Механизм взвода и расцепления переключается в активное состояние. Происходит коммутация силовых контактов: ток протекает между ними (от неподвижного к подвижному). После этого движение продолжается через гибкую связь на катушку электромагнитного расцепителя, после — по гибкой связи на тепловой расцепитель. На «питающую» электролинию ток выходит через нижнюю клемму.
Механизм действия при коротком замыкании (КЗ)
Своевременное отключение подачи нагрузки обеспечивается электромагнитным расцепителем. Принцип работы автоматического выключателя при КЗ сводится к следующей схеме: превышающее допустимую норму напряжение, протекая через электромагнитную катушку расцепителя, образует магнитное поле высокой мощности. В результате якорь с подвижным контактом опускается вниз, воздействуя на рычаг спускового механизма, после чего отключается нагрузка.
Таким образом, незамедлительно возникшее магнитное поле провоцирует реакцию на обесточивание сети до возникновения аварийной ситуации.
В ходе возникновения разряда, между контактами образуются продукты горения, а также повышается давление внутри корпуса автомата. Требуется устранение побочных реакций, для чего предусмотрены каналы в коробе автомата.
Перегрузка
Сеть защищается благодаря тепловому расцепителю — биметаллической пластине. При этом ток, поступая через нее, может превышать значение нормы, что ведет к ее перегреву и последующему изгибу. Достигая определенного угла изгиба, пластина воздействует на спусковое устройство, в ходе чего автомат отключается.
Разогрев биметалла требует времени. Продолжительность зависит от степени превышения значения воздействующего тока и может составлять несколько секунд или длиться до часа. Это свойство позволяет не отключать питание при непродолжительных или случайных превышениях тока в сети. Нижняя граница допустимого значения, при котором срабатывает терморасцепитель, устанавливается заводом-изготовителем. На корректную работу теплового элемента способна влиять температура воздуха окружающей среды. Указанные в маркировке технические параметры актуальны для температуры до 30 градусов. В прохладном помещении ток может достигать значения выше допустимого, в жарком — срабатывать при более низком значении.
Термический расцепитель более медлительный, чем магнитный, но имеет преимущество, так как работает более точно, а настроить его проще.
Маркировка
Все автоматические выключатели, независимо от производителя и их типа, маркируются по единой схеме, включающей основные параметры:
Сам рычаг содержит обозначение о состоянии: «откл», «вкл» или «1», «0». Тогда как отключение происходит автоматически, включение может проводиться только вручную.
Автоматический выключатель сводит риски, вызываемые коротким замыканием или внезапным отключением света, к минимуму.
Видео по теме
Как работают релейная защита и автоматика
Первые эксперименты человека с электричеством и созданием цепей для прохождения тока сопровождались короткими замыканиями и неисправностями, во время которых приобретался опыт и знания, выявлялись закономерности протекающих процессов и вырабатывались правила эксплуатации.
На основе анализа допущенных ошибок начали создаваться устройства, предохраняющие оборудование и людей от электрического воздействия. Первыми такими приборами стали плавкие предохранители, которые перегорали при создании критических нагрузок, разрывая цепи электрического тока.
Более сложные защитные конструкции начали массово внедряться после 1891 года, когда в России по проекту Михаила Осиповича Доливо-Добровольского успешно транспортировали 220 кВт электрической энергии на 175 км с КПД в 77% на основе трехфазной системы напряжения, разработанной этим же ученым.
В основу работы защит был положен принцип реле — устройств, которые постоянно отслеживают какой-либо электрический параметр сети, а при достижении им критических величин срабатывают: резко меняют свое первоначальное состояние, коммутируя электрическую схему.
Первые устройства защит выполнялись на основе электромеханических конструкций реле, а специалистов, занимающихся их эксплуатацией стали называть термином «релейщики», который действует до настоящего времени.
Созданная в энергосистеме на основе постоянно приобретаемого опыта служба релейной защиты и автоматики (РЗА) занимается попутно другими сложными процессами:
системами управления, включающими местные, дистанционные и удаленные способы;
блокировками определенных устройств;
цепями сигнализации, позволяющими анализировать происходящие в сети события;
измерениями различных электрических величин в действующих схемах;
анализом качества произведенных замеров на основе метрологических эталонов;
некоторыми другими функциями.
Принципы построения схемы защитных устройств
Довольно громоздкая и сложная первоначальная база на основе электромеханических конструкций постоянно совершенствуется и модифицируется. Для работы защит вводятся новые технические разработки. В современных энергетических комплексах успешно сочетаются электромагнитные, индукционные, статические — полупроводниковые и микропроцессорные устройства.
Их объединяет практически не меняющийся базовый алгоритм процессов, который модернизируется для каждого конкретного случая. Основные функции защиты демонстрирует структурная схема.
Основные функции защитных устройтсв
Блок наблюдения
Его основная функция сводится к мониторингу происходящих электрических процессов в системе на основе замеров от измерительных трансформаторов тока и/или напряжения.
Выходные снимаемые сигналы с блока могут прямо передаваться логической схеме для сравнения с заданными пользователем величинами отклонений от номинальных значений, называемых уставками либо первоначально преобразовываться в цифровую форму.
Блок логики
Здесь осуществляется сравнение входящих сигналов с граничными характеристиками уставок. Малейшее совпадение между ними приводит к выдаче команды на срабатывание защит.
Блок исполнительный
Он постоянно поддерживается в готовности к срабатыванию по командам логического блока. При этом происходят переключения в схеме электроустановки по заранее предусмотренному алгоритму, исключающему повреждения оборудования и получение электротравм персоналом.
Блок сигнализации
Происходящие в системе процессы совершаются так быстро, что человек не способен их воспринимать своими органами. Для фиксации совершенных событий устанавливаются сигнальные устройства, которые используют методы визуального, звукового воздействия с сохранением в памяти схемы произошедших изменений.
Во всех конструкциях сигнализации перевод ее состояния после работы в исходное положение выполняется разово вручную оператором, что исключает потерю информации о работе защит автоматикой.
Принципы работы защит
Очень серьезное отношение к надежности и безопасности использования электроэнергии определило основные требования, которым должны отвечать системы релейной защиты. Однако они тоже являются техническими устройствами, а значит: обладают возможностями нарушения правильной работоспособности.
Отказ систем РЗА возможен при:
неисправностях внутри защит;
излишних срабатываниях, когда действие исполнительного органа не требуется;
ложной работе при отсутствии повреждений электрической системы.
Для исключения отказов в процессе эксплуатации проводится разработка проекта, монтаж, наладка с вводом в работу и обслуживание устройств релейной защиты с учетом выработанных требований к РЗА по:
избирательности с учетом иерархии схемы;
быстродействию, определяемому временем срабатывания;
чувствительностью к пусковым факторам;
Принцип селективности
Другое распространенное его название — избирательность. Эта характеристика позволяет точно выявить и локализовать место проявившейся неисправности в структурированной сети с любой иерархией.
К примеру, генератор передает электрическую энергию многим потребителям, расположенным на участках №1, 2 и 3, оборудованных своими защитами 1-2, 3-4 и 5 соответственно. При возникновении короткого замыкания внутри конечного потребителя на участке №3, токи повреждения пройдут по всем защитам схемы от источника.
Однако, в данной ситуации имеет смысл отключать конечный участок с поврежденным электродвигателем, оставляя в работе все действующие устройства. С этой целью вводятся разные уставки релейной защиты для каждой цепи на стадии проекта схемы.
Защитные устройства участка 5 должны раньше почувствовать токи неисправности и быстрее обеспечить их аварийное отключение от генератора. Поэтому в приведенной схеме величины уставок по току и времени на каждом участке уменьшаются от генератора к потребителю с соблюдением принципа: чем ближе к месту повреждения, тем выше чувствительность.
При этом выполняется принцип резервирования, учитывающий возможность отказа любых технических устройств, включая защитные системы более низкого уровня. Это значит: при неисправности защит 5 участка 3 короткое замыкание должны отключить устройства РЗА №4 или 5 линии №2, которые, в свою очередь, страхуются защитами участка №1.
Принцип быстродействия
Время отключения повреждения складывается минимум из двух факторов:
1. срабатывания защиты;
2. работы привода выключателя.
Первый параметр можно регулировать от минимального значения, обусловленного конструкцией защиты и количеством используемых элементов. Такими методами создается задержка времени на срабатывание включением в схему специальных регулируемых реле. Она используется для более дальних защит.
Близкорасположенные к месту повреждения устройства должны настраиваться на работу с минимально возможными интервалами времени на срабатывание.
Принцип чувствительности
Эта характеристика позволяет определять виды расчетных повреждений и анормальных ситуаций энергосистемы внутри действующей зоны защит.
Чувствительность устройств РЗА
Для определения ее численного выражения вводится коэффициент Кч, вычисляемый отношением минимальной величины тока КЗ для участка к значению тока срабатывания.
При этом устройства РЗА работают правильно при Icз
Противоаварийное управление
Любой блок релейной защиты не только является самостоятельной схемой, но объединяется в вышестоящие комплексы, составляющие в итоге систему противоаварийного управления энергосистемы. У нее каждый элемент взаимосвязан с другими компонентами и комплексно выполняет свои задачи.
Сокращенный перечень функций защит и автоматики демонстрирует упрощенная структурная схема.
Противоаварийное управление энергосистемы
Краткое изложение особенностей работы релейных защит и автоматики позволяет сделать вывод, что профессия релейщика требует постоянного изучения поступающего в эксплуатацию оборудования, совершенствования знаний и формирования прочных практических навыков.
Автоматизация электроэнергетических систем: АПВ, АВР, АЧП, АРЧ и другие виды автоматики
Основные параметры, регулируемые с помощью автоматических систем управления режимами энергосистем — частота электрического тока, напряжения узловых точек электрических сетей, активные и реактивные мощности и токи возбуждения генераторов электростанций и синхронных компенсаторов, потоки активных и реактивных мощностей в электрических сетях энергосистем и межсистемных связях, давление и температура пара, нагрузки котельных агрегатов, количество подаваемого воздуха, разрежение в топках котлов и т. д. Кроме того, автоматически могут срабатывать выключатели в электрических сетях и т. п. аппараты.
Автоматическое управление режимами электрических систем состоит из:
автоматики качества энергии ;
автоматики экономического распределения.
Автоматика надежности (АН) — совокупность автоматических устройств, действующих при возникновении аварийного повреждения оборудования и способствующих быстроте ликвидации аварии, ограничению ее последствий, предотвращению развития аварий в энергосистеме и тем самым максимальному снижению перерывов в электроснабжении.
Наиболее распространенные устройства АН — релейная защита электрического оборудования, автоматическая аварийная разгрузка энергосистемы, автоматическое повторное включение, автоматическое включение резерва, автоматическая самосинхронизация, автоматический частотный пуск остановленных агрегатов гидростанций, автоматические регуляторы возбуждения генераторов.
Автоматическая аварийная разгрузка энергосистем (ААР) обеспечивает сохранение баланса мощности в энергосистемах при тяжелой аварии, сопровождающейся потерей большой генераторной мощности и снижением частоты переменного тока.
При срабатывании ААР автоматически отключается ряд потребителей энергосистемы, что позволяет сохранить баланс мощностей и предотвращает сильное снижение частоты и напряжений, угрожающее нарушением статической устойчивости всей энергосистемы, т. е. полным развалом ее работы.
ААР состоит из ряда очередей, каждая из которых действует при снижении частоты до определенной заданной величины и отключает определительную группу потребителей.
Различные очереди ААР отличаются уставкой частоты срабатывания, а в ряде энергосистем и временем их действия (уставкой реле времени).
Разбивка ААР на очереди предотвращает излишнее отключение потребителей, т. к. при отключении достаточного их числа частота повышается, не допуская срабатывания следующих очередей ААР.
Применяется автоматическое обратное включение потребителей, ранее отключенных ААР.
Автоматическое повторное включение (АПВ) автоматически повторно включает линию передачи после ее автоматического отключения. Часто имеет место успешное АПВ (кратковременное обесточивание приводит к самоликвидации аварии), и поврежденная линия остается в работе.
АПВ имеет особо важное значение для одиночных линий, т. к. успешное АПВ предотвращает обесточивание потребителей. Для многоцепных линий АПВ автоматически восстанавливает нормальную схему питания. Наконец, АПВ на линиях, соединяющих электростанцию с нагрузкой, повышает надежность использования данной электростанции.
АПВ делится на трехфазное (отключение всех трех фаз при повреждении хотя бы на одной из них) и однофазное (отключение только поврежденной фазы).
АПВ линий, идущих от электростанций, выполняется как с проверкой синхронизма, так и без нее. Длительность цикла АПВ определяется по условиям гашения дуги (минимальная длительность) и по условиям устойчивости (максимальная длительность).
Автоматическое включение резерва (АВР) включает резервное оборудование при аварийном отключении основного. Например, при питании группы потребительских линий от одного трансформатора при его отключении (из-за повреждения или по иной причине) АВР приключает линии к другому трансформатору, чем восстанавливается нормальное электроснабжение потребителей.
АВР широко применяется во всех случаях, когда по условиям электрической схемы он может быть осуществлен.
Автоматическая самосинхронизация обеспечивает включение (обычно в аварийных случаях) генераторов методом самосинхронизации.
Сущность метода в том, что невозбужденный генератор включается в сеть и затем на него подается возбуждение. Самосинхронизация обеспечивает быстрое включение генераторов и ускоряет ликвидацию аварии, позволяя в короткий срок использовать мощность генераторов, потерявших связь с энергосистемой.
Автоматический частотный пуск (АЧП) остановленных агрегатов гидроэлектростанций действует от снижения частоты в электросистеме, возникающего при потере большой генераторной мощности. АЧП приводит гидротурбины в действие, доводит их скорость до нормальной и производит самосинхронизацию с сетью.
АЧП должен работать при более высоком значении частоты, чем аварийная разгрузка энергосистемы, чтобы по возможности предотвратить действие последней. Автоматические регуляторы возбуждения синхронных машин обеспечивают повышение статической и динамической устойчивости энергосистемы.
Автоматика качества энергии
Автоматика качества энергии (АКЭ) поддерживает надлежащее значение таких параметров, как напряжение, частота, давление и температуpa пара и т. п.
АКЭ заменяет действия оперативного персонала и позволяет повысить качество энергии за счет более быстрой и чувствительной реакции на ухудшение качественных показателей.
Наиболее распространенные устройства АКЭ — автоматические регуляторы возбуждения синхронных генераторов, автоматические устройства изменения коэффициента трансформации трансформаторов, автоматические регулировочные трансформаторы, автоматы изменения мощности статических конденсаторов, автоматические регуляторы частоты (АРЧ), автоматические регуляторы частоты и межсистемных перетоков мощности (АРЧМ).
Первая группа устройств АКЭ (кроме АРЧ и АРЧМ) позволяет автоматически поддерживать напряжения в ряде узловых точек электрических сетей в заданных пределах.
АРЧ — устройства, регулирующие частоту в энергосистемах, могут быть установлены на одной или на ряде электростанций. Чем больше число электростанций с АРЧ, тем точнее регулируется частота в энергосистеме и тем меньше доля участия каждой электростанции в автоматическом регулировании частоты, что повышает экономичность регулирования.
Для объединенных энергосистем широко применяется комбинированное автоматическое регулирование частоты и межсистемного перетока мощности с помощью АРЧМ.
Автоматика экономического распределения
Автоматика экономического распределения (АЭР) обеспечивает оптимальное распределение активных и реактивных мощностей в энергосистеме.
Расчет оптимального распределения мощностей может производиться как непрерывно, так и по запросу диспетчера, при этом, могут учитываться не только расходные характеристики затрат на отдельных электростанциях, но и влияние потерь энергии в электрических сетях, а также различных ограничений распределения мощностей (предельные мощности агрегатов, предельные нагрузки передач и т. п.).
Автоматика экономического распределения и автоматические регуляторы частоты могут работать независимо друг от друга, но могут быть и взаимосвязаны.
В последнем случае АРЧ предотвращает отклонение частоты, используя для этой цели изменения мощностей отдельных агрегатов станции, независимо от условий экономического распределения только в пределах сравнительно небольшого изменения суммарной нагрузки.
При достаточно значительном изменении суммарной нагрузки приходит в действие АЭР и изменяет тем или иным способом уставки мощности на АРЧ отдельных электростанций. При независимости АЭР от АРЧ уставки АРЧ изменяются диспетчером после получения ответа на запрос АЭР.
Релейная защита и автоматика
Релейная защита — комплекс автоматических устройств, предназначенных для быстрого (при повреждениях) выявления и отделения от электроэнергетической системы повреждённых элементов этой электроэнергетической системы в аварийных ситуациях с целью обеспечения нормальной работы всей системы. Действия средств релейной защиты организованы по принципу непрерывной оценки технического состояния отдельных контролируемых элементов электроэнергетических систем. Релейная защита (РЗ) осуществляет непрерывный контроль состояния всех элементов электроэнергетической системы и реагирует на возникновение повреждений и ненормальных режимов. При возникновении повреждений РЗ должна выявить повреждённый участок и отключить его от ЭЭС, воздействуя на специальные силовые выключатели, предназначенные для размыкания токов повреждения (короткого замыкания).
Релейная защита является основным видом электрической автоматики, без которой невозможна нормальная работа энергосистем.
Содержание
Требования к релейной защите
Быстродействие
Быстродействие — это свойство релейной защиты, характеризующее скорость выявления и отделения от электроэнергетической системы повреждённых элементов. Показателем быстродействия является время срабатывания защиты — это интервал времени от момента возникновения повреждения до момента отделения от сети повреждённого элемента.
Селективность (избирательность)
Селективность — свойство релейной защиты, характеризующее способность выявлять поврежденный элемент электроэнергетической системы и отключать этот элемент только ближайшими к нему выключателями. Это позволяет локализовать повреждённый участок и не прерывать нормальную работу других участков сети.
Чувствительность
Чувствительность — это свойство, характеризующее способность релейной защиты выявлять повреждения в конце установленной для неё зоны действия в минимальном режиме работы энергосистемы. Другими словами — это способность чувствовать те виды повреждений и ненормальных режимов, на которые она рассчитана, в любых состояниях работы защищаемой электрической системы. Показателем чувствительности выступает коэффициент чувствительности, который для максимальных защит (реагирующих на возрастание контролируемой величины) определяется как отношение минимально возможного значения сигнала, соответствующего отслеживаемому повреждению, к установленному на защите параметру срабатывания (уставке).
Надёжность
Надежность — это свойство, характеризующее способность релейной защиты действовать правильно и безотказно во всех режимах контролируемого объекта при всех видах повреждений и ненормальных режимов для действия при которых данная защита предназначена, и не действовать в нормальных условиях, а также при таких повреждениях и нарушениях нормального режима, при которых действие данной защиты не предусмотрено. Иными словами, надежность — это свойство релейной защиты, характеризующее ее способность выполнять свои функции в условиях эксплуатации, ремонта, хранения и транспортировки. Основные показатели надёжности — время безотказной работы и интенсивность отказов (количество отказов за единицу времени).
Резервирование следующего участка
Резервирование следующего участка — важное требование. Если защита по принципу своего действия не работает за пределами основной зоны, ставят специальную резервную защиту.
Основные органы релейной защиты
Пусковые органы
Пусковые органы непрерывно контролируют состояние и режим работы защищаемого участка цепи и реагируют на возникновение коротких замыканий и нарушения нормального режима работы. Выполняются обычно с помощью реле тока, напряжения, мощности и др.
Измерительные органы
Измерительные органы определяют место и характер повреждения и принимают решения о необходимости действия защиты. Измерительные органы также выполняются с помощью реле тока, напряжения, мощности и др. Функции пускового и измерительного органа могут быть объединены в одном органе.
Логическая часть
Логическая часть — это схема, которая запускается пусковыми органами и, анализируя действия измерительных органов, производит предусмотренные действия (отключение выключателей, запуск других устройств, подача сигналов и пр.). Логическая часть состоит, в основном, из элементов времени (таймеров), логических элементов, промежуточных и указательных реле, дискретных входов и аналоговых выходов микропроцессорных устройств защиты.
Пример логической части релейной защиты
Катушка реле тока K1 (контакты А1 и А2) включена последовательно со вторичной обмоткой трансформатора тока ТА. При коротком замыкании, на участке цепи, в котором установлен трансформатор тока, возрастает сила тока, и пропорционально ей возрастает сила тока во вторичной цепи трансформатора тока. При достижении силой тока значения установки реле K1, оно сработает и замкнёт рабочие контакты (11 и 12). Цепь между шинами +EC и -EC замкнётся, и запитает сигнальную лампу HLW.
Данная схема приведена как простой пример. В эксплуатации используются более сложные логические схемы.