автотрансформатор для чего служит
Автотрансформаторы | Устройство и принцип действия
Автотрансформатор является одной из разновидностей обычного трансформатора напряжения, отличаясь от него своей конструкцией, которая даёт автотрансформаторам ряд весомых преимуществ, делая их просто незаменимыми, например, при производстве стабилизаторов напряжения.
Но давайте обо всё по порядку, в этой статье я подробно расскажу о том, что такое автотрансформатор, зачем он нужен, какая у него конструкция и многое другое.
Если простыми словами, то автотрансформаторы – это разновидность обычных трансформаторов напряжения, в которых есть всего одна обмотка, часть витков которой выполняют функцию первичной обмотки, а часть вторичной.
Для лучшего понимания, давайте рассмотрим устройство наиболее распространенного типа автотрансформаторов.
Устройство автотрансформатора
Чаще всего стандартный автотрансформатор представляет собой тороидальный магнитопровод – сердечник, сделанный из электротехнической стали в виде кольца, на который намотана медная проволока – называемая обмоткой.
Устройство автотрансформатора достаточно наглядно показано на изображении ниже:
Нагрузка, какой-нибудь электроприбор, которому для работы требуется меньшее напряжение, чем поступает из сети, подключается к выводам a2 и X – витки между этими контактами – это уже вторичная обмотка.
Как видите, у автотрансформатора есть всего одна обмотка, но при этом напряжение, если замерять в различных точках подключения, будет разным, почему оно меняется и как определить насколько (коэффициент трансформации) мы рассмотрим ниже.
Обозначение автотрансформатора на схемах
Кстати, вы довольно легко на любой схеме определите автотрансформатор и отличите его от обычного трансформатора, чаще всего он обозначается вот так:
Перепутать с обычным трансформатором не получится, ведь у него на схеме будет как минимум две обмотки по сторонам от сердечника.
Более подробно о принципиальных различиях автотрансформатора и обычного трансформатора напряжения, я расскажу во второй части этой статьи.
Принцип работы автотрансформатора
А сейчас, для лучшего понимания основного принципа работы автотрансформаторов, рассмотрим процессы, которые в них происходят.
В качестве примера, мы возьмем автотрансформатор, который может как повышать напряжение на выходе, так и уменьшать его, относительно начального. Общее количество витков медного провода у него, для удобства расчетов, равно 20, выглядит он следующим образом:
К контактам A1 и N – подключается источник переменного электрического тока, например, питание стандартной городской электросети, с напряжением(U1), в нашем случае это стандартные 220В. Всего между этими точками 18 витков медной проволоки, этот участок спирали обозначен как W1, он считается первичной обмоткой автотрансформатора.
Что происходит при подаче напряжения на автотрансформатор
При протекании переменного тока по обмотке, в сердечнике (магнитопроводе) автотрансформатора, образуется переменный магнитный поток, который циркулирует по замкнутому магнитному сердечнику, пронизывая ВСЕ витки обмотки.
Проще говоря, при подключении тока к первичной обмотке – в нашем примере к 18 виткам, магнитный поток протекая по сердечнику пронизывает всю обмотку, все 20 витков. Напряжение же на первичной обмотке (в точках подключения A1 и X ) остаётся 220В или, если распределить на каждый виток 220/18 = 12.222… Вольта на каждый.
Зависимость между обмотками у автотрансформатора, выражается следующей формулой:
Из этой формулы следует что напряжение на вторичной обмотке изменяется относительно напряжения первичной обмотки, пропорционально разнице витков. В нашем примере на один виток первичной обмотки приходится 12.22.. Вольт, у вторичной же обмотки витков больше на 2, соответственно общее напряжение обмотки выше на 24.44..Вольта.
Это доказывает нехитрый расcчет:
220 Вольт/18 Витков=U2/20 Витков,
U2 = 220*20/18 = 244.44В
Автотрансформатор, у которого на вторичной обмотке напряжение увеличивается называется повышающий.
Зная зависимость между обмотками, мы можем вычислить коэффициент трансформации, величину, которая позволяет легко определять, изменение входящих параметров (напряжения, сопротивления, силы тока) на вторичной обмотке.
Коэффициент трансформации вычисляется по следующей формуле: U1/U2=w1/w2
В нашем случае получается 220/244,44=18/20=0,9
Теперь давайте посмотрим, как изменится напряжения на оставшихся контактах.
Подключаем нагрузку к контактам a3 и X нашего автотрансформатора, число витков w3 у этой обмотки равно 16, напряжение обозначим как U3.
Следуя той же формуле, рассчитываем напряжение:
Автотрансформатор, у которого на вторичной обмотке напряжение уменьшается называется понижающий.
Теперь, зная коэффициенты трансформации на всех выводах автотрансформатора мы легко сможем определять, например, какое будет напряжение на вторичной обмотке, если изменится напряжение источника электрического тока:
Так, например, при напряжении источника переменного тока на первичной обмотке 200В, у этого трансформатора:
ПРАВИЛО: Если коэффициент трансформации k>1 – то трансформатор понижающий, если же k
Чаще всего стандартный автотрансформатор имеет большее количество выводов, чем в нашем примере, большее количество ступеней для регулировки входящего напряжения или тока.
Изменение силы тока в автотрансформаторе
Другими словами, если используется понижающий отвод от первичной обмотки автотрансформатора – то ток на вторичной обмотке будет больше, а напряжение ниже и наоборот, если используется повышающий отвод – то ток на вторичной обмотке будет ниже, а напряжение выше.
Мощности же на обеих обмотках примерно одинаковы, поэтому, согласно закону ОМА:
I1U1 = I2U2, где I1 – ток в первичной обмотке, I2 – ток во вторичной обмотке, U1- напряжение в первичной обмотке, U2 – Напряжение во вторичной обмотке.
Соответственно ток, например, в первичной обмотке рассчитывается так: I1 = U2*I2/U1
Зная, как изменяется ток, можно заранее правильно подобрать кабели питания и защитную автоматику.
Теперь, когда вы знакомы с принципом работы автотрансформатора и знаете его конструкцию, давайте рассмотрим какие они бывают, их назначение и места применения, какие у них плюсы и минусы и чем принципиально отличаются от обычных трансформаторов. Всё это и многое другое читайте во второй части этой статьи. Подписывайтесь на нашу группу вконтакте, следите за выходом новых материалов!
Назначение, устройство и принцип действия автотрансформаторов
В некоторых случаях бывает необходимо изменять напряжение в небольших пределах. Это проще всего сделать не двухобмоточными трансформаторами, а однообмоточными, называемыми автотрансформаторами. Если коэфициент трансформации мало отличается от единицы, то разница между величиной токов в первичной и во вторичной обмотках будет невелика. Что же произойдет, если объединить обе обмотки? Получится схема автотрансформатора (рис. 1).
Автотрансформаторы относят к трансформаторам специального назначения. Автотрансформаторы отличаются от трансформаторов тем, что у них обмотка низшего напряжения является частью обмотки высшего напряжения, т. е. цепи этих обмоток имеют не только магнитную, но и гальваническую связь.
В зависимости от включения обмоток автотрансформатора можно получить повышение или понижение напряжения.
Если присоединить источник переменного напряжения к точкам А и Х, то в сердечнике возникнет переменный магнитный поток. В каждом из витков обмотки будет индуктироваться ЭДС одной и той же величины. Очевидно, между точками а и Х возникнет ЭДС, равная ЭДС одного витка, умноженной на число витков, заключенных между точками а и Х.
Таким образом, автотрансформаторы целесообразно использовать для незначительного понижения или повышения напряжения, когда в части обмотки, являющейся общей для обеих цепей автотрансформатора, устанавливается уменьшенный ток что позволяет выполнить ее более тонким проводом и сэкономить цветной металл. Одновременно с этим уменьшается расход стали на изготовление магнитопровода, сечение которого получается меньше, чем у трансформатора.
Трансформатор и автотрансформатор
В конструктивном отношении автотрансформаторы практически не отличаются от трансформаторов. На стержнях магнитопровода располагаются две обмотки. Выводы берутся от двух обмоток и общей точки. Большинство деталей автотрансформатора в конструктивном отношении не отличаются от деталей трансформатора.
Лабораторные автотрансформаторы (ЛАТРы)
Автотрансформаторы применяются также в низковольтных сетях в качестве лабораторных регуляторов напряжения небольшой мощности (ЛАТР). В таких автотрансформаторах регулирование напряжения осуществляется при перемещении скользящего контакта по виткам обмотки.
Лабораторные регулируемые однофазные автотрансформаторы состоят из кольцеобразного ферромагнитного магнитопровода, обмотанного одним слоем изолированного медного провода (рис. 2).
От этой обмотки сделано несколько постоянных ответвлений, что позволяет использовать эти устройства как понижающие или повышающие автотрансформаторы с определенным постоянным коэффициентом трансформации. Кроме того, на поверхности обмотки, очищенной от изоляции, имеется узкая дорожка, по которой перемещают щеточный или роликовый контакт для получения плавно регулируемого вторичного напряжения в пределах от нуля до 250 В.
При замыкании соседних витков в ЛАТР не происходит витковых замыканий, так как токи сети и нагрузки в совмещенной обмотке автотрансформатора близки друг к другу и направлены встречно.
Лабораторные автотрансформаторы изготовляют номинальной мощностью 0,5; 1; 2; 5; 7,5 кВА.
Схема лабораторного регулируемого однофазного автотрансформатора
Лабораторный автотрансформатор (ЛАТР)
Наряду с однофазными двухобмоточными автотрансформаторами часто применяются трехфазные двухобмоточные и трехфазные трехобмоточные автотрансформаторы.
Рис. 3. Схема трехфазного автотрансформатора с соединением фаз обмотки звездой с выведенной нейтральной точкой
Трехфазные высоковольтные трехобмоточные трансформаторы используются также в высоковольтных электрических сетях.
Трехфазные автотрансформаторы, как правило, на стороне высшего напряжения соединяются в звезду с нулевым проводом. Соединение в звезду обеспечивает снижение напряжения, на которое рассчитывается изоляция автотрансформатора.
Применение автотрансформаторов улучшает КПД энергосистем, обеспечивает снижение стоимости передачи энергии, но приводит к увеличению токов короткого замыкания.
Недостатком автотрансформатора является необходимость выполнения изоляции обеих обмоток на большее напряжение, так как обмотки имеют электрическую связь.
При авариях из-за наличия электрической связи между обмотками в автотрансформаторе высшее напряжение может оказаться приложенным к обмотке низшего. При этом все части эксплуатируемой установки окажутся соединенными с высоковольтной частью, что не допускается по условиям безопасности обслуживания и из-за возможности пробоя изоляции токопроводящих частей присоединенного электрооборудования.
Что такое автотрансформатор?
С развитием энергетики и связанных с ней электрических сетей для передачи переменного тока, как источника питания для различных устройств, возникла необходимость в приборах, изменяющих величину напряжения. Такими универсальными электромагнитными устройствами, позволяющими повышать или понижать исходное напряжение до требуемой величины, стали трансформаторы.
Со временем, для обеспечения стабильной работы электроприборов, преимущественно бытового назначения, возникла необходимость плавного регулирования напряжения. Это стало возможным после того, как был изобретён автотрансформатор – устройство, в котором вторичная обмотка является составной частью первичных витков.
Что такое автотрансформатор?
Из школьного курса физики известно, что простейший трансформатор состоит из двух катушек, намотанных на железные сердечники. Магнитным полем переменного тока, запитанного через выводы первичных обмоток, возбуждаются электромагнитные колебания во второй катушке, с аналогичной частотой.
Рисунок 1. Схема обычного трансформатора и автотрансформатора
Немного по-другому устроен автотрансформатор. Он, по сути, состоит из одной обмотки, от которой сделано один или несколько отводов, образующих вторичные витки. При этом все обмотки образуют между собой не только электрическую, но и магнитную связь. Поэтому, при подаче электрической энергии на вход автотрансформатора, возникает магнитный поток, под действием которого происходит индукция ЭДС в обмотке нагрузки. Величина электродвижущей силы связана прямой пропорциональностью с числом витков, образующих нагрузочную обмотку, с которой снимается напряжение.
Таким образом, формула, приведённая выше, справедлива и для автотрансформатора.
Из основной обмотки можно отводить большое количество выводов, что позволяет создавать комбинации для снятия различных по величине напряжений. Это очень удобно на практике, так как понижение напряжения часто требуется для питания нескольких блоков электроприборов, использующих различные напряжения.
Отличие автотрансформатора от обычного трансформатора
Как видно из описания автотрансформатора, главное его отличие от обычного трансформатора – отсутствие второй катушки с сердечником. Роль вторичных обмоток выполняют отдельные группы витков, имеющих гальваническую связь. Эти группы не требуют отдельной электрической изоляции.
У такого устройства есть определённые преимущества:
Несмотря на конструкционные различия, принцип работы этих двух типов изделий остаётся неизменным. Выбор типа трансформатора зависит, прежде всего, от целей и задач, которые приходится решать в электротехнике.
Типы автотрансформаторов
В зависимости от того в каких сетях (однофазных или трёхфазных) требуется изменить напряжение, используют соответствующий тип автотрансформаторов. Они бывают однофазными либо трёхфазными. Для трансформации тока с трёх фаз можно установить три автотрансформатора, предназначенных для работы в однофазных сетях, соединив их выводы треугольником или звёздочкой.
Схема соединений обмоток трансформатора
Существуют типы лабораторных автотрансформаторов, позволяющих плавно изменять значения по выходному напряжению. Такой эффект достигается путём перемещения ползунка по поверхности открытой части однослойной обмотки, наподобие принципа работы реостата. Витки проволоки наносятся вокруг кольцеобразного ферромагнитного сердечника, по окружности которого и перемещается контактный ползунок.
Автотрансформаторы подобного типа массово применялись на просторах СССР в эпоху массового распространения ламповых телевизоров. Тогда напряжение сетей было нестабильно, что вызывало искажения изображений. Пользователям этой несовершенной техники приходилось время от времени подстраивать напряжение до уровня 220 В.
До появления стабилизаторов напряжения, единственной возможностью достичь оптимальных параметров питания для бытовой техники того времени, было применение ЛАТР. Данный тип автотрансформаторов используется и сегодня в различных лабораториях и учебных заведениях. С их помощью осуществляется наладка электротехнического оборудования, тестируется аппаратура с высокой чувствительностью и выполняются другие задачи.
В специальном оборудовании, где нагрузки незначительны, применяются модели автотрансформаторов ДАТР.
Автотрансформатор ЛАТР
Существуют также автотрансформаторы:
Следует заметить, что с целью безопасности ограничено использование автотрансформаторов в качестве силовых трансформаторов, для снижения до 380 В напряжений, превышающих 6 кВ. Это связано с наличием гальванической связи между обмотками, что не безопасно для конечного потребителя. При авариях не исключено, что высокое напряжение попадёт на запитанное оборудование, что чревато непредсказуемыми последствиями. В этом кроется основной недостаток автотрансформаторов.
Обозначение на схемах
Отличить автотрансформатор на схеме от изображения обычного трансформатора очень легко. Признаком является наличие единственной обмотки связанной с одним сердечником, обозначенным жирной линией на схемах. По одну или по обе стороны этой лини схематически изображены обмотки, но в автотрансформаторе все они соединены друг с другом. Если на схеме витки изображены автономно, то речь идёт об обычном трансформаторе (см. рисунок 1).
Устройство и конструктивные особенности
Как было отмечено выше, автотрансформатор состоит из одной катушки. Её наматывают на обычный или на тороидальный сердечник.
В силу конструктивных особенностей у него отсутствуют гальванические развязки между цепями, что может привести к поражению высоковольтным током. Поэтому понижающий автотрансформатор, ввиду его повышенной опасности, требует принятия дополнительных мер по защите от поражения электротоком. Работа с ним допускается при условии строгого соблюдения правил безопасности.
Принцип действия автотрансформатора
Несмотря на особенности строения обмоточной части агрегата, его принцип действия очень напоминает работу обычного трансформатора. По такому же принципу во время циркуляции переменного тока возникает магнитный поток в сердечнике. Его действие на обмотку характеризуется появлением на каждом отдельном витке равновеликой электродвижущей силы. Суммарная ЭДС на отрезке обмотки равна сумме величин токов всех отдельно взятых витков.
Особенностью является то, что по обмотке циркулирует ещё и первичный ток, который оказывается в противофазе к индукционному потоку. Результирующие значения этих токов на участке обмотки, предназначенной для потребителя, получаются меньшими (для понижающего тр.) чем параметры поступающего электричества.
Схема понижающего автотрансформатора
Учитывая то, что падение напряжений в обмотках трансформатора невелико – его можно не учитывать. В таком случае равенства: U1 = E1; U2 = E2 можно считать справедливыми. Таким образом, приведённая выше формула приобретает вид: U1/U2 = w1/w2 = k, то есть, соотношение напряжений к числу витков такое же, как и для обычного трансформатора.
Не вдаваясь в подробности, заметим, что отношение силы тока верхней катушки к току нагрузки, как и для обычного трансформатора, выражается формулой: I1/I2 = w2/w1 = 1/k. Отсюда следует, что поскольку в понижающем трансформаторе w2
Автотрансформатор: устройство, схема, принцип действия
Что такое автотрансформатор?
С общей точки зрения трансформаторы — приборы, предназначенные для преобразования показателей тока входного типа с одного напряжения на выходные токи другого напряжения. Если необходимо произвести замену уровня напряжения в незначительных пределах, то самым оптимальным вариантом станет применение однообмоточного прибора, также известного под названием автотрансформатор.
При коэффициенте трансформации на уровне единицы осуществляется полное поступление энергии непосредственно к заключительному потребителю.
Регулирование обеспечивается секционированной обмоткой внутри автотрансформатора, а сам прибор характеризуется удобством и ремонтопригодностью.
Автотрансформаторы обладают достаточно простой и интуитивно понятной конструкцией, что совершенно не умаляет достоинств такого прибора, но несколько ограничивает сферу применения.
Отличие автотрансформатора от трансформатора
Классические трансформаторы обладают не связанными друг с другом первичными и вторичными обмотками, поэтому процесс передачи энергии в таких устройствах обусловлен наличием магнитного поля.
На объединенной обмотке автотрансформатора располагается три вывода или более, при подключении к которым есть возможность получить различные показатели уровня напряжения.
В условиях малых коэффициентов трансформации, в пределах одной-двух единиц, любые автотрансформаторы показывают более высокую эффективность по сравнению с трансформаторными устройствами. Кроме всего прочего, такие приборы более легкие по весу и доступнее по стоимости, чем традиционные трансформаторы многообмоточного типа.
Однако, сравнивая основные характеристики автотрансформатора и классического трансформатора, можно смело утверждать, что второй вариант является максимально универсальным, а также отличается более широким диапазоном работы в процессе эксплуатации.
Автотрансформаторы характеризуются фактическим наличием одной обмотки с отходящими выводами, что обеспечивает высокоэффективную электромагнитную и электрическую связь.
Типы автотрансформаторов
В зависимости от того в каких сетях (однофазных или трёхфазных) требуется изменить напряжение, используют соответствующий тип автотрансформаторов. Они бывают однофазными либо трёхфазными. Для трансформации тока с трёх фаз можно установить три автотрансформатора, предназначенных для работы в однофазных сетях, соединив их выводы треугольником или звёздочкой.
Схема соединений обмоток трансформатора
Существуют типы лабораторных автотрансформаторов, позволяющих плавно изменять значения по выходному напряжению. Такой эффект достигается путём перемещения ползунка по поверхности открытой части однослойной обмотки, наподобие принципа работы реостата. Витки проволоки наносятся вокруг кольцеобразного ферромагнитного сердечника, по окружности которого и перемещается контактный ползунок.
Автотрансформаторы подобного типа массово применялись на просторах СССР в эпоху массового распространения ламповых телевизоров. Тогда напряжение сетей было нестабильно, что вызывало искажения изображений. Пользователям этой несовершенной техники приходилось время от времени подстраивать напряжение до уровня 220 В.
До появления стабилизаторов напряжения, единственной возможностью достичь оптимальных параметров питания для бытовой техники того времени, было применение ЛАТР. Данный тип автотрансформаторов используется и сегодня в различных лабораториях и учебных заведениях. С их помощью осуществляется наладка электротехнического оборудования, тестируется аппаратура с высокой чувствительностью и выполняются другие задачи.
В специальном оборудовании, где нагрузки незначительны, применяются модели автотрансформаторов ДАТР.
Автотрансформатор ЛАТР
Существуют также автотрансформаторы:
Следует заметить, что с целью безопасности ограничено использование автотрансформаторов в качестве силовых трансформаторов, для снижения до 380 В напряжений, превышающих 6 кВ. Это связано с наличием гальванической связи между обмотками, что не безопасно для конечного потребителя. При авариях не исключено, что высокое напряжение попадёт на запитанное оборудование, что чревато непредсказуемыми последствиями. В этом кроется основной недостаток автотрансформаторов.
Обозначение на схемах
Отличить автотрансформатор на схеме от изображения обычного трансформатора очень легко. Признаком является наличие единственной обмотки связанной с одним сердечником, обозначенным жирной линией на схемах. По одну или по обе стороны этой лини схематически изображены обмотки, но в автотрансформаторе все они соединены друг с другом. Если на схеме витки изображены автономно, то речь идёт об обычном трансформаторе.
Режимы работы
Выбор оптимального режима работы важен для трёхфазных устройств. Они используются для непрерывной регулировки параметров с малыми потерями. Этот компонент обеспечивает пользователям наилучшую точность регулировки при минимальных потерях и, следовательно, при пониженном тепловыделении. Для трёхфазного тока данный эффект достигается с помощью механических соединений трёх управляющих трансформаторов. Конструкция скользящих токосъёмников выполняется такой, чтобы обеспечить надёжный выходной контакт и – при срабатывании – одновременную очистку контактной дорожки. Используются угольные щётки, которые могут вращаться или перемещаться возвратно-поступательно.
Переменный автотрансформатор имеет несколько первичных обмоток для создания вторичного напряжения, которое регулируется в диапазоне от нескольких вольт до долей вольт за оборот. Это достигается благодаря тому, что угольная щётка или ползунок находятся в контакте с одним или несколькими витками первичной обмотки. Поскольку витки первичной катушки равномерно распределены по её длине, то выходное значение пропорционально угловому вращению щётки.
Расшифровка основных параметров
Обмотки обозначаются, как правило, заглавными буквами (А, B, C и т.д.), в то время как общее нейтральное соединение обозначается N или n. Для вторичных ответвлений номера цифровых индексов используются для всех точек ответвления вдоль первичной обмотки. А индексы обычно начинаются с цифры «1» и продолжаются с возрастанием.
Обозначение бытовых автотрансформаторов отечественного производства, изготавливаемых по ГОСТ 7518-83, включает в себя:
ГОСТ 7518-83 предусматривает указание наибольшего напряжения на вторичной обмотке отдельно при отсутствии и наличии внешней нагрузки.
Отдельная маркировки принята для лабораторных автотрансформаторов – ЛАТРов: после буквенного обозначения указывается номинальная мощность прибора в кВт.
Разновидности
На выбор разновидности автотрансформатора влияет его назначение и условия эксплуатации. Чаще всего применяется восемь типов представленных агрегатов:
Также существует разделение на агрегаты малой мощности (до 1 кВ), средней мощности (больше 1 кВ) и силовые типы.
Однофазные разновидности
Сегодня применяются однофазный и трехфазный автотрансформатор. В первом случае оборудование представлено такой разновидностью, как ЛАТР. Его применяют для низковольтных сетей. При повышенном напряжении требуется понижающая конструкция, например, автотрансформатор типа 220/110 или 220/100. В этом случае вторичная обмотка входит в состав первичного контура. Повышающий тип автотрансформаторов, наоборот, включает первичную обмотку в состав вторичного контура.
В обеих разновидностях устройств регулирование производится посредством скольжения подвижного контакта по обмоточным виткам. ЛАТРы состоят из магнитопривода кольцеобразной формы. Его обмотка включает в себя один слой. Она состоит из изолированного провода из меди.
Однофазные автотрансформаторы имеют несколько ответвлений, которые отходят от обмотки. Именно эти элементы конструкции определяют, будет ли агрегат работать на повышение или понижение напряжения сети. Чтобы получить плавность настройки вторичного напряжения создается небольшая дорожка на поверхности обмотки. Она очищена от слоя изоляции. По этой дорожке перемещается роликовый или щеточный контакт. Регулировка осуществляется в пределах от 0 до 250 В.
Трехфазные разновидности
Наряду с однофазными применяются и трехфазные аппараты. Они отличаются типом обмотки. Существует автотрансформатор трехфазного типа с двумя и тремя контурами.
Чаще всего обмотки в подобных устройствах соединяются в виде звезды. Они имеют выведенную отдельно точку нейтрали. При помощи направления подведения напряжения выполняется понижение или повышение. Этот принцип положен в основу старта работы мощного двигателя, регулирования электрического тока по ступенчатой системе. Трехфазный тип автотрансформаторов применяется для нагревательных элементов печей.
Приборы с тремя обмотками используются в сетях высоковольтного типа. При этом со стороны высшего напряжения агрегат соединяется с нулевым проводом в звезду. Этот тип контакта способен снизить напряжение с учетом особенностей изоляции аппаратуры. Применение подобных приборов способно повысить уровень КПД системы, а также сэкономить затраты на совершение передачи электроэнергии. Однако в этом случае повышается количество токов короткого замыкания.
Наличие гальванической связи между совмещенными контурами не позволяют использовать представленное оборудование в силовых сетях (6-10 кВ), если напряжение понижается до 0,38 кВ. В этом случае трехфазное напряжение 380В подается непосредственно к электрическим потребителям. На таком оборудовании могут работать люди. Во избежание несчастных случаев применяются в подобных условиях другие разновидности агрегатов.
Недостатки автотрансформаторов
Недостатком автотрансформатора является необходимость выполнения изоляции обеих обмоток на большее напряжение, так как обмотки имеют электрическую связь.
Существенный недостаток автотрансформаторов — гальваническая связь между первичной и вторичной цепями, что не позволяет использовать их в качестве силовых в сетях 6 — 10 кВ при понижении напряжения до 0,38 кВ, так как напряжение 380 В подводится к оборудованию, на котором работают люди.
При авариях из-за наличия электрической связи между обмотками в автотрансформаторе высшее напряжение может оказаться приложенным к обмотке низшего. При этом все части эксплуатируемой установки окажутся соединенными с высоковольтной частью, что не допускается по условиям безопасности обслуживания и из-за возможности пробоя изоляции токопроводящих частей присоединенного электрооборудования.
Принцип действия автотрансформатора
В автотрансформаторе энергия передается не только магнитным потоком, но и электрически, так как обмотки имеют гальваническую связь. Чем ближе коэффициент трансформации к 1, тем меньше энергии передается электромагнитным способом.
Ниже вы видите схему понижающего автотрансформатора, к первичной обмотке которого подключен источник переменного напряжения, а к выводам вторичной обмотки подключена нагрузка, в виде лампы накаливания.
В режиме холостого хода автотрансформатор работает так, как и обычный трансформатор. Когда подключена нагрузка, переменный магнитный поток возникающий в сердечнике индуктирует в витках вторичной обмотки ЭДС, направленную навстречу ЭДС источника энергии. Поэтому ток протекающий по вторичной обмотке равен разнице между током нагрузки и током первичной цепи. Это позволяет вторичную обмотку изготавливать из провода малого диаметра. Экономия на меди, тем меньше, чем больше коэффициент трансформации отличается от единицы.
Из чего состоит трансформатор
Строение рассматриваемого технического приспособления уже было рассмотрено выше. Но возникает вопрос: а какие магнитные материалы применяются для обеспечения его бесперебойной работы?
Магнитные материалы
Магнитная система трансформаторов обычно делается из специальной электротехнической стали высокой степени чистоты. Используется она по той причине, что позволяет добиться максимальной передачи магнитного сигнала без больших потерь и увеличивает КПД устройства.
Также к популярным магнитным материалам относятся всевозможные сплавы с применением в их составе углерода и кремния, который позволяет значительно увеличить магнитную проницаемость материала.
Магнитопровод и его типы
Что касается магнитопровода, то он обычно делится на типы:
Есть и более углубленные классификации, но они представляют интерес больше для специалистов. Параметры разных типов магнитопроводов могут значительно отличаться.
Устройство, схема и принцип действия автотрансформаторов
Для корректировки и изменения показателей напряжения в пределах маленьких значений используются автотрансформаторы. Устройство и принцип действия этих приборов основан на магнитной и гальванической связи между цепями, так как обмотка напряжения низшего входит в обмотку напряжения высшего. В зависимости от того, какая из них включается, происходит незначительное понижение или повышение напряжения.
Устройство и технические характеристики
Сфера применения автотрансформаторов — питание бытовой техники, промышленные электросети, пуск асинхронных электродвигателей. На крупных производственных объектах они необходимы для повышения напряжения и одновременного уменьшения возможных потерь в линиях электропередач. Благодаря особенностям конструкции, оборудование составило серьезную конкуренцию обычным трансформаторам.
В зависимости от назначения, устройствам присваивается буквенное наименование:
Автотрансформаторы: особенности конструкции, принцип действия
Автотрансформатор — вариант трансформатора, в котором первичная и вторичная обмотки соединены напрямую, они наматываются на одном стержне, мощность передается между обмотками комбинированным способом — путем электромагнитной индукции и электрического соединения.. Обмотка автотрансформатора имеет несколько выводов (как минимум 3), подключаясь к которым, можно получать разные напряжения.
В некоторых случаях бывает необходимо изменять напряжение в небольших пределах. Это проще всего сделать не двухобмоточными трансформаторами, а однообмоточными, называемыми автотрансформаторами. Если коэфициент трансформации мало отличается от единицы, то разница между величиной токов в первичной и во вторичной обмотках будет невелика. Что же произойдет, если объединить обе обмотки? Получится схема автотрансформатора (рис. 1).
Автотрансформаторы относят к трансформаторам специального назначения. Автотрансформаторы отличаются от трансформаторов тем, что у них обмотка низшего напряжения является частью обмотки высшего напряжения, т. е. цепи этих обмоток имеют не только магнитную, но и гальваническую связь.
В зависимости от включения обмоток автотрансформатора можно получить повышение или понижение напряжения.
Рис. 1 Схемы однофазных автотрансформаторов: а – понижающего, б – повышающего
Если присоединить источник переменного напряжения к точкам А и Х, то в сердечнике возникнет переменный магнитный поток. В каждом из витков обмотки будет индуктироваться ЭДС одной и той же величины. Очевидно, между точками а и Х возникнет ЭДС, равная ЭДС одного витка, умноженной на число витков, заключенных между точками а и Х.
Если присоединить к обмотке в точках a и Х какую-нибудь нагрузку, то вторичный ток I2 будет проходить по части обмотки и именно между точками a и Х. Но так как по этим же виткам проходит и первичный ток I1, то оба тока геометрически сложатся, и по участку aХ будет протекать очень небольшой по величине ток, определяемый разностью этих токов. Это позволяет часть обмотки сделать из провода малого сечения, чтобы сэкономить медь. Если принять во внимание, что этот участок составляет большую часть всех витков, то и экономия меди получается весьма ощутимой.
Таким образом, автотрансформаторы целесообразно использовать для незначительного понижения или повышения напряжения, когда в части обмотки, являющейся общей для обеих цепей автотрансформатора, устанавливается уменьшенный ток что позволяет выполнить ее более тонким проводом и сэкономить цветной металл. Одновременно с этим уменьшается расход стали на изготовление магнитопровода, сечение которого получается меньше, чем у трансформатора.
В электромагнитных преобразователях энергии – трансформаторах – передача энергии из одной обмотки в другую осуществляется магнитным полем, энергия которого сосредоточена в магнитопроводе. В автотрансформаторах передача энергии осуществляется как магнитным полем, так и за счет электрической связи между первичной и вторичной обмотками.
Преимущества и недостатки
Основные преимущества автотрансформаторов закономерно снижаются в условиях повышения трансформирующего коэффициента, и именно по этой причине агрегаты такого типа недопустимо использовать при питании распределительной электрической сети 220 В от напряжения шесть тысяч Вольт.
Таким образом, достоинства автотрансформатора максимально проявляются при наименьшем коэффициенте трансформации, и в этом случае бывают представлены:
При наличии высшего и низшего напряжения в условиях одного порядка отсутствуют препятствия для электрического соединения цепей.
Основные недостатки автотрансформатора заключаются в малом сопротивлении короткого замыкания, объясняющим высокую токовую кратность и возможность передачи высшего напряжения в сеть с низкими показателями, что обусловлено наличием электрической связи. Низковольтная схема внутри устройства напрямую зависит от наличия в сети достаточно высокого уровня напряжения, поэтому для предотвращения сбоев разрабатываются специальные схемы.
Кроме всего прочего, небольшое рассеивание, возникающее между обмотками, может спровоцировать короткое замыкание. Важно помнить, что соединение между обмотками в обязательном порядке должно быть максимально равномерным, а нейтраль обладает исключительно двумя блоками.
Следует отметить, что из-за конструктивных особенностей автотрансформатора достаточно проблематично сохранять целостность электромагнитного баланса, а балансировка потребует увеличения габаритов, что негативно сказывается на весе и стоимости прибора.
Устройство автотрансформатора
Для электромагнитного устройства статического типа характерно наличие одной обмотки, часть которой одновременно отвечает как за первичную, так и за вторичную сеть. Таким образом, в автотрансформаторе существует не только магнитная, но и электрическая связь, которая возникает между обмотками первичного и вторичного вида. В настоящее время прибор выпускается в виде одно- и трехфазного, а также двух- или трехобмоточного устройства.
Двухобмоточный трансформатор и автотрансформатор
Автотрансформаторы имеют определенный тип конструкции и некоторые особенности, представленные первой обмоткой, которая используется в качестве части второго контура агрегата или наоборот.
Поломку трансформатора можно определить при помощи мультиметра. Как проверить трансформатор мультиметром – особенности прямого и косвенного методов проверки.
Схему подключения трансформатора с трех мест вы найдете тут.
С принципом действия трансформатора 220 на 12 вольт вы можете ознакомиться по ссылке.
Область применения
Особенности автотрансформатора позволяют применять его в быту и разных областях промышленности.
Металлургическое производство
Регулируемые автотрансформаторы в металлургии применяются для проверки и настройки защитной аппаратуры прокатных станов и трансформаторных подстанций.
Коммунальное хозяйство
До появления автоматических стабилизаторов эти аппараты применялись для обеспечения нормальной работы телевизоров и другой аппаратуры. Они представляли из себя обмотку с большим числом отводов и переключателем. Он переключал вывода катушки, а выходное напряжение контролировалось при помощи вольтметра.
В настоящее время автотрансформаторы используются в релейных стабилизаторах напряжения.
Справка! В трехфазных стабилизаторах установлены три однофазных автотрансформатора, и регулировка производится в каждой фазе по-отдельности.
Химическая и нефтяная промышленность
В химической и нефтяной промышленности эти аппараты применяются для стабилизации и регулировки химических реакций.
Производство техники
В машиностроении такие аппараты используются для пуска электродвигателей станков и управления скоростью вращения дополнительных приводов.
Учебные заведения
В школах, техникумах и институтах ЛАТРы применяются при выполнении лабораторных работ и демонстрации законов электротехники, и опытах по электролизу.
Виды ЛАТРов и их обозначения
Как уже было сказано выше, все подобные виды трансформаторов работают от цепи переменного тока, причем распространены как однофазные, так и трехфазные модели. В зависимости от их технических характеристик, они обозначаются следующим образом:
Все ЛАТРы применяются для того, чтобы на выходе получить напряжение, отличное от входящего (преобразователь или регулятор напряжения). Зачастую, их применение оправдано для подключения бытовой техники, номинальное напряжение которой по характеристикам, заявленным производителем, отличается от U промышленной сети (230/50 В или 380/50 В).
Все виды трансформаторов представляют собой несколько обмоток, которые связаны индуктивным путем, и могут преобразовывать либо входное напряжение (трансформаторы U), либо входной ток (трансформаторы I). Что касается лабораторных автотранформаторов, в которых имеется также электрическая связь между обмотками, они хотя и активно применяются с середины пятидесятых годов прошлого века, при этом, остаются востребованными и по сегодняшний день.
Модификация подобного прибора значительно изменилась с течением времени. Ранее, в целях осуществления плавной регулировки по U применялся токосъемный контакт, закрепляемый на витках вторичной обмотки, что позволяло быстро изменять параметры напряжения на выходе. Таким образом, в условиях лаборатории всегда существовала возможность изменять работу различных устройств и агрегатов, как то – менять обороты двигателя, усиливать или приглушать яркость освещения или регулировать температуру нагрева паяльника.
В настоящее время ЛАТР имеет достаточно много различных модификаций, самые популярные из них – ЛАТР-1М и ЛАТР-2М. Однако все модели являются преобразователями напряжения по его величине (стабилизаторами U), причем, выходной параметр имеет возможность настройки. Для правильного использования подобных видов устройств необходимо обратиться к инструкции по применению ЛАТРа.
Как работает ЛАТР
Как уже было сказано, настройка требуемого выходного напряжения осуществляется вручную, посредством вращения ручки, меняющей перемещение угольной щетки. При этом подобная настройка реализуется при подключении прибора к электрической сети.
Один из выходов витков обмотки, относящийся к вторичной, подсоединен к угольной щетке. Второй конец вторичной обмотки является общим с той стороны, где имеется входная сеть. Вращение ручки вызывает перемещение щетки, что в свою очередь изменяет число витков, а следовательно – выходное значение U.
Все устройства, которым необходимо напряжение, отличное от номинального, подсоединяются к выходу ЛАТРа (к специально установленным клеммам). Питание сети подается на входные клеммы автотранформатора.
Спереди автотрансформатора установлен вольтметр для вторичной цепи, который способен показать резкие скачки напряжения (перегрузку), а также позволяет более точно выставить требуемое U на выходе.
ВАЖНО! Данный вольтметр позволяет правильно выставить требуемое напряжение вторичной цепи, однако, для правильной оценки его значения необходимо также замерять U перед потребителем.
Также в корпусе ЛАТРа имеются специальные отверстия (или вентиляционная решетка, установленная в некоторых моделях), которая позволяет производить вентиляцию внутри и предохраняет как сердечник, так и обмотку от перегрева.
Изготовление самодельного ЛАТРа
В продаже есть достаточно готовых устройств, но при необходимости его можно сделать самостоятельно. За основу лучше взять трансформатор на О- или Ш-образном магнитопроводе. Изготовление ЛАТРа на тороидальном железе сводится к его перемотке и требует очень высокой аккуратности при наматывании катушки.
Подготовка материала
Для изготовления регулируемого автотрансформатора необходимы:
Расчет провода
Перед началом намотки катушки необходимо определить сечение провода и необходимое количество витков/вольт (n/v). Этот расчёт производится по поперечному сечению магнитопровода при помощи онлайн-калькуляторов или по специальным таблицам.
Если для изготовления устройства используется исправный трансформатор, то эти параметры определяются по имеющимся обмоткам:
Совет! Если первичная обмотка не была пропитана лаком и разматывается без нарушения изоляции, то допускается использовать её для намотки катушки автотрансформатора.
Схема
Перед началом работ составляется схема обмотки с указанием количества витков и напряжением на каждом из выводов. В отличие от обычного трансформатора автотрансформатор имеет только одну обмотку, которая изображается с одной из сторон черты, символизирующей магнитопровод.
Для расчетов витков необходимо определить число выводов. Оно зависит от количества положений многопозиционного переключателя. Один из отводов может совпадать с сетевым выводом:
Совет! При необходимости сделать повышающий автотрансформатор к первичной обмотке добавляется необходимое количество витков. Для этого допускается использовать провод, снятый со вторичной обмотки.
Намотка катушки
После выполнения всех расчётов производится намотка катушки. Она выполняется на готовом или специально изготовленном каркасе вручную или при помощи намоточного станка:
Процесс сборки
После завершения намотки и высыхания лака производится сборка автотрансформатора:
Проверка
После сборки работоспособность устройства необходимо проверить:
Когда необходим лабораторный автотрансформатор?
Многие знают, что для коррекции напряжения в сети можно использовать стабилизатор. Тогда для чего нужен автотрансформатор? Есть ли какие-то особенные условия его применения или оба эти устройства выполняют одну и ту же задачу? Далее мы рассмотрим эти вопросы более детально.
Корректировать показатели тока в электросети приходится из-за нестабильной подачи электроэнергии и связанных с этим сильных скачков напряжения. Вообще, нормальным отклонением считается 10-15 В, большинство современных электротехнических устройств рассчитано на такие перепады, поэтому они проходят практически незаметно. Если же напряжение в однофазной сети повышается до 260-270 В, то это может привести к выходу из строя работающей в этот момент бытовой техники, инструмента и оборудования. При пониженном напряжении включить мощную технику и вовсе не удастся.
Выйти из этой ситуации можно, искусственно скорректировав напряжение с помощью стабилизатора или автотрансформатора. Разница лишь в том, что первый вариант подойдет для использования в сети, где скачки происходят постоянно, то есть напряжение может резко снижаться, повышаться, но затем снова нормализуется. Стабилизатор подстроится под эти изменения и будет подавать на нагрузку исключительно 220 В. Что касается лабораторного автотрансформатора, то он не имеет такой возможности, так как не рассчитан на автоматическое изменение параметров. При его использовании напряжение на выходе будет меняться пропорционально изменению напряжения в центральной сети. То есть в случае, когда напряжение составляет 180 В, с помощью автотрансформатора его можно увеличить до 220 В, но как только оно подскочит до 220 В, на подключенную нагрузку будет подаваться ток напряжением в 260 В. Это также может вывести из строя всю работающую технику. Поэтому при частых колебаниях в электросети лучше использовать стабилизатор. Если же наблюдается постоянная «просадка» напряжения и его значение находится примерно на одной отметке, что очень часто бывает в дачных или коттеджных поселках, то подойдет автотрансформатор.
Но это далеко не единственный случай, когда рекомендуется использование именно этого прибора. Если нужно специально понизить напряжение в сети, например, для подключения электротехники, рассчитанной на 110 В, стабилизаторы вряд ли способны обеспечить такие показатели, ведь в большинстве случаев рабочий диапазон у них составляет от 135 до 250 В или от 150 до 290 В. ЛАТР способен работать в более широком диапазоне, что позволяет использовать его для следующих целей:
Итак, стабилизатор напряжения необходим для поддержания стандартного напряжения в электросети в небольшом диапазоне отклонений. Лабораторный автотрансформатор предназначен для питания потребителей с нестандартными показателями напряжения, так как дает возможность устанавливать практически любые значения в широком диапазоне.
В вашем случае необходим именно ЛАТР? Тогда для его эффективной работы нужно учесть несколько факторов. О том, как подобрать подходящую модель, мы и расскажем далее.
Основные сферы применения ЛАТР
Все подобные виды автотранформаторов имеют достаточно узкое применение за счет своих конструктивных особенностей, а именно:
Однако, если в электросети постоянно имеется нестабильный уровень U, применение ЛАТРа не будет себя оправдывать, так как в подобных случаях требуется установка стабилизатора.
Что происходит при подаче напряжения на автотрансформатор
При протекании переменного тока по обмотке, в сердечнике (магнитопроводе) автотрансформатора, образуется переменный магнитный поток, который циркулирует по замкнутому магнитному сердечнику, пронизывая ВСЕ витки обмотки.
Проще говоря, при подключении тока к первичной обмотке – в нашем примере к 18 виткам, магнитный поток протекая по сердечнику пронизывает всю обмотку, все 20 витков. Напряжение же на первичной обмотке (в точках подключения A1 и X) остаётся 220В или, если распределить на каждый виток 220/18 = 12.222… Вольта на каждый.
Теперь, чтобы узнать какое напряжение образуется на всех 20 витках, к точкам a2 и X, подключим нагрузку, какой-нибудь электроприбор – это будет вторичная обмотка автотрансформатора. На схеме условно обозначим нагрузку, некий электроприбор подключеный к этой обмотке, напряжение U2, а число витков между контактами W2 = 20.
Зависимость между обмотками у автотрансформатора, выражается следующей формулой:
U1/w1 = U2/w2, где U1 напряжение на первой обмотке, U2 напряжение на второй обмотке, w1 число витков первой обмотки, w2 число витков второй обмотки.
Из этой формулы следует что напряжение на вторичной обмотке изменяется относительно напряжения первичной обмотки, пропорционально разнице витков. В нашем примере на один виток первичной обмотки приходится 12.22.. Вольт, у вторичной же обмотки витков больше на 2, соответственно общее напряжение обмотки выше на 24.44..Вольта.
Это доказывает нехитрый расcчет:
220 Вольт/18 Витков=U2/20 Витков,
U2 = 220*20/18 = 244.44В
Автотрансформатор, у которого на вторичной обмотке напряжение увеличивается называется повышающий.
Зная зависимость между обмотками, мы можем вычислить коэффициент трансформации, величину, которая позволяет легко определять, изменение входящих параметров (напряжения, сопротивления, силы тока) на вторичной обмотке.
Коэффициент трансформации вычисляется по следующей формуле:U1/U2=w1/w2
В нашем случае получается 220/244,44=18/20=0,9
Теперь давайте посмотрим, как изменится напряжения на оставшихся контактах.
Подключаем нагрузку к контактам a3 и X нашего автотрансформатора, число витков w3 у этой обмотки равно 16, напряжение обозначим как U3.
Следуя той же формуле, рассчитываем напряжение:
Автотрансформатор, у которого на вторичной обмотке напряжение уменьшается называется понижающий.
Теперь, зная коэффициенты трансформации на всех выводах автотрансформатора мы легко сможем определять, например, какое будет напряжение на вторичной обмотке, если изменится напряжение источника электрического тока:
Так, например, при напряжении источника переменного тока на первичной обмотке 200В, у этого трансформатора:
– на контактах a2 и X, при коэффициенте трансформации k1=0,9 напряжением будет U2=200В/0,9= 222,22 В
– на контактах a3 и X, при коэффициенте трансформации k2=1,125 напряжение равняется U3=200/1,125=177,77 В
ПРАВИЛО: Если коэффициент трансформации k>1 – то трансформатор понижающий, если же k
Чаще всего стандартный автотрансформатор имеет большее количество выводов, чем в нашем примере, большее количество ступеней для регулировки входящего напряжения или тока.
Изменение силы тока в автотрансформаторе
По силе тока есть простое правило – ток в обмотке более высокого напряжения меньше, чем ток в обмотке с более низким напряжением.
Другими словами, если используется понижающий отвод от первичной обмотки автотрансформатора – то ток на вторичной обмотке будет больше, а напряжение ниже и наоборот, если используется повышающий отвод – то ток на вторичной обмотке будет ниже, а напряжение выше.
Мощности же на обеих обмотках примерно одинаковы, поэтому, согласно закону ОМА:
I1U1 = I2U2,где I1 – ток в первичной обмотке, I2 – ток во вторичной обмотке, U1- напряжение в первичной обмотке, U2 – Напряжение во вторичной обмотке.
Соответственно ток, например, в первичной обмотке рассчитывается так: I1 = U2*I2/U1
Зная, как изменяется ток, можно заранее правильно подобрать кабели питания и защитную автоматику.
Теперь, когда вы знакомы с принципом работы автотрансформатора и знаете его конструкцию, давайте рассмотрим какие они бывают, их назначение и места применения, какие у них плюсы и минусы и чем принципиально отличаются от обычных трансформаторов. Всё это и многое другое читайте во второй части этой статьи. Подписывайтесь на нашу группу вконтакте, следите за выходом новых материалов!
Советы и рекомендации
В настоящее время наряду с однофазными приборами находят достаточно широкое применение и устройства трехфазного типа, отличающиеся обмоткой. Существуют современные трёхфазные автотрансформаторы, имеющие два и три контура.
Основные защитные характеристики автотрансформатора представлены несколькими вариантами:
Токовые трансформаторы – важное защитное свойство релейного типа. Схема подключения трансформатора тока – варианты монтажа вы найдете на нашем сайте.
Для чего необходим провод заземления? Подробно о назначении рассмотрим далее.
Конструкцией предусмотрена защита при появлении замыкания или перегрузки, но прибор не подлежит эксплуатации, если замечено повреждение изолирующего слоя, отмечается сбой на соединительных участках, присутствуют сторонние звуки или слишком сильная вибрация, а также прибор имеет на корпусе выраженные трещины или многочисленные сколы.