Базальные ганглии (базальные ядра)– это стриопаллидарная система, состоящая из трёх пар крупных ядер, погружённых в белое вещество конечного мозга в основании больших полушарий, и связывающих сенсорные и ассоциативные зоны коры с двигательной корой.
Строение
Филогенетически древняя часть базальных ганглиев – бледный шар, более позднее образование – полосатое тело и наиболее молодая часть – ограда.
Бледный шар состоит из наружного и внутреннего сегментов; полосатое тело – из хвостатого ядра и скорлупы. Ограда расположена между скорлупой и островковой (инсулярной) корой. В функциональном отношении базальные ганглии включают в себя также субталамические ядра и черную субстанцию.
Функциональные связи базальных ядер
Возбуждающая афферентная импульсация поступает преимущественно в полосатое тело (в хвостатое ядро) в основном из трёх источников:
1) от всех областей коры напрямую и опосредовано через таламус;
2) от неспецифических ядер таламуса;
3) от черной субстанции.
Среди эфферентных связей базальных ганглиев можно отметить три главных выхода:
Следовательно, базальные ганглии являются промежуточным звеном. Они связывают ассоциативную и, частично, сенсорную кору с двигательной корой. Поэтому в структуре базальных ядер выделяют несколько параллельно действующих функциональных петель, связывающих их с корой больших полушарий.
Рис.1. Схема функциональных петель, проходящих через базальные ядра:
Скелетно-моторная петля соединяет премоторную, двигательную и соматосенсорную области коры со скорлупой. Импульсация от нее идет в бледный шар и черное вещество и далее через двигательное вентролатеральное ядро возвращается в премоторную область коры. Считают, что эта петля служит для регуляции таких параметров движения, как амплитуда, сила, направление.
Глазодвигательная петля соединяет области коры, контролирующие направление взгляда, с хвостатым ядром. Оттуда импульсация идет в бледный шар и черное вещество, из которых она проецируется соответственно в ассоциативное медиодорсальное и переднее релейное вентральное ядра таламуса, а из них возвращается в лобное глазодвигательное поле 8. Эта петля участвует в регуляции скачкообразных движений глаз (саккал).
Предполагается существование также сложных петель, по которым импульсация из лобных ассоциативных зон коры поступает в хвостатое ядро, бледный шар и черное вещество. Затем через медиодорсальное и вентральное переднее ядра таламуса возвращается в ассоциативную лобную кору. Считают, что эти петли участвуют в осуществлении высших психофизиологических функций мозга: контроле мотиваций, прогнозировании, когнитивной деятельности.
Функции
Функции полосатого тела
Влияние полосатого тела на бледный шар. Влияние осуществляется преимущественно тормозное медиатором ГАМК. Однако часть нейронов бледного шара дают смешанные ответы, а некоторые только ВПСП. То есть полосатое тело оказывает на бледный шар двоякое действие: тормозящее и возбуждающее, с преобладанием тормозящего.
Влияние полосатого тела на черное вещество. Между черным веществом и полосатым телом имеются двусторонние связи. Нейроны полосатого тела оказывают тормозящее влияние на нейроны черного вещества. В свою очередь, нейроны черного вещества оказывают модулирующее влияние на фоновую активность нейронов полосатого тела. Кроме влияния на полосатое тело черное вещество оказывает тормозящее действие на нейроны таламуса.
Влияние полосатого тела на таламус. Раздражение полосатого тела вызывает в таламусе появление высокоамплитудных ритмов, характерных для фазы медленного сна. Разрушение полосатого тела нарушает цикл сон-бодрствование уменьшением длительности сна.
Влияние полосатого тела на моторную кору. Хвостатое ядро полосатого тела «вытормаживает» ненужные в данных условиях степени свободы движения, обеспечивая, тем самым формирование четкой двигательно-оборонительной реакции.
Стимуляция полосатого тела. Стимуляция полосатого тела в различных его участках вызывает различные реакции: поворот головы и туловища в сторону, противоположную раздражению; задержку пищедобывательной деятельности; подавление ощущения боли.
От полосатого тела бледный шар получает преимущественно тормозное и частично возбуждающее влияние. Но на двигательную кору, мозжечок, красное ядро и ретикулярную формацию он оказывает модулирующее влияние. На центр голода и насыщения бледный шар оказывает активирующее влияние. Разрушение бледного шара ведет к адинамии, сонливости, эмоциональной тупости.
База́льные я́дра (также база́льные га́нглии, лат. nuclei basales) — несколько скоплений серого вещества, расположенных в белом веществе латеральнее таламуса на уровне основания полушарий конечного мозга. Базальные ядра входят в состав переднего мозга, расположенного на границе между лобными долями и над стволом мозга. Традиционно в состав базальных ядер включались полосатое тело (лат. corpus striatum), в свою очередь состоящее из хвостатого ядра (лат. nucleus caudatus), скорлупы (лат. putamen) и бледного шара (лат. globus pallidus), а также ограда (лат. claustrum) и миндалевидное тело (лат. corpus amygdaloideum). Бледный шар и скорлупа вместе называются чечевицеобразным ядром (лат. nucleus lentiformis). Белое вещество между таламусом и чечевицеобразным ядром называется внутренней капсулой (лат. capsula interna), между чечевицеобразным ядром и оградой — наружной капсулой (лат. capsula externa) и между оградой и островком — самой наружной капсулой (лат. capsula extrema). Эта классификация основана на топографии анатомического среза мозга, однако в последнее время она всё чаще заменяется функциональной, где под термином «базальные ядра» понимают полосатое тело и несколько ядер промежуточного и среднего мозга (субталамическое ядро (лат. nucleus subtalamicus), чёрная субстанция (лат. substantia nigra) и ножкомостовое ядро покрышки (лат. nucleus tegmentalis peduncolopontinus)), которые совместно обеспечивают функциональную регуляцию движений и мотивационных аспектов поведения. Функции ограды остаются недостаточно изученными, а структуры миндалевидного тела относят к лимбической системе.
В толще белого вещества каждого полушария большого мозга имеются скопления серого вещества, образующего отдельно лежащие базальные ядра, которые залегают ближе к основанию мозга. К ним относятся полосатое тело (хвостатое и чечевицеобразное ядра), ограда и миндалевидное тело.
Полосатое тело на разрезах мозга имеет вид чередующихся полос серого и белого вещества. Наиболее медиально и впереди находится хвостатое ядро, расположенное латеральнее и выше таламуса, будучи отделенным от него коленом внутренней капсулы.
Хвостатое ядро имеет головку, залегающую в лобной доле, выступающую в передний рог бокового желудочка. Передняя ножка внутренней капсулы (белое вещество) отделяет хвостатое ядро от чечевицеобразного ядра. Тело хвостатого ядра лежит под теменной долей, ограничивая с латеральной стороны центральную часть бокового желудочка. Хвост ядра участвует в образовании крыши нижнего рога бокового желудочка и достигает миндалевидного тела.
Наряду с полосатым телом в его составе выделяют стриатум, включающий хвостатое ядро и скорлупу. Стриатум и бледный шар образуют стриопаллидарную систему, которая, в свою очередь, относится к экстрапирамидной системе, участвующей в управлении движениями, регуляции мышечного тонуса.
Базальные ядра имеют сложные связи с корой полушарий большого мозга и с таламусом, через который они влияют на двигательные зоны коры. Базальные ядра участвуют в регуляции мышечного тонуса, управлении целенаправленными движениями, эмоциями и познавательными функциями.
Миндалевидное тело залегает в белом веществе височной доли полушария, примерно на 1,5-2 см кзади от височного полюса ниже скорлупы и кпереди от хвоста хвостатого ядра. Миндалевидное тело участвует в осуществлении оборонительного поведения, вегетативных, двигательных и эмоциональных реакций, является мотивацией условно-рефлекторных реакций.
Раздражение миндалевидного тела у человека ведет к изменению настроения (от гнева и страха до спокойствия и расслабления) в зависимости от эмоционального состояния непосредственно перед воздействием. Миндалевидное тело функционирует как «эмоциональный усилитель», его повреждения влияют на оценку эмоциональной окраски события.
Кроме серой коры на поверхности полушария, имеются еще скопления серого вещества в его толще, именуемые базальными ядрами и составляющие то, что для краткости называют подкоркой. В отличие от коры, имеющей строение экранных центров, подкорковые ядра имеют строение ядерных центров. Различают три скопления подкорковых ядер: corpus striatum, claustrum и corpus amygdaloideum.
1. Coprus striatum, полосатое тело, состоит из двух не вполне отделенных друг от друга частей — nucleus caudatus и nucleus lentiformis.
A. Nucleus caudatus, хвостатое ядро, лежит выше и медиальнее nucleus lentiformis, отделяясь от последнего прослойкой белого вещества, называемой внутренней капсулой, capsula interna. Утолщенная передняя часть хвостатого ядра, его головка, caput nuclei caudati, образует латеральную стенку переднего рога бокового желудочка, задний же утонченный отдел хвостатого ядра, corpus et cauda nuclei caudati, тянется назад по дну центральной части бокового желудочка; cauda заворачивается на верхнюю стенку нижнего рога. С медиальной стороны nucleus caudatus прилегает к таламусу, отделяясь от него полоской белого вещества, stria terminalis. Спереди и снизу головка хвостатого ядра доходит до substantia perforata anterior, где она соединяется с nucleus lentiformis (с частью последнего, называемой putamen). Кроме этого широкого соединения обоих ядер с вентральной стороны, имеются еще тонкие полоски серого вещества, располагающиеся вперемешку с белыми пучками внутренней капсулы. Они послужили причиной названия «полосатое тело», corpus striatum.
Редактор: Искандер Милевски. Дата последнего обновления публикации: 13.8.2020
На поверхности головного мозга расположена кора, которую образует серое вещество. Также серое вещество находится в небольшом количестве в подкорковых структурах белого вещества и называется базальным ядром или ганглием.
Строение и роль базальных ядер
Указанные составляющие тесно связаны между собой и отвечают за двигательную активность. В случае нарушения структур происходит разлад мышечного тонуса, что очень видно при ходьбе, когда движения приобретают хаотичный характер.
Базальные ядра представлены в виде парных структур, расположенных в переднем отделе головного мозга. Части базальных ядер являются симметричными. При помощи данного составляющего происходит передача импульсов от одного полушария к другому, что способствует полноценной работе органа. К базальным ядрам можно отнести миндалевидное тело, полосатое тело и ограду.
Функции базальных ядер
Основной функцией базальных ядер можно считать работу, направленную на поддержание работоспособности и жизнеобеспечения организма. Они поддерживают тесную связь с другими системами в организме. К основным функциям базальных ганглий можно отнести следующие:
Базальные ядра оказывают большое влияние на поведенческие реакции.
Нарушение работы базальных ядер
Физическое состояние человека связано с тем, как функционируют базальные ядра. Причинами поражения этих структур могут быть различные травмы, воспалительные процессы, нарушения обмена веществ, а также инфекционные заболевания. Достаточно часто все развивается без особых признаков и может привести к негативным последствиям. Чтобы этого не произошло, необходимо научиться понимать симптоматику нарушения работы базальных ядер:
Проблемы и диагностика
Проблемы с функционированием базальных ядер проявляются в ухудшении состояния здоровья, ведь эта область является очень важной для организма. Функциональная дефицитарность может привести к параличу или синдрому Паркинсона. Когда на поверхности базальных ядер образуется большое количество кальция, это приводит к головным болям, частой утомляемости и даже судорогам. Для того чтобы избавиться от патологий базальных ядер, необходимо использовать комплексное лечение с привлечением психотерапевта и логопеда.
Выявить патологии базальных ядер может врач-невролог, после проведения обследований. Так, например, рекомендуется провести КТ или МРТ, УЗИ, общий осмотр, электроэнцефалограмму. Эффективность лечения зависит от таких факторов, как возраст пациента, общее состояние, стадия заболевания, а также время обнаружения.
Сохраняйте здоровье и активность мозга с помощью регулярных тренировок. Для этого созданы когнитивные тренажеры Викиум.
Для того, чтобы организм человека ежедневно выполнял сложнейшие двигательные программы, существуют специализированные структуры головного мозга, такие как мозжечок и базальные ядра, которые находятся в тесной связи с областями коры больших полушарий.
В то время, как мозжечок обеспечивает синхронизацию движений и их одномоментное соответствие требованиям, базальные ядра позволяют организму планировать сложные двигательные программы, а самое главное — их осуществлять. Помимо регуляции движений, подкорковые ядра участвуют в познавательной деятельности мозга, а значит и в формировании эмоций. Именно о них и пойдёт речь в данной статье.
Чтобы лучше понимать механизмы нормальных и патологических процессов, для начала стоит рассмотреть строение подкорковых ядер: их расположение и образование многочисленных связей с таламусом и корковыми областями. С анатомических позиций базальные ядра включают хвостатое ядро, скорлупу, бледный шар и ограду. Указанные четыре ядра составляют полосатое тело. Однако часто используемое понятие «стриатум» включает только два образования — скорлупу и хвостатое ядро. Данные образования располагаются в основном латеральнее таламуса и занимают большую часть внутренних регионов полушарий мозга.
Вся информация, которая поступает в базальные ядра в виде сигналов, распределяется независимо друг от друга по особым параллельным путям обработки информации. Эти пути образуют функциональные круги, которые также являются независимыми и включают в себя различные регионы коры. Поэтому специфическая роль ядер определяется именно той областью коры, которая находится в одном функциональном круге с ядром.
Двигательные возбуждающие сигналы комплекс базальных ганглиев принимает от премоторных зон коры, перерабатывает их и вновь возвращает в кору, но уже в первичную моторную область. «Замысел» движения возникает в премоторной коре, оттуда стриатум получает двигательные команды. Благодаря такой связи базальные ганглии способны «включать» двигательные поведенческие программы еще до их совершения. При этом сами программы в ганглиях уже заложены, и им предстоит только принять решение — к какому действию прибегнуть и прибегать ли вовсе. Выполнение сложных двигательных актов, запускаемых корой, обеспечивается с помощью прямого нервного пути. Его функция заключается в следующем: базальные ядра облегчают действия, задаваемые корой, и подавляют лишние сопутствующие.
Вся информация, которая поступает к базальным ядрам, собирается из нескольких регионов коры. Чувствительные волокна образуют возбуждающие глутаматергические синапсы с нейронами стриатума, которые объединяются в функциональные модули, перерабатывающие информацию однотипными механизмами. Поскольку моторные и сенсорные волокна различаются по характеру информации, передающейся ими с помощью импульса, то и модули, к которым направляются волокна, будут различны. По этой причине пучки волокон, направляющихся к разным модулям, образуют отдельные полоски, из-за которых стриатум получил своё название (лат. corpus striatum — полосатое тело).
Нейроны стриатума в свою очередь образуют ГАМК-ергические синапсы с клетками внутреннего сегмента бледного шара и части черной субстанции (первое последовательное тормозное переключение). Нейроны данных структур образуют тормозные ГАМК-ергические синапсы на переднем и вентральном ядрах таламуса (второе последовательное тормозное переключение), что приводит к постоянному торможению прохождения возбуждения от таламуса к коре. Отростки нейронов ядер таламуса, которые направляются к коре, образуют главные эфферентные глутаматергические пути. Поэтому при угнетении внутреннего сегмента бледного шара и части черной субстанции возбуждающее действие таламуса на кору усиливается, что обеспечивает облегчение выполнения движения.
Поскольку передача информации между структурами головного мозга обеспечивается химическими рецепторами, вопрос о постоянном синтезе медиатора является особенно важным. Роль поставщика биологически активных веществ в данном случае играет черная субстанция, получившая свое название из-за пигмента — нейромеланина, который придает ей соответствующую окраску. Черная субстанция вырабатывает дофамин, который работает как возбуждающий нейромедиатор и также служит важной частью «системы поощрения» мозга.
Для поддержания нормального функционирования двигательных систем необходимо соблюдение как анатомической целостности путей, так и поддержание определенного уровня медиатора. Соответственно, поражение структур или избыток/недостаток нейромедиатора влекут за собой серьезные последствия. При поражении базальных ядер возникают расстройства двигательной активности — дискинезии (гипокинезы или гиперкинезы) и изменения мышечного тонуса (гипотония или ригидность мышц). При функциональных нарушениях бледного шара наблюдаются спонтанные и, часто, постоянные волнообразные движения кисти, руки, шеи или лица. Такие движения называют атетозом.
Поражение субталамического ядра (также относится к базальным ганглиям) ведет к возникновению размашистых движений всей конечности. Такое состояние называют гемибаллизмом. Множественные мелкие поражения в скорлупе ведут к появлению быстрых подергиваний в кистях, лице и других частях тела, что называется хореей. Поражения черной субстанции ведут к распространенному и чрезвычайно тяжелому заболеванию, связанному с акинезией и тремором. Это заболевание известно как болезнь Паркинсона.
Основными клиническими проявлениями болезни Паркинсона являются гипокинезия и мышечная ригидность. Гипокинезия проявляется в очень медленном совершении активных двигательных действий: начало двигательного акта затруднено, отсутствует содружественное движение верхних конечностей — синкинезия, при ходьбе они неподвижны (ахейрокинез). Мышечная ригидность является своеобразным сопротивлением пассивным движениям, появляется не только в начальной фазе движения, но и во всех последующих фазах растяжения мышц. Конечность как бы застывает в той позе, которую ей придают.
Помимо вышеописанных проявлений, также наблюдается маскообразное лицо — амимичное, с неподвижным взглядом, редким миганием, иногда отсутствующим в течение нескольких минут, бледной жестикуляцией. Гипокинезия и ригидность могут наблюдаться изолированно, но к ним нередко присоединяется гиперкинез в виде тремора пальцев кисти (по типу счета монет), подбородочной области и нижних конечностей. Несмотря на то, что тремор является одним из клинических признаков паркинсонизма, его патогенез так и остается неясным. Хотя с точки зрения неврологии, в отличие от других двигательных признаков, тремор имеет точные электрофизиологические характеристики (частота, фаза и мощность).
Целью различных клинических испытаний является нахождение взаимосвязи между тремором и дофамином. Однако было выяснено, что изменения характеристик тремора в ответ на действие дофаминергических препаратов достаточно вариабельны. Эти уникальные особенности тремора и новые методы нейровизуализации способствуют возникновению новых исследований в области изучения этой патологии.
В статье Helmich R.C., посвященной церебральным основам возникновения паркинсонического тремора, подробно рассматриваются гипотезы его возникновения вследствие усиления взаимодействия между подкорковыми ядрами и мозжечково-таламо-кортикальной цепью. Обычно усиление этих связей обуславливается увеличением количества дофаминергических рецепторов в ядрах из-за воздействия различных факторов (например, психологический стресс).
Также авторами статьи подробно рассматриваются модели, которые помогают понять патогенез тремора. Одним из примеров может служить «dimmer-switch» модель, согласно которой церебральная активность, связанная с тремором при паркинсонизме, сначала возникает в базальных ядрах, а затем усиливается и распространяется на мозжечково-таламо-кортикальный контур (распространение обеспечивается активацией возбуждающих синапсов).
Помимо всем известной функции базальных ядер, заключающейся в контроле двигательной активности, существуют также менее изученные, но не менее интересные «обязанности» у данных подкорковых структур.
В своей статье Lukas Maurer с коллегами предложил концепцию, описывающую нарушения «цепей мозга» для объяснения множества психоневрологических заболеваний. Заболевания характеризуются патологическими изменениями в структуре нейронных сетей, включая изменения в осцилляторной сигнализации корково-подкорковых цепей в системе базальных ядер. Часть этих цепей играет значительную роль в поддержании энергетического баланса организма. Поэтому статья посвящена взаимосвязи между ожирением и изменениями в осцилляторной сигнализации лимбических кортико-базальных цепей.
Ученые проводили многократную электрофизиологическую запись потенциалов действия на мембранах нейронов этой кортико-базальной цепи. Подопытными стали живые крысы, находящиеся под уретановой анестезией, которых перед исследованием в течение четырёх недель кормили в соответствии с HFD (диета с высоким содержанием жиров). Регистрация потенциалов проводилась как при отсутствии внешнего стимула, так и при воздействии глюкозы. Анализ полученных данных демонстрирует повышенную бета-активность в NAC — nucleus accumbens (прилежащее ядро), связанную с пониженной когерентностью между этим ядром и корой у животных, соблюдавших HFD.
Таким образом, можно сделать вывод, что спонтанная бета-активность строго коррелирует с эндокринными показателями ожирения. Однако проба с глюкозой увеличивала бета-активность у тех животных, которые не соблюдали HFD. Причём интравентрикулярное введение инсулина также увеличивало активность NAC. Благодаря исследованию удалось подтвердить гипотезы о наличии корреляции между лимбической кортико-базальной петлей, ожирением и уровнем сывороточного инсулина. Поэтому можно рассматривать резистентность к инсулину и ожирение как следствия осцилляторных нарушений в клетках лимбической кортико-базальной цепи.
Эта цепь играет центральную роль в «системе вознаграждения» мозга, которая отвечает за обработку информации, связанной с потреблением пищи и наградой. Кроме того, она неразрывно связана с гипоталамическими областями среднего мозга, которые регулируют гомеостатические функции организма. При сравнении двух пациентов, у индивидуума с ожирением наблюдалась повышенная активность кортико-базальных структур во время ожидания пищи и снижение этой активности при получении «награды». В соответствии с этим ожирение можно рассматривать как нервно-психическое расстройство, сходное с наркоманией, поскольку оно также основано на зависимости, только в данном случае — пищевой.
Рассмотрев две совершенно разные функции базальных ядер, можно сделать вывод о том, насколько сложна и запутанна природа любой структуры головного мозга. Но именно такая сложность будет и далее привлекать человека, стремящегося познать новое.