бета и гамма излучения в чем разница

Бета и гамма излучения в чем разница

Занимательная радиация. Всё, о чём вы хотели спросить: чем нас пугают, чего мы боимся, чего следует опасаться на самом деле, как снизить риски

Все права защищены. Никакая часть данной книги не может быть воспроизведена в какой бы то ни было форме без письменного разрешения владельцев авторских прав.

© OOO «СУПЕР Издательство» 2017

© Александр Константинов 2017

Сегодня о радиации не говорит и не пишет лишь ленивый. Сотни книг, тысячи статей, радио- и телепередач посвящены этой теме. Зачем понадобилась ещё одна книга? С чего автор вдруг решил, что она заинтересует читателей?

Дело тут вот в чём: большая часть книг и статей о радиации написана либо профессионалами для профессионалов, либо журналистами для населения. Первые книги – научные, для обычного человека не очень понятные. А популярные публикации часто грешат предвзятостью. Это либо ужастики, либо скрытая реклама каких-то средств «от радиации». Или наоборот – нечто благостно-успокаивающее. И в отсутствие базовых знаний мы вынуждены принимать на веру то, что предлагают.

Да, существуют учебники. Их взрослый человек читать не будет: скучно. И есть практические брошюры, предназначенные для пострадавших от радиационных аварий. К большинству из нас это не относится.

Целью автора было создание читабельной, лёгкой для понимания книги. Чтобы уйти от занудства учебного изложения, используется форма разоблачения мифов.

Книгу можно читать по-разному. Кого-то интересуют отдельные вопросы. Например, выводит ли спирт радионуклиды и если да, то чем закусывать? Тогда можно читать выборочно. А полная книга научит оценивать радиационную опасность реально, как есть на самом деле. В книге нет сложных формул, мало научных терминов, зато много примеров и рисунков.

Читатели вовсе не обязаны верить автору на слово. И если у кого-то появится желание проверить приведенные сведения, он сможет сделать это по литературным источникам. Ссылки на них приведены в тексте (номера в квадратных скобках), а перечень – в конце каждой главы. Этот перечень включает публикации, рассчитанные на читателей с разным уровнем подготовки.

АРМИР – автоматизированное рабочее место по оценке индивидуального риска

АЭС – атомная электростанция

бэр – биологический эквивалент рентгена

ВАО – высокоактивные отходы

ВВЭР – водо-водяной энергетический реактор

ВУРС – Восточно-Уральский радиационный след

ДДУ – детские дошкольные учреждения

ДПР – дочерние продукты распада радона

ЕРФ – естественный радиоактивный фон

ИДК – индивидуальный дозиметрический контроль

ЛД – летальная доза

МКРЗ – Международная комиссия по радиологической защите

НКДАР ООН – Научный комитет ООН по действию атомной радиации

ОЛБ – острая лучевая болезнь

ПД – предел дозы облучения

ПДК – предельно допустимая концентрация

ПО – производственное объединение

РАМН – Российская Академия медицинских наук

РБМК – реактор большой мощности канальный

РГМДР – Российский государственный медико-дозиметрический регистр

Росатом – Государственная корпорация по атомной энергии «Росатом»

РЩЖ – рак щитовидной железы

Т1/2 – период полураспада

твэл – тепловыделяющий элемент

ТЭС – тепловая электростанция

УрО РАН – Уральское отделение Российской Академии наук

ФГУП – Федеральное государственное унитарное предприятие

ХЛБ – хроническая лучевая болезнь

ЧАЭС – Чернобыльская атомная электростанция

чел. – Зв – человеко-зиверт

Миф первый: радиацию изобрели атомщики, а её первые жертвы – жители Хиросимы и Нагасаки

бета и гамма излучения в чем разница. Смотреть фото бета и гамма излучения в чем разница. Смотреть картинку бета и гамма излучения в чем разница. Картинка про бета и гамма излучения в чем разница. Фото бета и гамма излучения в чем разница

На самом деле радиоактивность существовала всегда. Люди испокон века жили в условиях так называемого естественного радиоактивного фона (ЕРФ). И всегда мы немного облучались: сверху, снизу и даже изнутри.

До земной поверхности доходит часть космических излучений; ещё мы облучаемся от тех радионуклидов, которые входят в состав Земли-матушки (горные породы содержат уран и торий). И даже в составе нашего тела есть радионуклиды природного происхождения. Другое дело, что до конца 19-го века о существовании радиации даже не подозревали. Но последствия переоблучения проявлялись уже давно.

Первую массовую гибель людей от радиации наблюдали аж в 16-м веке! Австрийские горняки, работавшие на свинцовых копях близ города Иоахимсталь (ныне чешский город Яхимов), умирали в возрасте 30–40 лет от таинственной «горной болезни», или «горняцкой чахотки». Смертность шахтёров в 50 раз превышала смертность остального населения, а местные женщины выходили замуж по нескольку раз.

В то время не знали, что свинцовые руды содержат ещё и уран, и поэтому выделяют радиоактивный радон. Лишь в 1879 году выяснили, что «горная болезнь» – это рак лёгких. А причину болезни установили ещё позже. Кстати, город Иоахимсталь знаменит не только этим. Именно в Иоахимстали чеканили деньги, которые имели хождение во всей Европе. Называли эту крупную серебряную монету – иоахимсталер, сокращенно талер. Позднее «талер» стали произносить как доллар.

А радиоактивность как явление была открыта в конце 19-го века. И скоро люди узнали: радиация может быть смертельно опасной. Уже в 1928 году был создан специальный Комитет по защите от рентгеновских лучей и радия, позднее реорганизованный в Международную комиссию по радиологической защите – МКРЗ (а вы говорите: «Хиросима»).

Первое время МКРЗ занималась проблемой облучённых медиков. Ведь в начале 20-го века многие врачи работали с рентгеновскими лучами. И почти весь их первый отряд погиб от онкологических заболеваний. В 1936 году в Гамбурге им открыли памятник (да-да, в гитлеровской Германии). На нём высечены 186 имён рентгенологов и радиологов всех наций – жертв переоблучения (а вы говорите: «Нагасаки») [1].

Да, в наше время массовые переоблучения чрезвычайно редки. Тем не менее в среднем мы получаем дозу в три-четыре раза больше, чем в стародавние времена. Позднее вы узнаете, что такое доза и насколько опасно такое увеличение. Пока же перечислим главные пути дополнительного облучения современного человека.

Во-первых, мы проходим рентгеновское обследование.

бета и гамма излучения в чем разница. Смотреть фото бета и гамма излучения в чем разница. Смотреть картинку бета и гамма излучения в чем разница. Картинка про бета и гамма излучения в чем разница. Фото бета и гамма излучения в чем разница

Во-вторых, сегодня мы живём не на открытом воздухе, а в помещениях. И в результате появляются два дополнительных источника облучения. Первый называют внешним облучением от строительных материалов: ведь бетон и кирпич всегда содержат немного урана и тория, а также радиоактивные продукты их распада. Поэтому в каждом килограмме бетона ежесекундно происходит 30–50 радиоактивных распадов, а в килограмме кирпича – 100–150 распадов. По-научному это называется так: «удельная активность бетона составляет 30–50, кирпича – 100–150 беккерелей на килограмм (Бк/кг)».

А второй, более мощный источник облучения, – внутренний, за счёт вдыхаемого радиоактивного радона, который накапливается внутри помещений.

В итоге мы получаем приличную добавку к природному фону. Итак, мы жили, живём и будем жить в радиоактивном мире.

бета и гамма излучения в чем разница. Смотреть фото бета и гамма излучения в чем разница. Смотреть картинку бета и гамма излучения в чем разница. Картинка про бета и гамма излучения в чем разница. Фото бета и гамма излучения в чем разница

Хорошо это или плохо? Пока примем как данность.

Источник

Виды радиоактивных излучений

бета и гамма излучения в чем разница. Смотреть фото бета и гамма излучения в чем разница. Смотреть картинку бета и гамма излучения в чем разница. Картинка про бета и гамма излучения в чем разница. Фото бета и гамма излучения в чем разница

Навигация по статье:

Радиация и виды радиоактивных излучений, состав радиоактивного (ионизирующего) излучения и его основные характеристики. Действие радиации на вещество.

Что такое радиация

Для начала дадим определение, что такое радиация:

Радиоактивное (ионизирующее) излучение можно разделить на несколько типов, в зависимости от вида элементов из которого оно состоит. Разные виды излучения вызваны различными микрочастицами и поэтому обладают разным энергетическим воздействие на вещество, разной способностью проникать сквозь него и как следствие различным биологическим действием радиации.

Альфа излучение

бета и гамма излучения в чем разница. Смотреть фото бета и гамма излучения в чем разница. Смотреть картинку бета и гамма излучения в чем разница. Картинка про бета и гамма излучения в чем разница. Фото бета и гамма излучения в чем разница

Альфа (α) излучение возникает при распаде нестабильных изотопов элементов.

Альфа частицы обладают большой массой и излучаются с относительно невысокой скоростью в среднем 20 тыс. км/с, что примерно в 15 раз меньше скорости света. Поскольку альфа частицы очень тяжелые, то при контакте с веществом, частицы сталкиваются с молекулами этого вещества, начинают с ними взаимодействовать, теряя свою энергию и поэтому проникающая способность данных частиц не велика и их способен задержать даже простой лист бумаги.

Однако альфа частицы несут в себе большую энергию и при взаимодействии с веществом вызывают его значительную ионизацию. А в клетках живого организма, помимо ионизации, альфа излучение разрушает ткани, приводя к различным повреждениям живых клеток.

Из всех видов радиационного излучения, альфа излучение обладает наименьшей проникающей способностью, но последствия облучения живых тканей данным видом радиации наиболее тяжелые и значительные по сравнению с другими видами излучения.

Облучение радиацией в виде альфа излучения может произойти при попадании радиоактивных элементов внутрь организма, например, с воздухом, водой или пищей, а также через порезы или ранения. Попадая в организм, данные радиоактивные элементы разносятся током крови по организму, накапливаются в тканях и органах, оказывая на них мощное энергетическое воздействие. Поскольку некоторые виды радиоактивных изотопов, излучающих альфа радиацию, имеют продолжительный срок жизни, то попадая внутрь организма, они способны вызвать в клетках серьезные изменения и привести к перерождению тканей и мутациям.

Радиоактивные изотопы фактически не выводятся с организма самостоятельно, поэтому попадая внутрь организма, они будут облучать ткани изнутри на протяжении многих лет, пока не приведут к серьезным изменениям. Организм человека не способен нейтрализовать, переработать, усвоить или утилизировать, большинство радиоактивных изотопов, попавших внутрь организма.

Нейтронное излучение

бета и гамма излучения в чем разница. Смотреть фото бета и гамма излучения в чем разница. Смотреть картинку бета и гамма излучения в чем разница. Картинка про бета и гамма излучения в чем разница. Фото бета и гамма излучения в чем разница

Не обладая зарядом, нейтронное излучение сталкиваясь с веществом, слабо взаимодействует с элементами атомов на атомном уровне, поэтому обладает высокой проникающей способностью. Остановить нейтронное излучение можно с помощью материалов с высоким содержанием водорода, например, емкостью с водой. Так же нейтронное излучение плохо проникает через полиэтилен.

Нейтронное излучение при прохождении через биологические ткани, причиняет клеткам серьезный ущерб, так как обладает значительной массой и более высокой скоростью чем альфа излучение.

Бета излучение

бета и гамма излучения в чем разница. Смотреть фото бета и гамма излучения в чем разница. Смотреть картинку бета и гамма излучения в чем разница. Картинка про бета и гамма излучения в чем разница. Фото бета и гамма излучения в чем разница

Бета (β) излучение возникает при превращении одного элемента в другой, при этом процессы происходят в самом ядре атома вещества с изменением свойств протонов и нейтронов.

При бета излучении, происходит превращение нейтрона в протон или протона в нейтрон, при этом превращении происходит излучение электрона или позитрона (античастица электрона), в зависимости от вида превращения. Скорость излучаемых элементов приближается к скорости света и примерно равна 300 000 км/с. Излучаемые при этом элементы называются бета частицы.

Имея изначально высокую скорость излучения и малые размеры излучаемых элементов, бета излучение обладает более высокой проникающей способностью чем альфа излучение, но обладает в сотни раз меньшей способность ионизировать вещество по сравнению с альфа излучением.

Бета радиация с легкостью проникает сквозь одежду и частично сквозь живые ткани, но при прохождении через более плотные структуры вещества, например, через металл, начинает с ним более интенсивно взаимодействовать и теряет большую часть своей энергии передавая ее элементам вещества. Металлический лист в несколько миллиметров может полностью остановить бета излучение.

Если альфа радиация представляет опасность только при непосредственном контакте с радиоактивным изотопом, то бета излучение в зависимости от его интенсивности, уже может нанести существенный вред живому организму на расстоянии несколько десятков метров от источника радиации.

Если радиоактивный изотоп, излучающий бета излучение попадает внутрь живого организма, он накапливается в тканях и органах, оказывая на них энергетическое воздействие, приводя к изменениям в структуре тканей и со временем вызывая существенные повреждения.

Некоторые радиоактивные изотопы с бета излучением имеют длительный период распада, то есть попадая в организм, они будут облучать его годами, пока не приведут к перерождению тканей и как следствие к раку.

Гамма излучение

бета и гамма излучения в чем разница. Смотреть фото бета и гамма излучения в чем разница. Смотреть картинку бета и гамма излучения в чем разница. Картинка про бета и гамма излучения в чем разница. Фото бета и гамма излучения в чем разница

Гамма радиация сопровождает процесс распада атомов вещества и проявляется в виде излучаемой электромагнитной энергии в виде фотонов, высвобождающихся при изменении энергетического состояния ядра атома. Гамма лучи излучаются ядром со скоростью света.

Когда происходит радиоактивный распад атома, то из одних веществ образовываются другие. Атом вновь образованных веществ находятся в энергетически нестабильном (возбужденном) состоянии. Воздействую друг на друга, нейтроны и протоны в ядре приходят к состоянию, когда силы взаимодействия уравновешиваются, а излишки энергии выбрасываются атомом в виде гамма излучения

Гамма излучение обладает высокой проникающей способностью и с легкостью проникает сквозь одежду, живые ткани, немного сложнее через плотные структуры вещества типа металла. Чтобы остановить гамма излучение потребуется значительная толщина стали или бетона. Но при этом гамма излучение в сто раз слабее оказывает действие на вещество чем бета излучение и десятки тысяч раз слабее чем альфа излучение.

Рентгеновское излучение

Рентгеновское излучение сходно по действию с гамма излучением, но обладает меньшей проникающей способностью, потому что имеет большую длину волны.

Рассмотрев различные виды радиоактивного излучения, видно, что понятие радиация включает в себя совершенно различные виды излучения, которые оказывают разное воздействие на вещество и живые ткани, от прямой бомбардировки элементарными частицами (альфа, бета и нейтронное излучение) до энергетического воздействия в виде гамма и рентгеновского излечения.

Каждое из рассмотренных излучений опасно!

Сравнительная таблица с характеристиками различных видов радиации

характеристикаВид радиации
Альфа излучениеНейтронное излучениеБета излучениеГамма излучениеРентгеновское излучение
излучаютсядва протона и два нейтронанейтроныэлектроны или позитроныэнергия в виде фотоновэнергия в виде фотонов
проникающая способностьнизкаявысокаясредняявысокаявысокая
облучение от источникадо 10 смкилометрыдо 20 мсотни метровсотни метров
скорость излучения20 000 км/с40 000 км/с300 000 км/с300 000 км/с300 000 км/с
ионизация, пар на 1 см пробега30 000от 3000 до 5000от 40 до 150от 3 до 5от 3 до 5
биологическое действие радиациивысокоевысокоесреднеенизкоенизкое

Как видно из таблицы, в зависимости от вида радиации, излучение при одной и той же интенсивности, например в 0.1 Рентген, будет оказать разное разрушающее действие на клетки живого организма. Для учета этого различия, был введен коэффициент k, отражающий степень воздействия радиоактивного излучения на живые объекты.

Коэффициент k
Вид излучения и диапазон энергийВесовой множитель
Фотоны всех энергий (гамма излучение)1
Электроны и мюоны всех энергий (бета излучение)1
Нейтроны с энергией 20 МэВ (нейтронное излучение)5
Протоны с энергий > 2 МэВ (кроме протонов отдачи)5
Альфа-частицы, осколки деления и другие тяжелые ядра (альфа излучение)20

Чем выше «коэффициент k» тем опаснее действие определенного вида радиции для тканей живого организма.

Видео: Виды радиации

Источник

Радиация не всегда страшна: что нужно знать об излучении

бета и гамма излучения в чем разница. Смотреть фото бета и гамма излучения в чем разница. Смотреть картинку бета и гамма излучения в чем разница. Картинка про бета и гамма излучения в чем разница. Фото бета и гамма излучения в чем разница

бета и гамма излучения в чем разница. Смотреть фото бета и гамма излучения в чем разница. Смотреть картинку бета и гамма излучения в чем разница. Картинка про бета и гамма излучения в чем разница. Фото бета и гамма излучения в чем разница

Что же такое радиация? Так называют различные виды ионизирующего излучения, то есть того, которое способно отрывать электроны от атомов вещества. Три основных вида ионизирующего излучения принято обозначать греческими буквами альфа, бета и гамма. Альфа-излучение — это поток ядер гелия-4 (практически весь гелий из воздушных шариков когда-то был альфа-излучением), бета — поток быстрых электронов (реже позитронов), а гамма — поток фотонов высокой энергии. Еще один вид радиации — поток нейтронов. Ионизирующее излучение (за исключением рентгеновского) — результат ядерных реакций, поэтому ни мобильные телефоны, ни микроволновые печи не являются его источниками.

Заряженное оружие

Из всех видов искусства для нас важнейшим, как известно, является кино, а из видов радиации — гамма-излучение. Оно обладает очень высокой проникающей способностью, и теоретически никакая преграда не способна защитить от него полностью. Мы постоянно подвергаемся гамма-облучению, оно приходит к нам сквозь толщу атмосферы из космоса, пробивается сквозь слой грунта и стены домов. Обратная сторона такой всепроникаемости — относительно слабое разрушающее действие: из большого количества фотонов лишь малая часть передаст свою энергию организму. Мягкое (низкоэнергетическое) гамма-излучение (и рентгеновское) в основном взаимодействует с веществом, выбивая из него электроны за счет фотоэффекта, жесткое — рассеивается на электронах, при этом фотон не поглощается и сохраняет заметную часть своей энергии, так что вероятность разрушения молекул в таком процессе значительно меньше.

бета и гамма излучения в чем разница. Смотреть фото бета и гамма излучения в чем разница. Смотреть картинку бета и гамма излучения в чем разница. Картинка про бета и гамма излучения в чем разница. Фото бета и гамма излучения в чем разница

Бета-излучение по своему воздействию близко к гамма-излучению — оно тоже выбивает электроны из атомов. Но при внешнем облучении оно полностью поглощается кожей и ближайшими к коже тканями, не доходя до внутренних органов. Тем не менее это приводит к тому, что поток быстрых электронов передает облученным тканям значительную энергию, что может привести к лучевым ожогам или спровоцировать, например, катаракту.

Альфа-излучение несет значительную энергию и большой импульс, что позволяет ему выбивать электроны из атомов и даже сами атомы из молекул. Поэтому причиненные им «разрушения» значительно больше — считается, что, передав телу 1 Дж энергии, альфа-излучение нанесет такой же ущерб, как 20 Дж в случае гамма- или бета-излучения. К счастью, проникающая способность альфа-частиц чрезвычайно мала: они поглощаются самым верхним слоем кожи. Но при попадании внутрь организма альфа-активные изотопы крайне опасны: вспомните печально известный чай с альфа-активным полонием-210, которым был отравлен Александр Литвиненко.

бета и гамма излучения в чем разница. Смотреть фото бета и гамма излучения в чем разница. Смотреть картинку бета и гамма излучения в чем разница. Картинка про бета и гамма излучения в чем разница. Фото бета и гамма излучения в чем разница

Нейтральная опасность

Но первое место в рейтинге опасности, несомненно, занимают быстрые нейтроны. Нейтрон не имеет электрического заряда и поэтому взаимодействует не с электронами, а с ядрами — только при «прямом попадании». Поток быстрых нейтронов может пройти через слой вещества в среднем от 2 до 10 см без взаимодействия с ним. Причем в случае тяжелых элементов, столкнувшись с ядром, нейтрон лишь отклоняется в сторону, почти не теряя энергии. А при столкновении с ядром водорода (протоном) нейтрон передает ему примерно половину своей энергии, выбивая протон с его места. Именно этот быстрый протон (или, в меньшей степени, ядро другого легкого элемента) и вызывает ионизацию в веществе, действуя подобно альфа-излучению. В результате нейтронное излучение, подобно гамма-квантам, легко проникает внутрь организма, но там почти полностью поглощается, создавая быстрые протоны, вызывающие большие разрушения. Кроме того, нейтроны — это то самое излучение, которое вызывает наведенную радиоактивность в облучаемых веществах, то есть превращает стабильные изотопы в радиоактивные. Это крайне неприятный эффект: скажем, с транспортных средств после пребывания в очаге радиационной аварии альфа-, бета- и гамма-активную пыль можно смыть, а вот от нейтронной активации избавиться невозможно — излучает уже сам корпус (на этом, кстати, и был основан поражающий эффект нейтронной бомбы, активировавшей броню танков).

бета и гамма излучения в чем разница. Смотреть фото бета и гамма излучения в чем разница. Смотреть картинку бета и гамма излучения в чем разница. Картинка про бета и гамма излучения в чем разница. Фото бета и гамма излучения в чем разница

При измерении и оценке радиации используется такое количество различных понятий и единиц, что обычному человеку немудрено и запутаться.
Экспозиционная доза пропорциональна количеству ионов, которые создает гамма- и рентгеновское излучения в единице массы воздуха. Ее принято измерять в рентгенах (Р).
Поглощенная доза показывает количество энергии излучения, поглощенное единицей массы вещества. Ранее ее измеряли в радах (рад), а сейчас – в греях (Гр).
Эквивалентная доза дополнительно учитывает разницу в разрушительной способности разных типов радиации. Ранее её измеряли в «биологических эквивалентах рада» — бэрах (бэр), а сейчас – в зивертах (Зв).
Эффективная доза учитывает ещё и различную чувствительность разных органов к радиации: например, облучать руку куда менее опасно, чем спину или грудь. Ранее измерялась в тех же бэрах, сейчас — в зивертах.
Перевод одних единиц измерения в другие не всегда корректен, но в среднем принято считать, что экспозиционная доза гамма-излучения в 1 Р принесёт организму такой же вред, как эквивалентная доза 1/114 Зв. Перевод рад в греи и бэров в зиверты очень прост: 1 Гр = 100 рад, 1 Зв = 100 бэр. Для перевода поглощённой дозы в эквивалентную используют т.н. «коэффициент качества излучения», равный 1 для гамма- и бета-излучения, 20 для альфа-излучения и 10 для быстрых нейтронов. Например, 1 Гр быстрых нейтронов = 10 Зв = 1000 бэр.
Природная мощность эквивалентной дозы (МЭД) внешнего облучения обычно составляет 0,06 – 0,10 мкЗв/ч, но в некоторых местах может быть и менее 0,02 мкЗв/ч или более 0,30 мкЗв/ч. Уровень более 1,2 мкЗв/ч в России официально считается опасным, хотя в салоне самолёта во время перелёта МЭД может многократно превышать это значение. А экипаж МКС подвергается облучению с мощностью примерно 40 мкЗв/ч.

В природе нейтронное излучение весьма незначительно. По сути, риск подвергнуться ему существует лишь при ядерной бомбардировке или серьезной аварии на АЭС с расплавлением и выбросом в окружающую среду большей части активной зоны реактора (да и то лишь в первые секунды).

Газоразрядные счетчики

Радиацию можно обнаружить и измерить с помощью различных датчиков. Самые простые из них — ионизационные камеры, пропорциональные счетчики и газоразрядные счетчики Гейгера-Мюллера. Они представляют собой тонкостенную металлическую трубку с газом (или воздухом), вдоль оси которой натянута проволочка — электрод. Между корпусом и проволочкой прикладывают напряжение и измеряют протекающий ток. Принципиальное отличие между датчиками лишь в величине прикладываемого напряжения: при небольших напряжениях имеем ионизационную камеру, при больших — газоразрядный счетчик, где-то посередине — пропорциональный счетчик.

Источник

Разница между альфа-бета и гамма-частицами

бета и гамма излучения в чем разница. Смотреть фото бета и гамма излучения в чем разница. Смотреть картинку бета и гамма излучения в чем разница. Картинка про бета и гамма излучения в чем разница. Фото бета и гамма излучения в чем разница

Содержание:

Ключевые области покрыты

1. Что такое альфа-частицы
— определение, свойства, механизм эмиссии, применение
2. Что такое бета-частицы
— определение, свойства, механизм эмиссии, применение
3. Что такое гамма-частицы
— определение, свойства, механизм эмиссии, применение
4. В чем разница между альфа-бета и гамма-частицами
— Сравнение основных различий

Ключевые слова: альфа, бета, гамма, нейтроны, протоны, радиоактивный распад, радиоактивность, радиация

бета и гамма излучения в чем разница. Смотреть фото бета и гамма излучения в чем разница. Смотреть картинку бета и гамма излучения в чем разница. Картинка про бета и гамма излучения в чем разница. Фото бета и гамма излучения в чем разница

Что такое альфа-частицы

Эмиссия альфа-частиц происходит в «богатых протонами» атомах. После испускания одной альфа-частицы из ядра атома определенного элемента это ядро ​​изменяется, и оно становится другим химическим элементом. Это связано с тем, что при альфа-излучении два ядра удаляются из ядра, что приводит к уменьшению атомного номера. (Атомный номер является ключом для идентификации химического элемента. Изменение атомного номера указывает на превращение одного элемента в другой).

бета и гамма излучения в чем разница. Смотреть фото бета и гамма излучения в чем разница. Смотреть картинку бета и гамма излучения в чем разница. Картинка про бета и гамма излучения в чем разница. Фото бета и гамма излучения в чем разница

Рисунок 1: Альфа-распад

Однако проникающая способность альфа-частиц значительно слабая. Даже тонкая бумага может остановить альфа-частицы или альфа-излучение. Но ионизирующая способность альфа-частиц очень велика. Поскольку альфа-частицы заряжены положительно, они могут легко брать электроны из других атомов. Это удаление электронов из других атомов вызывает ионизацию этих атомов. Поскольку эти альфа-частицы являются заряженными частицами, они легко притягиваются электрическими полями и магнитными полями.

Какие бета-частицы

бета и гамма излучения в чем разница. Смотреть фото бета и гамма излучения в чем разница. Смотреть картинку бета и гамма излучения в чем разница. Картинка про бета и гамма излучения в чем разница. Фото бета и гамма излучения в чем разница

Рисунок 2: β-эмиссия

Бета-частицы способны проникать через воздух и бумагу, но могут задерживаться тонким металлическим (например, алюминиевым) листом. Это может ионизировать вещество, которое встречается. Поскольку они являются отрицательно (или положительно, если это позитрон) заряженными частицами, они могут отталкивать электроны в других атомах. Это приводит к ионизации вещества.

Поскольку это заряженные частицы, бета-частицы притягиваются электрическими полями и магнитными полями. Скорость бета-частицы составляет около 90% скорости света. Бета-частицы способны проникать в кожу человека.

Что такое гамма-частицы

Проникающая способность гамма-частиц очень высока. Даже очень небольшое излучение может проникать через воздух, бумагу и даже тонкие металлические листы.

бета и гамма излучения в чем разница. Смотреть фото бета и гамма излучения в чем разница. Смотреть картинку бета и гамма излучения в чем разница. Картинка про бета и гамма излучения в чем разница. Фото бета и гамма излучения в чем разница

Рисунок 3: Гамма-распад

Гамма-частицы удаляются вместе с альфа- или бета-частицами. Альфа или бета распад может изменить химический элемент, но не может изменить энергетическое состояние элемента. Следовательно, если элемент все еще находится в состоянии с более высокой энергией, то излучение гамма-частиц происходит для того, чтобы получить более низкий уровень энергии.

Разница между альфа-бета и гамма-частицами

Определение

масса

Альфа-частицы: Масса альфа-частицы составляет около 4 мкм.

Гамма-частицы: Гамма-частицы не имеют массы.

Электрический заряд

Бета-частицы: Бета-частицы являются либо положительно, либо отрицательно заряженными частицами.

Гамма-частицы: Гамма-частицы не являются заряженными частицами.

Влияние на атомный номер

Альфа-частицы: Атомный номер элемента уменьшается на 2 единицы, когда высвобождается альфа-частица.

Бета-частицы: Атомный номер элемента увеличивается на 1 единицу, когда высвобождается бета-частица.

Гамма-частицы: Атомный номер не зависит от излучения гамма-частиц.

Изменение в химическом элементе

Альфа-частицы: Излучение альфа-частиц вызывает изменение химического элемента.

Бета-частицы: Излучение бета-частиц вызывает изменение химического элемента.

Гамма-частицы: Излучение гамма-частиц не приводит к замене химического элемента.

Сила проникновения

Альфа-частицы: Альфа-частицы имеют наименьшую проникающую способность.

Бета-частицы: Бета-частицы имеют умеренную проникающую способность.

Гамма-частицы: Гамма-частицы обладают самой высокой проникающей способностью.

Ионизирующая сила

Альфа-частицы: Альфа-частицы могут ионизировать многие другие атомы.

Бета-частицы: Бета-частицы могут ионизировать другие атомы, но не так хороши, как альфа-частицы.

Гамма-частицы: Гамма-частицы обладают наименьшей способностью ионизировать другие вещества.

скорость

Альфа-частицы: Скорость альфа-частиц составляет около одной десятой скорости света.

Бета-частицы: Скорость бета-частиц составляет около 90% скорости света.

Гамма-частицы: Скорость гамма-частиц равна скорости света.

Электрические и магнитные поля

Альфа-частицы: Альфа-частицы притягиваются электрическими и магнитными полями.

Бета-частицы: Бета-частицы притягиваются электрическими и магнитными полями.

Гамма-частицы: Гамма-частицы не притягиваются электрическими и магнитными полями.

Заключение

Альфа, бета и гамма частицы испускаются из нестабильных ядер. Ядро испускает эти разные частицы, чтобы стать стабильным. Хотя альфа- и бета-лучи состоят из частиц, гамма-лучи не состоят из реальных частиц. Однако, чтобы понять поведение гамма-лучей и сравнить их с альфа- и бета-частицами, вводится гипотетическая частица, называемая фотоном. Эти фотоны являются энергетическими пакетами, которые переносят энергию из одного места в другое в виде гамма-излучения. Поэтому они называются гамма-частицами. Основное различие между альфа-бета и гамма-частицами заключается в их проникающей способности.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *