Что такое кбп в биологии
Что такое кбп в биологии
Словарь: С. Фадеев. Словарь сокращений современного русского языка. — С.-Пб.: Политехника, 1997. — 527 с.
кора больших полушарий головного мозга
Словари: Словарь сокращений и аббревиатур армии и спецслужб. Сост. А. А. Щелоков. — М.: ООО «Издательство АСТ», ЗАО «Издательский дом Гелеос», 2003. — 318 с., С. Фадеев. Словарь сокращений современного русского языка. — С.-Пб.: Политехника, 1997. — 527 с.
Словарь: Словарь сокращений и аббревиатур армии и спецслужб. Сост. А. А. Щелоков. — М.: ООО «Издательство АСТ», ЗАО «Издательский дом Гелеос», 2003. — 318 с.
коэффициент биологического поглощения
Словарь: С. Фадеев. Словарь сокращений современного русского языка. — С.-Пб.: Политехника, 1997. — 527 с.
конденсатор бумажный проходной
конструкторское бюро приборостроения
концевая полоса безопасности
Словарь: С. Фадеев. Словарь сокращений современного русского языка. — С.-Пб.: Политехника, 1997. — 527 с.
Словари: Словарь сокращений и аббревиатур армии и спецслужб. Сост. А. А. Щелоков. — М.: ООО «Издательство АСТ», ЗАО «Издательский дом Гелеос», 2003. — 318 с., С. Фадеев. Словарь сокращений современного русского языка. — С.-Пб.: Политехника, 1997. — 527 с.
Конструкторское бюро приборостроения
Словарь: Словарь сокращений и аббревиатур армии и спецслужб. Сост. А. А. Щелоков. — М.: ООО «Издательство АСТ», ЗАО «Издательский дом Гелеос», 2003. — 318 с.
Словарь: Словарь сокращений и аббревиатур армии и спецслужб. Сост. А. А. Щелоков. — М.: ООО «Издательство АСТ», ЗАО «Издательский дом Гелеос», 2003. — 318 с.
консультант по банковским продуктам
комитет базовых предприятий
КБП на территории ГМА «Борисполь» (Украина)
Полезное
Смотреть что такое «КБП» в других словарях:
КБП — Конструкторское бюро приборостроения с 1972 по 1977 годы название НИИП … Википедия
КОЭФФИЦИЕНТ БИОЛОГИЧЕСКОГО ПОГЛОЩЕНИЯ (КБП) — отношение содержания химических элементов в зоне организмов (растений, животных) к его содержанию в среде обитания. Используется для оценки связи среды и физиологической роли химического элемента, а также для выявления участия каждого химического … Экологический словарь
ГУП КБП — Государственное унитарное предприятие «Конструкторское бюро приборостроения» организация … Словарь сокращений и аббревиатур
АСОДУ КБП — автоматизированная система оперативно диспетчерского управления картонно бумажного производства Источник: http://www.asucontrol.ru/news/2005/august/news 08 28 2005 6.shtml … Словарь сокращений и аббревиатур
Конструкторское бюро приборостроения — ОАО «Конструкторское бюро приборостроения» Тип Открытое акционерное общество Год основания 1927 Расположение … Википедия
Кортико-висцеральные отношения — (от лат. cortex кора и viscera внутренности) естественное функциональное взаимодействие между корой больших полушарий головного мозга (См. Кора больших полушарий головного мозга) (КБП) и внутренними органами (ВО), воспроизводимое и в… … Большая советская энциклопедия
КОРТИКАЛИЗАЦИЯ ФУНКЦИЙ — представительство в коре больших полушарий головного мозга основных, относительно простых физиол. систем и органов чувств и управление деятельностью этих систем. Старый смысл этого понятия, под к рым подразумевалась локализация высших психич.… … Биологический энциклопедический словарь
Дудка, Вячеслав — Бывший губернатор Тульской области Бывший губернатор Тульской области, занимал этот пост с апреля 2005 года по июль 2011 года. Ранее, в 1998 2005 годах, работал первым заместителем генерального конструктора и начальника ГУП Конструкторское бюро… … Энциклопедия ньюсмейкеров
Головной и спинной мозг
Спинной мозг
Представляет собой нервный тяж, лежащий в образованном позвонками позвоночном канале. Тянется от затылочного отверстия до поясничного отдела позвоночника. Вверху переходит в продолговатый мозг, внизу заканчивается коническим заострением с концевой нитью.
На поперечном срезе спинной мозг (СМ) напоминает бабочку. В центре расположено серое вещество, состоящее из тел нейронов. На периферии расположено белое вещество, которое образовано отростками нейронов.
В сером веществе СМ различают два передних выступа (передние рога), два боковых (боковые рога) и два задних (задние рога). В следующей статье мы будем изучать рефлекторные дуги, так что эти знания нам очень пригодятся. В рогах серого вещества находятся нейроны, которые входят в состав рефлекторных дуг.
За счет тел нейронов, которые расположены в сером веществе спинного мозга и входят в состав рефлекторных дуг, обеспечивающих рефлексы.
За счет наличия в спинном мозге белого вещества, в состав которого входят многочисленные нервные волокна, образующие пучки и канатики вокруг серого вещества.
Головной мозг и его отделы
Мы начинаем увлекательное путешествие по отделам головного мозга. Для вас принципиально важно разделить между собой и запомнить функции различных отделов, для этого обязательно используйте воображение!)
Варолиев мост выполняет проводниковую функцию: через мост проходят все нисходящие и восходящие нервные пути. Также он контролирует работу мимических и жевательных мышц лица, слезной железы.
Мозжечок имеет свои собственные полушария, соединенные друг с другом. Кора мозжечка образована серым веществом, подкорковые ядра окружены белым веществом.
Мозжечок принимает участие в координации произвольных движений, способствует сохранению положения тела в пространстве, регулирует тонус и равновесие. Благодаря мозжечку наши движения четкие и плавные.
Средний мозг также выполняет проводниковую функцию, участвует в регуляции мышечного тонуса и позы тела.
Помимо этого, гипоталамус контролирует симпатическую и парасимпатическую системы, регулирует температуру тела, отвечает за циклы сна и бодрствования. В гипоталамусе находятся центры голода и насыщения.
Кора больших полушарий
В коре имеется несколько слоев клеток, между которыми образуются многочисленные разветвленные связи. Несмотря на то, что кора функционирует как единый механизм, разные ее участки анализируют информацию от разных периферических рецепторов, которые И.П. Павлов называл корковыми концами анализаторов.
Корковое представительство зрительного анализатора располагается в затылочной доле КБП, именно в связи с этим при падении на затылок человек видит «искры из глаз», когда нейроны этой доли возбуждаются механически, вследствие удара.
Корковое представительство слухового анализатора находится в височной доле коры больших полушарий.
Количество нейронов в этих извилинах, отведенных для различных органов, неодинаково. Так зона проекции пальцев кисти занимает много места, благодаря чему становятся возможны тонкие движения пальцами. Зона проекции мышц туловища гораздо меньше зоны пальцев, так как движения туловища более однообразные и менее сложные.
Изученные нами участки мозга, в которых происходит преобразование и анализ поступающей информации, называются ассоциативными зонами КБП. Эти зоны связывают различные участки КБП, координируют ее работу, играют важнейшую роль в образовании условных рефлексов.
Заболевания
Иногда после инсульта (кровоизлияния в ткани мозга) или травмы развивается паралич (полное отсутствие движений) на одной из сторон тела. Зная анатомию, вы можете седлать вывод: если движения пропали в правой руке и ноге, то инсульт произошел слева.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Что такое кбп в биологии
Анализатор — функциональная единица, отвечающая за восприятие и анализ сенсорной информации одного вида (термин ввел И. П. Павлов).
Анализатор представляет собой совокупность нейронов, участвующих в восприятии раздражений, проведении возбуждения и в анализе раздражения.
Анализатор часто называют сенсорной системой. Анализаторы классифицируют по типу тех ощущений, в формировании которых они участвуют (см. рис. ниже).
Это зрительный, слуховой, вестибулярный, вкусовой, обонятельный, кожный, мышечный и другие анализаторы. В анализаторе выделяют три отдела:
Кроме восходящих (афферентных) путей существуют нисходящие волокна (эфферентные), по которым осуществляется регуляция деятельности нижних уровней анализатора со стороны его высших, в особенности корковых, отделов.
(орган чувств и рецепторы)
осязательные тельца сосочкового слоя дермы (болевые, температурные, тактильные и др. рецепторы)
КБП* — кора больших полушарий.
органы чувств
Человек обладает рядом важных специализированных периферических образований — органов чувств, обеспечивающих восприятие воздействующих на организм внешних раздражителей.
Орган чувств состоит из рецепторов и вспомогательного аппарата, который помогает улавливать, концентрировать, фокусировать, направлять и т. д. сигнал.
К органам чувств относятся органы зрения, слуха, обоняния, вкуса, осязания. Сами по себе они не могут обеспечить ощущение. Для возникновения субъективного ощущения необходимо, чтобы возбуждение, возникшее в рецепторах, поступило в соответствующий отдел коры больших полушарий.
Структурные поля коры больших полушарий
Если рассматривать стуктурную организацию коры больших полушарий, то можно выделить несколько полей, имеющих различное клеточное строение.
Различают три основные группы полей в коре:
Первичные поля, или ядерные зоны анализаторов, непосредственно связаны с органами чувств и органами движения.
Например, поле болевой, температурной, кожно-мышечной чувствительности в задней части центральной извилины, зрительное поле в затылочной доле, слуховое поле в височной доле и двигательное поле в передней части центральной извилины.
Первичные поля они раньше других созревают в онтогенезе.
Функция первичных полей: анализ отдельных раздражений, поступающих в кору от соответствующих рецепторов.
При разрушении первичных полей возникает так называемая корковая слепота, корковая глухота и т. п.
Вторичные поля расположены рядом с первичными и связаны через них с органами чувств.
Функция вторичных полей: обобщение и дальнейшая обработка поступающей информации. Отдельные ощущения синтезируются в них в комплексы, обусловливающие процессы восприятия.
При поражении вторичных полей человек видит и слышит, но не способен осознать,понять значение увиденного и услышанного.
Первичные и вторичные поля имеются и у человека, и у животных.
Третичные поля, или зоны перекрытия анализаторов, находятся в задней половине коры — на границе теменной, височных и затылочной долей и в передних частях лобных долей. Они занимают половину всей площади коры больших полушарий и имеют многочисленные связи со всеми ее частями. В третичных полях оканчивается большинство нервных волокон, соединяющих левое и правое полушария.
Функция третичных полей: организация согласованной работы обоих полушарий, анализ всех воспринятых сигналов, их сравнение с ранее полученнойнформацией, координация соответствующего поведения, программирование двигательной активности.
Эти поля есть только у человекаи созревают позже других корковых полей.
Развитие третичных полей у человека связывают с функцией речи. Мышление (внутренняя речь) возможно только при совместной деятельности анализаторов, объединение информации от которых происходит в третичных полях.
При врожденном недоразвитии третичных полей человек не в состоянии овладеть речью и даже простейшими двигательными навыками.
Рис. Структурные поля коры больших полушарий
С учетом расположения структурных полей коры больших полушарий можно выделить функциональные части: сенсорные, моторные и ассоциативные зоны.
Все сенсорные и моторные зоны занимают менее 20% поверхности коры. Остальная кора составляет ассоциативную область.
Ассоциативные зоны
Ассоциативные зоны — это функциональные зоны коры головного мозга. Они связывают вновь поступающую сенсорную информацию с полученной ранее и хранящейся в блоках памяти, а также сравнивают между собой информацию, получаемую от разных рецепторов (см. рис. ниже).
Каждая ассоциативная область коры связана с несколькими структурными полями. В состав ассоциативных зон входит часть теменной, лобной и височной долей. Границы ассоциативных зон нечеткие, ее нейроны участвуют в интеграции различной информации. Здесь идет высший анализ и синтез раздражений. В результате формируются сложные элементы сознания.
Рис. Борозды и доли коры больших полушарий
Рис. Ассоциативные зоны коры больших полушарий:
1. Асс оциативная двигател ьная зона (лобная доля)
2. Первичная двигательная зона
3. Первичная соматосенсорная зона
4. Теменная доля больших полушарий
5. Ассоциативная соматосенсорная (кожно-мышечная) зона (теменная доля)
6. Ассоциативная зрительная зона (затылочная доля)
7. Затылочная доля больших полушарий
8. Первичная зрительная зона
9. Ассоциативная слуховая зона (височные доли)
10. Первичная слуховая зона
11. Височная доля больших полушарий
12. Обонятельная кора (внутренняя поверхность височной доли)
14. Предлобная ассоциативная зона
15. Лобная доля больших полушарий.
Сенсорные сигналы в ассоциативной зоне расшифровываются, осмысливаются и используются для определения наиболее подходящих ответных реакций, которые передаются в связанную с ней двигательную (моторную) зону.
Таким образом, ассоциативные зоны участвуют в процессах запоминания, обучения и мышления, и результаты их деятельности составляют интеллект (способность организма использовать полученные знания).
Отдельные крупные ассоциативные области расположены в коре рядом с соответствующими сенсорными зонами. Например, зрительная ассоциативная зона расположена в затылочной зоне непосредственно впереди сенсорной зрительной зоны и осуществляет полную обработку зрительной информации.
В коре больших полушарий выделяют области с менее определенными функциями. Так, значительная часть лобных долей, особенно с правой стороны, может быть удалена без заметных нарушений. Однако, если произвести двухстороннее удаление лобных областей возникают тяжелые психические нарушения.
вкусовой анализатор
Вкусовой анализатор отвечает за восприятие и анализ вкусовых ощущений.
Периферический отдел: рецепторы — вкусовые луковицы в слизистой оболочке языка, мягкого неба, миндалин и других органов ротовой полости.
Рис. 1. Вкусовой сосочек и вкусовая луковица
Вкусовые сосочки несут на боковой поверхности вкусовые луковицы (рис. 1, 2), в состав которых входят 30 — 80 чувствительных клеток. Вкусовые клетки усеяны на своем конце микроворсинками — вкусовыми волосками. Они выходят на поверхность языка через вкусовые поры. Вкусовые клетки непрерывно делятся и непрерывно гибнут. Особенно быстро происходит замещение клеток, расположенных в передней части языка, где они лежат более поверхностно.
Рис. 2. Вкусовая луковица: 1 — нервные вкусовые волокна; 2 — вкусовая почка (чашечка); 3 — вкусовые клетки; 4 — поддерживающие (опорные) клетки; 5 — вкусовая пора
Рис. 3. Вкусовые зоны языка: сладкое — кончик языка; горькое — основание языка; кислое — боковая поверхность языка; соленое — кончик языка.
Вкусовые ощущения вызывают только растворенные в воде вещества.
Проводниковый отдел: волокна лицевого и языкоглоточного нерва (рис. 4).
Центральный отдел: внутренняя сторона височной доли коры больших полушарий.
обонятельный анализатор
Обонятельный анализатор отвечает за восприятие и анализ запаха.
Периферический отдел: рецепторы слизистой оболочки верхней части носовой полости. Обонятельные рецепторы в слизистой носа оканчиваются обонятельными ресничками. Газообразные вещества растворяются в слизи, окружающей реснички, затем в результате химической реакции возникает нервный импульс (рис. 5).
Проводниковый отдел: обонятельный нерв.
Центральный отдел: обонятельная луковица (структура переднего мозга, в которой осуществляется обработка информации) и обонятельный центр, расположенный на нижней поверхности височной и лобной долей коры больших полушарий (рис. 6).
В коре происходит определение запаха и формируется адекватная на него реакция организма.
Восприятие вкуса и запаха дополняют друг друга, давая целостное представление о виде и качестве пищи. Оба анализатора связаны с центром слюноотделения продолговатого мозга и участвуют в пищевых реакциях организма.
Осязательный и мышечный анализатор объединяют в соматосенсорную систему — систему кожно-мышечной чувствительности.
Строение соматосенсорного анализатора
Периферический отдел: проприорецепторы мышц и сухожилий; рецепторы кожи ( механорецепторы, терморецепторы и др.).
Проводниковый отдел: афферентные (чувствительны) нейроны; восходящие пути спинного мозга; продолговатый мозг, ядра промежуточного мозга.
Центральный отдел: сенсорная зона в теменной доле коры больших полушарий.
Рецепторы кожи
Кожа является самым крупным чувствительный органом в теле человека. На ее поверхности (около 2 м2) сосредоточено множество рецепторов.
Большинство ученых склоняются к наличию четырех основных видов кожной чувствительности: тактильной, тепловой, холодовой и болевой.
Рецепторы распределены неравномерно и на разной глубине. Больше всего рецепторов в коже пальцев рук, ладоней, подошв, губ и половых органов.
МЕХАНОРЕЦЕПТОРЫ КОЖИ
МЕХАНИЗМ РАБОТЫ МЕХАНОРЕЦЕПТОРОВ
Механический стимул — деформация мембраны рецептора — уменьшение электрического сопротивления мембраны — увеличение проницаемости мембраны для Na+ — деполяризация мембраны рецептора — распространение нервного импульса
АДАПТАЦИЯ КОЖНЫХ МЕХАНОРЕЦЕПТОРОВ
Ощущение прикосновения и давления на кожу довольно точно локализуется, т. е. относится человеком к определенному участку кожной поверхности. Эта локализация вырабатывается и закрепляется в онтогенезе при участии зрения и проприорецепции.
Способность человека раздельно воспринимать прикосновение к двум соседним точкам кожи, также сильно отличается в разных ее участках. На слизистой оболочке языка порог пространственного различия равен 0,5 мм, а на коже спины — более 60 мм.
Температурная рецепция
Температура тела человека колеблется в сравнительно узких пределах, поэтому информация о температуре окружающей среды, необходимая для деятельности механизмов терморегуляции, имеет особо важное значение.
Терморецепторы располагаются в коже, роговице глаза, в слизистых оболочках, а также в ЦНС (в гипоталамусе).
ВИДЫ ТЕРМОРЕЦЕПТОРОВ
Терморецепторы реагируют на изменение температуры повышением частоты генерируемых импульсов, устойчиво длящимся все время действия стимула. Изменение температуры на 0,2 °С вызывает длительные изменения их импульсации.
В некоторых условиях холодовые рецепторы могут быть возбуждены теплом, а тепловые холодом. Этим объясняется возникновение острого ощущения холода при быстром погружении в горячую ванну или обжигающее действие ледяной воды.
Начальные температурные ощущения зависят от разницы температуры кожи и температуры действующего раздражителя, его площади и места приложения. Так, если руку держали в воде температуры 27 °С, то в первый момент при переносе руки в воду, нагретую до 25 °С, она кажется холодной, однако уже через несколько секунд становится возможной истинная оценка абсолютной температуры воды.
Болевая рецепция
Болевая чувствительность имеет первостепенное значение для выживания организма, являясь сигналом об опасности при сильных воздействиях различных факторов.
Импульсы болевых рецепторов часто свидетельствуют о патологических процессах в организме.
На данный момент не найдены специфическе болевые рецепторы.
Сформулированы две гипотезы об организации болевого восприятия:
Механизм возбуждения рецепторов при болевых воздействиях пока не выяснен.
Наиболее общей причиной возникновения боли можно считать изменение концентрации Н+ при токсическом воздействии на дыхательные ферменты или при повреждении клеточных мембран.
Одной из возможных причин длительной жгучей боли может быть выделение при повреждении клеток гистамина, протеолитических ферментов и др. веществ, вызывающих цепочку биохимических реакций, приводящих к возбуждению нервных окончаний.
АДАПТАЦИЯ БОЛЕВЫХ РЕЦЕПТОРОВ
Адаптация болевых рецепторов зависит от многочисленных факторов и ее механизмы мало изучены.
Например, заноза, будучи неподвижной, не вызывает особых болевых ощущений. Пожилые люди в некоторых случаях «привыкают не замечать» головной боли или боли в суставах.
Однако в очень многих случаях болевые рецепторы не обнаруживают существенной адаптации, что делает страдания больного особенно длительными и мучительными и требует применения анальгетиков.
Болевые раздражения вызывают ряд рефлекторных соматических и вегетативных реакций. При умеренной выраженности эти реакции имеют приспособительное значение, но могут привести к тяжелым патологическим эффектам, например к шоку. Среди этих реакций отмечают повышение мышечного тонуса, частоты сердечных сокращений и дыхания, повышение ил понижение давления, сужение зрачков, увеличение содержания глюкозы в крови и ряд других эффектов.
ЛОКАЛИЗАЦИЯ БОЛЕВОЙ ЧУВСТВИТЕЛЬНОСТИ
При болевых воздействиях на кожу человек локализует их достаточно точно, но при заболеваниях внутренних органов могут вознкать отраженные боли. Например, при почечной колике, больные жалуются на «вступающие» резкие боли в ногах и прямой кишке. Могут быть и обратные эффекты.
проприорецепция
НЕРВНО-МЫШЕЧНОЕ ВЕРЕТЕНО
Нервно-мышечное веретено — сложный рецептор, который включает видоизмененные мышечные клетки, афферентные и эфферентные нервные отростки и контролирует как скорость, так и степень сокращения и растяжение скелетных мышц.
Нервно-мышечное веретено расположено в толще мышцы. Каждое веретено покрыто капсулой. Внутри капсулы находится пучок специальных мышечных волокон. Веретена расположены параллельно волокнам скелетных мышц, поэтому при растяжении мышцы нагрузка на веретена увеличивается, а при сокращении — уменьшается.
Рис. Нервно-мышечное веретено
СУХОЖИЛЬНЫЕ РЕЦЕПТОРЫ ГОЛЬДЖИ
Находятся в зоне соединения мышечных волокон с сухожилием.
Сухожильные рецепторы слабо реагируют на растяжение мышцы, но возбуждаются при ее сокращении. Интенсивность их импульсации примерно пропорциональна силе сокращения мышцы.
Рис. Сухожильный рецептор Гольджи
СУСТАВНЫЕ РЕЦЕПТОРЫ
Они изучены меньше, чем мышечные. Известно, что суставные рецепторы реагируют на положение сустава и на изменения суставного угла, участвуя таким образом в системе обратных связей от двигательного аппарата и в управлении им.
Зрительный анализатор включает:
Функция зрительного анализатора: восприятие, проведение и расшифровка зрительных сигналов.
Строения глаза
Глаз состоит из глазного яблока и вспомогательного аппарата.
Вспомогательный аппарат глаза
ГЛАЗНОЕ ЯБЛОКО
Глазное яблоко имеет примерно сферическую форму с диаметром около 2,5 см.
Оно расположено на жировой подушке в переднем отделе глазницы.
Глаз имеет три оболочки:
Коньюктива — слизистая оболочка, соединяющая глазное яблоко с кожным покровами.
Белочная оболочка (склера) — внешняя прочная оболочка глаза; внутренняя часть склеры непроницаема для сетовых лучей. Функция: защита глаза от внешних воздействий и светоизоляция;
Роговица — передняя прозрачная часть склеры; является первой линзой на пути световых лучей. Функция: механическая защита глаза и пропускание световых лучей.
Хрусталик — двояковыпуклая линза, расположенная за роговицей. Функция хрусталика: фокусировка световых лучей. Хрусталик не имеет сосудов и нервов. В нем не развиваются воспалительные процессы. В нем много белков, которые иногда могут терять свою прозрачность, что приводит к заболеванию, называемому катаракта.
Сосудистая оболочка — средняя оболочка глаза, богатая сосудами и пигментом.
Радужная оболочка — передняя пигментированная часть сосудистой оболочки; содержит пигменты меланин и липофусцин, определяющие цвет глаз.
Зрачок — круглое отверстие в радужной оболочке. Функция: регуляция светового потока, поступающего в глаз. Диаметр зрачка непроизвольно меняется с помощью гладких мышц радужной оболочки при изменении освещенности.
Передняя и задняя камеры — пространство спереди и сзади радужной оболочки, заполненное прозрачной жидкостью ( водянистой влагой).
Ресничное (цилиарное) тело — часть средней (сосудистой) оболочки глаза; функция: фиксация хрусталика, обеспечение процесса аккомодации (изменение кривизны) хрусталика; продуцирование водянистой влаги камер глаза, терморегуляция.
Сетчатка (ретина) — рецепторный аппарат глаза.
СТРОЕНИЕ СЕТЧАТКИ
Сетчатка образована разветвлениями окончаний зрительного нерва, который, подойдя к глазному яблоку, проходит через белочную оболочку, причем оболочка нерва сливается с белочной оболочкой глаза. Внутри глаза волокна нерва распределяются в виде тонкой сетчатой оболочки, которая выстилает задние 2/3 внутренней поверхности глазного яблока.
Сетчатка состоит из опорных клеток, образующих сетчатую структуру, откуда и произошло ее название. Световые лучи воспринимает только ее задняя часть. Сетчатая оболочка по своему развитию и по функции представляет собой часть нервной системы. Все же остальные части глазного яблока играют вспомогательную роль для восприятия сетчаткой зрительных раздражений.
Сетчатая оболочка — это часть мозга, выдвинутая наружу, ближе к поверхности тела, и сохраняющая с ним связь с помощью пары зрительных нервов.
Нервные клетки образуют в сетчатке цепи, состоящие из трех нейронов (см. рис. ниже):
Светочувствительные элементы сетчатки:
Палочки содержат вещество родопсин, благодаря которому палочки возбуждаются очень быстро слабым сумеречным светом, но не могут воспринимать цвет. В образовании родопсина участвует витамин А. При его недостатке развивается «куриная слепота».
Колбочки медленно возбуждаются и только ярким светом. Они способны воспринимать цвет. В сетчатке находится три вида колбочек. Первые воспринимают красный цвет, вторые — зеленый, третьи — синий. В зависимости от степени возбуждения колбочек и сочетания раздражений, глаз воспринимает различные цвета и оттенки.
Палочки и колбочки в сетчатой оболочке глаза перемешаны между собой, но в некоторых местах они расположены очень густо, в других же редко или отсутствуют совсем. На каждое нервное волокно приходится примерно 8 колбочек и около 130 палочек.
В области желтого пятна на сетчатке нет палочек — только колбочки, здесь глаз обладает наибольшей остротой зрения и наилучшим восприятием цвета. По-этому глазное яблоко находится в непрерывном движении, так чтобы рассматриваемая часть объекта приходилась на желтое пятно. По мере удаления от желтого пятна плотность палочек увеличивается, но потом уменьшается.
При низкой освещенности в процессе видения участвуют только палочки (сумеречное видение), и глаз не различает цвета, зрение оказывается ахроматическим (бесцветным).
От палочек и колбочек отходят нервные волокна, которые, соединяясь, образуют зрительный нерв. Место выхода из сетчатки зрительного нерва называется диском зрительного нерва. В области диска зрительного нерва светочувствительных элементов нет. Поэтому это место не дает зрительного ощущения и называется слепым пятном.
МЫШЦЫ ГЛАЗА
Проводниковый отдел
Зрительный нерв является проводником световых раздражений от глаза к зрительному центру и содержит чувствительные волокна.
Отойдя от заднего полюса глазного яблока, зрительный нерв выходит из глазницы и, войдя в полость черепа, через зрительный канал, вместе с таким же нервом другой стороны, образует перекрест ( хиазму) под гиполаламусом. После перекреста зрительные нервы продолжаются в зрительных трактах. Зрительный нерв связан с ядрами промежуточного мозга, а через них — с корой больших полушарий.
Каждый зрительный нерв содержит совокупность всех отростков нервных клеток сетчатки одного глаза. В области хиазмы происходит неполный перекрест волокон, и в составе каждого зрительного тракта оказывается около 50% волокон противоположной стороны и столько же волокон своей стороны.
Центральный отдел
Центральный отдел зрительного анализатора расположен в затылочной доле коры больших полушарий.
Импульсы от световых раздражений по зрительному нерву проходят к мозговой коре затылочной доли, где расположен зрительный центр.
В волокна каждого нерва связаны с двумя полушариями мозга, причем изображение, получаемое на левой половине сетчатки каждого глаза, анализируется в зрительной коре левого полушария, а на правой половине сетчатки — в коре правого полушария.
нарушение зрения
С возрастом и под воздействием других причин способность управлять кривизной поверхности хрусталика ослабевает.
Близорукость (миопия) — фокусировка изображение перед сетчаткой; развивается из-за увеличения кривизны хрусталика, которая может возникнуть при неправильном обмене веществ или нарушении гигиены зрения. И справляют очками с вогнутыми линзами.
Дальнозоркость — фокусировка изображения позади сетчатки; возникает вследствие уменьшения выпуклости хрусталика. И справляют очками с выпуклыми линзами.
Существует два пути проведения звуков:
Функция слухового анализатора: восприятие и анализ звуковых раздражений.
Периферический отдел: слуховые рецепторы в полости внутреннего уха.
Проводниковый отдел: слуховой нерв.
Центральный отдел: слуховая зона в височной доле коры больших полушарий.
Рис. Височная кость Рис. Расположение органа слуха в полости височной кости
строение уха
Орган слуха у человека расположен в полости черепа в толще височной кости.
Он делится на три отдела: наружное, среднее и внутреннее ухо. Эти отделы тесно связаны анатомически и функционально.
Наружное ухо состоит из наружного слухового прохода и ушной раковины.
Среднее ухо — барабанная полость; она отделена барабанной перепонкой от наружного уха.
Внутреннее ухо, или лабиринт, — отдел уха, где происходит раздражение рецепторов слухового (улиткового) нерва; он помещается внутри пирамиды височной кости. Внутреннее ухо образует орган слуха и равновесия.
Наружное и среднее ухо имеют второстепенное значение: они проводят звуковые колебания к внутреннему уху, и таким образом является звукопроводящим аппаратом.
НАРУЖНОЕ УХО
Наружное ухо включает ушную раковину и наружный слуховой проход, которые предназначены для улавливания и проведения звуковых колебаний.
Ушная раковина образована тремя тканями:
Ушная раковина прикрепляется к височной кости связками и имеет рудиментарные мышцы, которые хорошо выражены у животных.
Ушная раковина устроена так, чтобы максимально концентрировать звуковые колебания и направлять их в наружное слуховое отверстие.
Форма, величина, постановка ушной раковины и размеры ушной дольки индивидуальны у каждого человека.
Дарвинов бугорок — рудиментарный треугольный выступ, который наблюдается у 10% людей в верхне-задней области завитка раковины; он соответствует верхушке уха животных.
Рис. Дарвинов бугорок
Наружный слуховой проход представляет собой S-образную трубку длинной примерно 3 см и диаметром 0,7 см, которая снаружи открывается слуховым отверстием и отделяется от полости среднего уха барабанной перепонкой.
Хрящевая часть, являющаяся продолжением хряща ушной раковины, составляет 1/3 его длины, остальные 2/3 образованы костным каналом височной кости. В месте перехода хрящевого отдела в костный канал сужается и изгибается. В этом месте находится связка из эластичной соединительной ткани. Такое строение делает возможным растяжение хрящевого отдела прохода в длину и в ширину.
В хрящевой части слухового прохода кожа покрыта короткими волосками, предохраняющими от попадания в ухо мелких частиц. В волосяные фолликулы открываются сальные железы. Характерным для кожи этого отдела является наличие в более глубоких слоях серных желез.
Серные железы являются производными потовых желез.Серные железы впадают либо в волосяные фолликулы, либо свободно в кожу. Серные железы выделяют светло-желтый секрет, который вместе с отделяемым сальных желез и с отторгшимся эпителием образует ушную серу.
Ушная сера — светло-желтый секрет серных желез наружного слухового прохода.
Сера состоит из белков, жиров, жирных кислот и минеральных солей. Часть белков являются иммуноглобулинами, определяющими защитную функцию. Кроме того, в состав серы входят отмершие клетки, кожное сало, пыль и другие включения.
Функция ушной серы:
Ушная сера вместе с загрязнениями естественным образом выводится из слухового прохода наружу при жевательных движениях и речи. Кроме этого кожа слухового прохода постоянно обновляется и растет наружу из слухового прохода, вынося с собой серу.
Внутренний костный отдел наружного слухового прохода является каналом височной кости, заканчивающимся барабанной перепонкой. В середине костного отдела расположено сужение слухового прохода — перешеек, за которым расположен более широкий участок.
Кожа костного отдела тонкая, не содержит волосяных луковиц и желез и переходит на барабанную перепонку, образуя ее наружный слой.
Барабанная перепонка представляет собой тонкую овальную (11 x 9 мм) полупрозрачную пластинку, непроницаемую для воды и воздуха. Перепонка состоит из эластических и коллагеновых волокон, которые в верхней ее части замещены волокнами рыхлой соединительной ткани. Со стороны слухового прохода перепонка покрыта плоским эпителием, а со стороны барабанной полости — эпителием слизистой оболочки.
В центральной части барабанная перепонка вогнута, к ней со стороны барабанной полости прикрепляется рукоятка молоточка — первой слуховой косточки среднего уха.
Барабанная перепонка закладывается и развивается вместе с органами наружного уха.
СРЕДНЕЕ УХО
Среднее ухо включает выстланную слизистой оболочкой и заполненную воздухом барабанную полость (объем около 1 с м 3 см3 ), три слуховые косточки и слуховую (евстахиеву) трубу.
Барабанная полость находится в толщине височной кости, между барабанной перепонкой и костным лабиринтом. В барабанной полости помещаются слуховые косточки, мышцы, связки, сосуды и нервы. Стенки полости и все органы, находящиеся в ней, покрыты слизистой оболочкой.
В перегородке, отделяющей барабанную полость от внутреннего уха, находится два окна:
В барабанной полости находятся три слуховые косточки: молоточек, наковальня и стремя (= стремечко). Слуховые косточки имеют небольшие размеры. Соединяясь между собой, они образуют цепь, которая тянется от барабанной перепонки до овального отверстия. Все косточки соединяются между собой при помощи суставов и покрыты слизистой оболочкой.
Молоточек рукояткой сращен с барабанной перепонкой, а головкой при помощи сустава соединяется с наковальней, которая в свою очередь подвижно соединена со стременем. Основание стремени закрывает овальное окно преддверия.
Мышцы барабанной полости (натягивающая барабанную перепонку и стременная) удерживают слуховые косточки в состоянии напряжения и защищают внутреннее ухо от чрезмерных звуковых раздражений.
Слуховая (евстахиева) труба соединяет барабанную полость среднего уха с носоглоткой. Это мышечная трубка, которая раскрывается при глотании и зевании.
Слизистая оболочка, выстилающая слуховую трубу, является продолжением слизистой оболочки носоглотки, состоит из мерцательного эпителия с движением ресничек из барабанной полости в носоглотку.
Функции евстахиевой трубы:
ВНУТРЕННЕЕ УХО
Внутреннее ухо состоит из костного и вставленного в него перепончатого лабиринта.
Костный лабиринт состоит из трех отделов: преддверия, улитки и трех полукружных каналов.
Преддверие — полость небольших размеров и неправильной формы, на наружной стенке которого расположены два окна (круглое и овальное), ведущие в барабанную полость. Передняя часть преддверия сообщается с улиткой через лестницу преддверия. Задняя часть содержит два вдавления для мешочков вестибулярного аппарата.
Рис. Строение улитки: 1 — базальная мембрана; 2 — кортиев орган; 3 — рейснерова мембрана; 4 — лестница преддверия; 5 — спиральный ганглий; 6 — барабанная лестница; 7 — преддверно-завитковый нерв; 8 — веретено.
Полукружные каналы — костные образования, расположенные в трех взаимно перпендикулярных плоскостях. Каждый канал имеет расширенную ножку (ампулу).
Рис. Улитка и полукружные каналы
Перепончатый лабиринт заполнен эндолимфой и состоит из трех отделов:
кортиев орган
На пластинке улиткового протока, которая является продолжением костной спиральной пластинки, находится кортиев (спиральный) орган.
Спиральный орган отвечает за восприятие звуковых раздражений. Он выполняет роль микрофона, трансформирующего механические колебания в электрические.
Кортиев орган состоит из опорных и чувствительных волосковых клеток.
Волосковые клетки имеют волоски, которые возвышаются над поверхностью и достигают покровной мембраны (мембраны тектория). Последняя отходит от края спиральной костной пластинки и свисает над кортиевым органом.
При звуковом раздражении внутреннего уха возникают колебание основной мембраны, на которой расположены волосковые клетки. Такие колебания вызывают розтяжение и сжатие волосков об покровную мембрану, и пораждают нервный импульс в чувствительных нейронах спирального ганглия.
Рис. Волосковые клетки
ПРОВОДНИКОВЫЙ ОТДЕЛ
Нервный импульс от волосковых клеток распространяется до спирального ганглия.
Затем по слуховому ( преддверно-улитковому) нерву импульс поступает в продолговатый мозг.
В варолиевом мосту часть нервных волокон через перекрест (хиазму) переходит на противоположную сторону и идут в четверохолмие среднего мозга.
Нервные импульсы через ядра промежуточного мозга передаются в слуховую зону височной доли коры больших полушарий.
Первичные слуховые центры служат для восприятия слуховых ощущений, вторичные — для их обработки (понимание речи и звуков, восприятие музыки).
Рис. Слуховой анализатор
Лицевой нерв проходит вместе со слуховым нервом во внутреннее ухо и под слизистой оболочкой среднего уха следует к основанию черепа. Он может быть легко поврежден при воспалении среднего уха или травмах черепа, поэтому нарушения органов слуха и равновесия нередко сопровождаются параличом мимических мышц.
Физиология слуха
Слуховая функция уха обеспечивается двумя механизмами:
ЗВУКОПРОВЕДЕНИЕ
Наружное и среднее ухо и перилимфа внутреннего уха принадлежат к звукопроводящему аппарату, а внутреннее ухо, то есть спиральный орган и ведущие нервные пути – к звукоспринимающему аппарату. Ушная раковина благодаря своей форме концентрирует звуковую энергию и направляет ее в направлении к наружному слуховому проходу, который проводит звуковые колебания к барабанной перепонке.
Достигнув барабанной перепонки, звуковые волны вызывают ее колебание. Эти колебания барабанной перепонки передаются на молоточек, через сустав — на наковальню, через сустав — на стремя, которое закрывает окно преддверия (овальное окно). В зависимости от фазы звуковых колебаний, основа стремени то втискивается в лабиринт, то вытягивается из него. Эти движения стремени вызывают колебание перилимфы (см. рис.), которые передаются на основную мембрану улитки и на расположенный на ней кортиев орган.
В результате колебаний основной мембраны волосковые клетки спирального органа задевают нависающую над ними покровную (тенториальную) мембрану. При этом возникает растяжение или сжимание волосков, что и является основным механизмом превращения энергии механических колебаний в физиологичный процесс нервного возбуждения.
Нервный импульс передается окончаниями слухового нерва к ядрам продолгастого мозга. Отсюда импульсы проходят соответствующими ведущими путями к слуховым центрам в височных частях коры головного мозга. Здесь нервное возбуждение превращается в ощущение звука.
Рис. Путь звукового сигнала: ушная раковина — наружный слуховой проход — барабанная перепонка — молоточек — наковальня — стемечко — овальное окно — преддверие внутреннего уха — лестница преддверия — базальная мембрана — волосковые клетки кортиева органа. Путь нервного импульса: волосковые клетки кортиева органа — спиральный ганглий — слуховой нерв — продолговатый мозг — ядра промежуточного мозга — височная доля коры больших полушарий.
ЗВУКОВОСПРИЯТИЕ
Человек воспринимает звуки внешней среды с частотой колебаний от 16 до 20000 Гц (1 Гц = 1 колебание за 1 с).
Высокочастотные звуки воспринимаются нижней частью завитка, а низкочастотные звуки — его верхушкой.
Рис. Схематическое изображение основной мембраны улитки (указаны частоты, различимые разными участками мембраны)