Что такое коэффициент технической готовности
Приложение N 2. Порядок расчета нормативного коэффициента технической готовности транспортных средств
Приложение N 2
к Порядку организации
транспортной деятельности в
органах внутренних дел
Российской Федерации
Порядок
расчета нормативного коэффициента технической готовности 1 транспортных средств
1. Нормативный КТГ рассчитывается единый для всего имеющегося в наличии парка штатных транспортных средств.
2. Для расчета нормативного КТГ все имеющиеся в наличии штатные транспортные средства группируются по следующим типам:
пассажирские автобусы, оперативно-служебные, специальные, специализированные автомобили на грузовом шасси и базе автобусов 2 ;
Мотоциклы с колясками и без колясок (квадроциклы, снегоходы) по типам не группируются.
При этом учитываются:
величины фактических пробегов транспортных средств в процентах от норм пробега до первого капитального ремонта ; для этого транспортные средства каждого типа, указанного в п. 2, и мотоциклы (квадроциклы, снегоходы) группируются по фактическому пробегу с начала использования следующим образом:
Исходные данные о наличии штатных транспортных средств и о фактических их пробегах с начала использования принимаются по состоянию на 1 января планируемого года.
4. По таблицам определяются значения нормативных КТГ транспортных средств без учета их простоя в капитальном ремонте и в ожидании списания для транспортных средств каждой штатной группы использования, каждого типа.
— общее количество легковых автомобилей;
— количество автобусов в каждой из четырех групп;
— общее количество автобусов;
— количество грузовых автомобилей в каждой из четырех групп;
— общее количество грузовых автомобилей;
— количество мотоциклов (квадроциклов, снегоходов) в каждой из четырех групп;
— общее количество мотоциклов (квадроциклов, снегоходов).
6. Рассчитывается процент транспортных средств данного типа, которые будут направлены на капитальный ремонт в планируемом году, от общего количества штатных транспортных средств соответствующего типа, имеющихся в наличии на 1 января.
9. Рассчитывается процент транспортных средств, которые предполагается списать в планируемом году, от общего количества штатных транспортных средств, имеющихся в наличии на 1 января планируемого года.
12. Рассчитывается средневзвешенное значение нормативного КТГ в целом для парка штатных транспортных средств автохозяйства :
— общее количество штатных транспортных средств автохозяйства, имеющихся в наличии на 1 января планируемого года.
13. Рассчитывается средневзвешенное значение нормативного КТГ в целом для парка штатных мотоциклов (квадроциклов, снегоходов) :
14. Рассчитывается единый средневзвешенный нормативный КТГ парка штатных транспортных средств :
Исходные данные для расчета нормативных коэффициентов технической готовности транспортных средств и полученные результаты расчетов сводятся в сводную таблицу.
Сводная таблица по расчету нормативных коэффициентов технической готовности транспортных средств
Что такое коэффициент технической готовности
К сожалению, бывает плохая оценка КТГ побуждает просто лучше работу работать. От чего зависят выбор просто лучше работать или устранять конкретные причины простоев? Правильно, от прозрачности расчета КТГ, какие данные и по какой формуле рассчитаны эти 88,9%. Нет одного универсального расчета который подходит для эксплуатации, ремонтов, обслуживания, надежности оборудования.
КТГ, ты о чем?
Коэффициент технической готовности показывает процент времени технически готового к эксплуатации оборудования в определенном периоде времени. В определении этих двух переменных и кроется суть результата расчета и возможности его использования. Часто вижу реакцию, у нас в фирме принято одно КТГ для всех и считается просто: берем время, когда оборудование неисправно (не может выполнять свои функции) и календарное время:
КТГ = (календарное время – время оборудование не может работать) / календарное время
Достаточно сомнительный подход в настоящее время. Раньше с отсутствием компьютерных систем, незначительной конкуренцией, без стремления к эффективному производству такой расчет можно было использовать. Как говориться лучше так чем не как.
Получили «низкий КТГ» плохую оценку работы сервисной службы, поругали начальника, воодушевили на подвиги и отправили его решать его проблемы. Талантливые находили правильные проблемы и решая их действительно КТГ росло. Менее опытные хватались за всё подряд, получалось неэффективно и тогда просто рисовали показатели на бумаге. Сейчас вашу фирму устроит такой подход?
Сейчас большинство компаний нацеленные на общую их эффективность и удовлетворение заказчиков, а не на эффективность оборудования. Важным становиться готовность оборудования не в календарное время, а время, запланированное к производству продукта оборудованием. Когда говорят – «наше оборудование никогда не останавливается», часто лукавят. В технологических цепочках при плановой остановке одного элемента будет простаивать и другие, в карьере при взрывных работах мобильная техника выезжает из карьере и простаивает, конвейеры могут останавливаться из-за снижения спроса, и т.д. Посмотрите на рисунок. При расчёте от календарного времени КТГ в обоих случаях одинаково, а если брать время, запланированное к производству то КТГ будет отличаться.
Какое КТГ важно для производства?
Эксплуатация
Производство спускает в эксплуатацию график времени возможного для выпуска продукции. КИО «Коэффициент использования оборудования»(доля времени, когда оборудование выпускает продукцию в определенном периоде) рассчитанный на основе календарного времени покажет потенциал доступный к максимальной расчетной загрузки, но не оценит работу службы эксплуатации. Если за базу возьмем график спущенный производством, то увидим на сколько эксплуатация обеспечила требуемую загрузку.
Эксплуатация планирует доступные ей ресурсы. Вот тут и возникает потребность понять время доступности оборудования «КТГ». Эксплуатации конечно необходим КТГ основанный на времени, указанном в графике производства. Если техническая служба предоставит КТГ основанный на календарном времени, у эксплуатации будут проблемы.
КТГ необходимое для эксплуатации назовем «физическое КТГ». Рассчитаем, как отношение времени в графике производства за вычетом всех простоев, связанных с обслуживанием (плановые, аварийные ремонты, организационные простои в сервисе в ожидании чего-либо) к общему времени в графике производства.
Физическое КТГ для сервиса является одним из выходных продуктов. Как конфета для кондитерской фабрики.
Обратите внимание, обслуживание оборудования вне времени производственного графика не влияет на физический КТГ оборудования.
Если физическое КТГ выросло на Х% значит ли это что сервис молодец? Если конфета вкусная хорошая ли кондитерская фабрика? Не всегда. Представьте, у эксплуатации возникли проблемы вследствие чего КИО упало. Наработка техники сократилась. Естественно объем необходимых профилактических и восстановительных работ тоже. Время графика осталось прежним. Для внутренней оценки сервиса уже необходима другая база расчета. Правильно, теперь надо считать от фактического времени работы оборудования. Простои учитываем все те же.
Когда эксплуатация оборудования достаточно стабильная для оценки тренда сервиса можно использовать физический КТГ. Балансируя между плановыми и аварийными ремонтами подбирайте оптимальный КТГ.
Производители оборудования говорили о КТГ в 95%, дистрибьюторы давали оценку в 90%, а получили 80%. Ну что ждать от продавцов и производителей, им главное продать! Возможно и так, но всё меньше остается компаний с таким подходом. Почему такие разные цифры?
Задача производителя сделать надёжную технику с доступным обслуживанием. Надежность оборудования измеряет в аварийных отказах, не вызванных плохим обслуживанием или неправильной эксплуатацией. Профилактика оборудования есть в инструкции производителя и исходя из возможностей вы планируете время на его проведение. Изготовитель честно собрал статистику по уже работающему оборудованию сообщает КТГ полученное на основании наработки оборудования и времени восстановления (время вращения гаек на оборудовании) при аварийных отказах. Такое КТГ принято называть механическим (или врождённым) КТГ.
Почему же дистрибьюторы дали меньшую оценку? Многие работы требует запасных частей или специального инструмента. У дистрибьютора есть предполагаемые сроки поставки возможно необходимых запасных частей. Конечно в своих прогнозах он будет учитывать время их ожидания и добавит его к времени работ по восстановлению предоставленного производителем.
Теперь сравните эти подходы с вашим расчетом КТГ. Если сравнивали с физическим КТГ то расхождение теперь понятно. Но если сравнивали с КТГ учитывающее только время ожидания и время восстановления аварийных ремонтов (назовём «достижимое КТГ») могли получить другую цифру по причинам:
Причин может быть много.
Как понять их влияние на КТГ? Как рассчитать разные КТГ?
Посчитаем
Давайте строить КТГ из кирпичиков. Из хороших кирпичей будет надёжная стена.
Суть расчёта разобрали выше, переходим к практике.
1. Время делим между эксплуатацией и простоем зависящем от сервиса.
2. Находим средние значения в оцениваемом периоде.
КТГ = эксплуатация/(эксплуатация + простой)= 345/(345+155) =0,69
Дальше будем давать в каждом случае определение простою и эксплуатацией, рассчитывать их как выше и получать нужный нам КТГ.
Для расчетов потребуется время каждой остановки, запуска оборудования с указанием причины.
Эксплуатация
Для целей эксплуатации и общей оценки тренда сервиса используем «физический КТГ».
Не понятно, как действовать для изменения КТГ.
Применим общий подход расчёта КТГ.
MTTM, М, МTW – рассчитаем, как показал выше.
Потребуются дополнительные данные о времени начала и окончания обслуживания (запланированного и нет). Не надо путать с началом и окончанием простоя. MTW рассчитывается из времени запуска в работу оборудования, начала остановки и проведения обслуживания.
*-Учитываем только обслуживания которые были во время работы оборудования внутри графика.
Отлично, мы можем влиять на три параметра. Есть направление действий. В других статьях мы разберем показатели подробно.
Сервис
О качестве работы сервиса расскажет «достижимое КТГ».
Потребуется время начала и окончания незапланированного ремонта(непосредственного осуществления ремонтного воздействие)
Очевидно влияние каждого элемента на КТГ.
Полезно будет MTW разделить на ожидание запасных частей (подбор, заказ, логистика, приход и выдача) и свободных ресурсов (площадей, слесарей, инструмента, и т.д.). Делить более подробно, позволяют современные сервисные программы ведя учёт просто и экономя время.
Оборудование и квалификация
О качестве оборудования и квалификации выполнения работы расскажет «механическое КТГ».
Если применяли RCA (Root Cause Analysis анализ основной причины) при каждой поломке, то выбирая отказы, связанные с конструкцией и качеством сборки сможете найти врождённое КТГ техники. То на которое обычно ссылается изготовитель. Даже в не гарантийный период, при низком показателе, производители часто дают разные вкусные плюшки. Конечно если Вы сформулируете претензию ссылаясь на факты и соответствующий расчёт.
Для каждого
Не измеряйте среднюю температуру по больнице, используя КТГ основанное на календарном времени.
Дайте каждому оборудованию, системе, узлу, отделу по подходящему КТГ и постоянные улучшения будут проще и эффективней.
Как работать с показателями, почему их нельзя назначить и почему MTBF побеждает КТГ читайте в следующих выпусках. До новых встреч.
Основные эксплуатационные показатели работы автомобилей
Работа автомобилей характеризуется следующими основными технико-эксплуатационными показателями (измерителями): коэффициент технической готовности парка, коэффициент использования парка, коэффициент использования рабочего времени, скорость движения, коэффициенты использования пробега и грузоподъемности.
Коэффициент технической готовности парка (КТГ)
Характеризует степень готовности автомобилей для выполнения перевозок. Он может определять готовность парка за один день или другой отрезок времени.
Коэффициент технической готовности за один день определяют по формуле:
где: Аи — количество исправных автомобилей; Ас — списочное количество автомобилей.
Пример. Парк насчитывает 17 списочных автомобилей, а технически исправных 15. Определить КТГ.
Решение. КТГ = 15:17 = 0,88.
Калькулятор
Коэффициент технической готовности за какой-либо период (неделю, месяц) вычисляют по формуле:
где: АДи — количество автомобиле-дней исправных автомобилей; АДс — количество автомобиле-дней списочных автомобилей.
Пример. В парке числится 310 автомобилей. Требуется определить его КТГ за 5 дней, если известно, что в первый день технически исправных автомобилей было 240, во второй — 247, в третий — 248, в четвертый — 250 и в пятый — 255.
Решение.
Коэффициент использования (выпуска на линию) парка (КИП)
Доказывает степень использования подвижного состава. Он может быть одинаковым с коэффициентом технической готовности парка или ниже его.
Коэффициент использования парка определяют по формуле:
где: АДр — количество автомобиле-дней работы автомобилей; АДс — количество автомобиле-дней списочных автомобилей.
Так, если в парке имеется 300 автомобилей, а выпушено в данный день на линию 250, то КИП равен: 250:300 = 0,83.
Для определения КИП за отчетный период необходимо подсчитать количество автомобиле-дней работы на линии за этот период и разделить их на автомобиле-дни списочного состава.
Пример. Списочный состав парка 300 автомобилей. За 30 дней количество автомобиле-дней работы на линии составило 7290. Найти КИП.
Решение. КИП = 7290:(300 Х 30) = 7290:9000 = 0,81,
Чтобы этот коэффициент был равен коэффициенту технической готовности парка, нельзя допускать простоев исправных автомобилей.
Коэффициент использования рабочего времени (КИВ)
Характеризует степень использования автомобилей за время пребывания в наряде (на линии). Время в наряде (на линии) определяют в часах с момента выхода из парка до момента возвращения в парк.
Это время включает: время движения, время на погрузку и разгрузку и время простоев.
Коэффициент использования рабочего времени вычисляют по формуле:
где: Тд — количество часов в движении; Тн — общее количество часов пребывания в наряде (на линии). Так, если автомобиль находился в наряде (на линии) 7 ч, из которых 6 ч был в движении, КИВ = 6:7 — 0,85.
Чем лучше организованы погрузочно-разгрузочные работы и меньше непроизводительные простои, тем выше коэффициент использования рабочего времени.
«Автомобиль», под. ред. И.П.Плеханова
При работе автомобиля на линии различают техническую и эксплуатационную скорости. Техническая скорость — это средняя скорость за время движения автомобиля: где: S — пройденный путь, км; t — время движения автомобиля, включая и остановки у перекрестков, н. Пример. Автомобиль за смену совершил пробег 150 км, в движении находился б ч. Определить техническую скорость. Решение. Величина…
Что такое коэффициент технической готовности
НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
Надежность в технике
ПЛАНЫ ИСПЫТАНИЙ ДЛЯ КОНТРОЛЯ КОЭФФИЦИЕНТА ГОТОВНОСТИ
Dependability in technics. Compliance test plans for steady-state availability
Дата введения 2010-09-01
Сведения о стандарте
1 РАЗРАБОТАН Федеральным государственным предприятием «Всероссийский научно-исследовательский институт стандартизации и сертификации в машиностроении» (ФГУП «ВНИИНМАШ»)
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 119 «Надежность в технике»
3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 15 декабря 2009 г. N 1245-ст
1 Область применения
Настоящий стандарт распространяется на восстанавливаемые (ремонтируемые) изделия, распределения наработок между отказами которых аппроксимируют экспоненциальным распределением, и устанавливает планы контрольных испытаний для проверки соответствия коэффициента готовности заданным требованиям. Требования стандарта применимы при испытании одного изделия.
2 Нормативные ссылки
В настоящем стандарте использована нормативная ссылка на следующий стандарт:
ГОСТ 27.002-89 Надежность в технике. Основные понятия, термины и определения
3 Термины, определения и обозначения
3.1 В настоящем стандарте применены термины по ГОСТ 27.002, а также следующие термины с соответствующими определениями:
3.1.1 план испытаний: Совокупность правил, определяющих продолжительность испытаний и принятие решений в зависимости от суммарного учитываемого числа наблюдений (проб, опытов) и учитываемого числа отказов (неудач), достигнутых (накопленных) к данному моменту испытаний.
3.1.2 приемочный уровень: Пороговое значение коэффициента готовности для принятия решения о приемке изделий.
3.1.3 браковочный уровень: Пороговое значение коэффициента готовности для принятия решения о браковке изделий.
3.1.4 риск поставщика (изготовителя): Вероятность принятия решения о браковке изделий при условии, что истинное значение коэффициента готовности равно приемочному уровню.
3.1.5 риск потребителя: Вероятность принятия решения о приемке изделий при условии, что истинное значение коэффициента готовности равно браковочному уровню.
3.2 В настоящем стандарте применены следующие обозначения:
— номинальный (заданный) риск поставщика;
— номинальный (заданный) риск потребителя;
— приемочный уровень коэффициента простоя; ;
— браковочный уровень коэффициента простоя; ;
— разрешающий коэффициент; ;
— граница приемки в последовательных испытаниях;
— граница браковки в последовательных испытаниях;
— критерий принятия решения;
— квантиль уровня ( ) нормированного нормального распределения;
— среднее время пребывания изделия в неработоспособном состоянии;
— наработка на отказ;
— объем выборки; число отказов (восстановлений) изделия за время испытаний ограниченной продолжительности;
— число отказов в последовательных испытаниях;
— суммарное время пребывания изделия в работоспособном состоянии; ;
— суммарное время пребывания изделия в неработоспособном состоянии; ;
,
,
;
при целых ;
экспоненциальное распределение (частный случай гамма-распределения при 1):
,
,
.
4 Основные положения
Методы контроля, установленные в настоящем стандарте, в качестве контролируемого показателя используют также коэффициент простоя, дополняющий значения коэффициента готовности и коэффициента технического использования до единицы.
4.2 По результатам испытаний в отношении контролируемого показателя принимают одно из следующих решений:
— соответствие установленным требованиям (приемка);
— несоответствие установленным требованиям (браковка).
4.3 При испытаниях высоконадежного изделия отказ может не наступить, поэтому не могут быть получены количественные данные о готовности изделия. В подобных случаях заинтересованные стороны должны прийти к согласованному решению.
4.5 Планы испытаний, установленные в настоящем стандарте, предназначены для непрерывно работающих изделий, готовность которых определяют относительно суммарного времени их эксплуатации.
При использовании планов испытаний для изделий с прерывающимся режимом работы должны быть приняты соответствующие решения в отношении учета числа восстановлений изделия в перерывах между рабочими периодами.
Для сложных изделий могут быть установлены несколько режимов работы. В этом случае планы испытаний следует применять раздельно для каждого режима работы изделия. При получении противоречащих друг другу результатов контроля готовности для разных режимов работы должны быть установлены требования к принятию решений.
Что такое коэффициент технической готовности
—
ГОСТ Р 27.010-2019
(МЭК 61703:2016)
НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
Надежность в технике
МАТЕМАТИЧЕСКИЕ ВЫРАЖЕНИЯ ДЛЯ ПОКАЗАТЕЛЕЙ БЕЗОТКАЗНОСТИ, ГОТОВНОСТИ, РЕМОНТОПРИГОДНОСТИ
Dependability in technics. Mathematical expressions for reliability, availability, maintainability measures
Дата введения 2019-12-01
Предисловие
1 ПОДГОТОВЛЕН Закрытым акционерным обществом «Научно-исследовательский центр контроля и диагностики технических систем» (ЗАО «НИЦ КД») на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 4
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 119 «Надежность в технике»
4 Настоящий стандарт является модифицированным по отношению к международному стандарту МЭК 61703:2016* «Математические выражения для показателей безотказности, готовности, ремонтопригодности и обеспеченности технического обслуживания и ремонта» (IEC 61703:2016 «Mathematical expressions for reliability, availability, maintainability and maintenance support terms», MOD) путем внесения технических отклонений, объяснение которых приведено во введении к настоящему стандарту.
Международный стандарт разработан Техническим комитетом по стандартизации ТК 56 Международной электротехнической комиссии (МЭК).
Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ Р 1.5-2012 (пункт 3.5) Международной электротехнической комиссии (МЭК).
Сведения о соответствии ссылочных национальных стандартов международным стандартам, использованным в качестве ссылочных в примененном международном стандарте, приведены в дополнительном приложении ДА
Введение
В действующем стандарте на термины в области надежности (ГОСТ 27.002-2015) установлены термины, определяющие понятия надежности и ее основных свойств, таких как безотказность, готовность, ремонтопригодность и т.п. Каждое из свойств надежности характеризуется своим набором показателей, некоторые из которых могут быть представлены в виде математических выражений. В стандарте установлены также выражения для показателей так называемой функциональной надежности, характеризующих возможность выполнения объектом установленной задачи.
В приложении A приведена схема взаимосвязи некоторых основных понятий показателей, связанных с ними случайных величин, соответствующих вероятностных описаний и преобразований.
В приложении B приведено описание показателей, связанных со временем возникновения отказа.
В приложении C приведено сопоставление некоторых показателей для непрерывно функционирующих объектов.
В настоящем стандарте ссылки на международные стандарты заменены ссылками на национальные стандарты.
1 Область применения
В настоящем стандарте установлены математические выражения для показателей безотказности, готовности и ремонтопригодности, а также для показателей, характеризующих выполнение установленной задачи. Кроме того, введены некоторые новые термины. Они связаны с аспектами классификации элементов системы (см. ниже).
В соответствии с определением ГОСТ 27.001 надежность является свойством объекта сохранять во времени способность выполнять требуемые функции в заданных режимах и условиях применения, при этом объектом может быть отдельная часть, компонент, функциональная единица, подсистема или система.
Следующие классы объектов рассмотрены отдельно:
— с нулевым (или пренебрежимо малым) временем восстановления,
— с ненулевым временем восстановления.
Для объяснения понятий надежности, которые могут быть трудными для понимания, в стандарте приведено по возможности наиболее полное обоснование, а математические выражения приведены в наиболее простом виде.
В настоящем стандарте для анализа показателей надежности использованы следующие основные математические модели:
— модели с изменением состояния,
— распределение случайной величины (наработки до отказа) для невосстанавливаемых объектов,
— простой (обычный) альтернирующий процесс восстановления для восстанавливаемых объектов с ненулевым временем восстановления.
Применение каждого показателя надежности иллюстрировано на простых примерах.
Настоящий стандарт может быть применен к анализу надежности не только аппаратных средств, но и объектов, содержащих программное обеспечение.
2 Нормативные ссылки
В настоящем стандарте использованы нормативные ссылки на следующие стандарты:
ГОСТ 27.002 Надежность в технике. Термины и определения
ГОСТ 27.302 Надежность в технике. Анализ дерева неисправностей
ГОСТ Р 51901.14 Менеджмент риска. Структурная схема надежности и булевы методы
ГОСТ Р ИСО 3534-1 Статистические методы. Словарь и условные обозначения. Часть 1. Общие статистические термины и термины, используемые в теории вероятностей
ГОСТ Р МЭК 61165 Надежность в технике. Применение марковских методов
ГОСТ Р МЭК 61508-1 Функциональная безопасность систем электрических, электронных, программируемых электронных, связанных с безопасностью. Часть 1. Общие требования
ГОСТ Р МЭК 61508-2 Функциональная безопасность систем электрических, электронных, программируемых электронных, связанных с безопасностью. Часть 2. Требования к системам
ГОСТ Р МЭК 61508-3 Функциональная безопасность систем электрических, электронных, программируемых электронных, связанных с безопасностью. Часть 3. Требования к программному обеспечению
ГОСТ Р МЭК 61508-4 Функциональная безопасность систем электрических, электронных, программируемых электронных, связанных с безопасностью. Часть 4. Термины и определения
ГОСТ Р МЭК 61508-5 Функциональная безопасность систем электрических, электронных, программируемых электронных, связанных с безопасностью. Часть 5. Рекомендации по применению методов определения уровней полноты безопасности
ГОСТ Р МЭК 61508-6 Функциональная безопасность систем электрических, электронных, программируемых электронных, связанных с безопасностью. Часть 6. Руководство по применению ГОСТ Р МЭК 61508-2 и ГОСТ Р МЭК 61508-3
ГОСТ Р МЭК 61508-7 Функциональная безопасность систем электрических, электронных, программируемых электронных, связанных с безопасностью. Часть 7. Методы и средства
ГОСТ Р МЭК 61511-1 Безопасность функциональная. Системы безопасности приборные для промышленных процессов. Часть 1. Термины, определения и технические требования
ГОСТ Р МЭК 61511-2 Безопасность функциональная. Системы безопасности приборные для промышленных процессов. Часть 2. Руководство по применению МЭК 61511-1
ГОСТ Р МЭК 61511-3 Безопасность функциональная. Системы безопасности приборные для промышленных процессов. Часть 3. Руководство по определению требуемых уровней полноты безопасности
3 Термины и определения
В настоящем стандарте применены термины по ГОСТ 27.002, ГОСТ Р ИСО 3534-1 и [18], а также следующие термины с соответствующими определениями:
,
— знак математического ожидания.
1 Различие между параметром потока восстановлений и интенсивностью ремонта обусловлено следующим: в момент времени =0 для параметра потока восстановлений объект находится в работоспособном состоянии (как новый), а для интенсивности ремонта ремонт начинается в момент времени =0. С математической точки зрения параметр потока восстановлений аналогичен безусловному параметру потока отказов (см. 3.8).
2 Единицей измерений мгновенного параметра потока восстановлений является единица времени в степени минус 1.