Что такое компенсация холодного спая
Схемы включения и компенсации термопар
Как известно, термопара содержит два спая, поэтому для правильного и точного измерения температуры на одном (первом) из спаев, необходимо поддерживать другой (второй) спай при известной постоянной температуре, чтобы измеренная ЭДС оказывалась явной функцией температуры только первого спая — главного рабочего спая.
Так, с целью поддержания в термоизмерительном контуре условий, при которых паразитное влияние ЭДС второго («холодного спая») было бы исключено, необходимо как-то компенсировать в любой рабочий момент времени напряжение на нем. Как это сделать? Как привести схему к такому состоянию, чтобы измеряемое напряжение термопары менялось бы только в зависимости от изменений температуры первого спая, независимо от текущей температуры второго?
С целью достижения правильных условий, можно прибегнуть к незамысловатой хитрости: поместить второй спай (места присоединения проводов первого спая с измерительным прибором) в емкость с ледяной водой — в заполненную водой ванночку, в которой еще плавает лед. Таким образом получим на втором спае фактически постоянную температуру таяния льда.
После чего останется, отслеживая результирующее напряжение на термопаре, вычислять температуру первого (рабочего) спая, ибо второй спай будет находится в неизменном состоянии, напряжение на нем будет константой. Цель в итоге будет достигнута, влияние «холодного спая» окажется скомпенсировано. Но если так делать, то получится громоздко и не удобно.
Чаще термопары применяются все же в мобильных портативных устройствах, в переносных лабораторных приборах, поэтому нежен другой вариант, ванночка с ледяной водой разумеется нам не подходит.
И такой иной способ есть — метод компенсации напряжения от изменяющейся температуры «холодного спая»: присоединить последовательно к измерительному контуру источник дополнительного напряжения, ЭДС которого будет иметь противоположное направление и по величине будет всегда точно равна ЭДС «холодного спая».
Но чем же можно непрерывно измерять температуру «холодного спая», чтобы получать непрерывные значения напряжений для автоматической компенсации?
Для этого подойдет термистор или термометр сопротивления, соединенный с типовой электроникой, которая и будет автоматически формировать компенсирующее напряжение необходимой величины. И хотя «холодный спай» не обязательно может быть буквально холодным, его температура, как правило, не такая уж экстремальная, какая может быть у рабочего спая, поэтому обычно подходит даже термистор.
Доступны специальные электронные компенсирующие модули «температуры таяния льда» для термопар, задача которых в том и состоит, чтобы подавать точное противоположное напряжение в измерительную цепь.
Значение компенсирующего напряжения от такого модуля поддерживается на таком значении, чтобы точно компенсировать температуру точек присоединения проводников термопары к модулю.
Температура точек присоединения (на терминале) измеряется термистором или термометром сопротивления, и точно необходимое напряжение автоматически прикладывается последовательно в цепь.
Неискушенному читателю может показаться, что слишком много нагромождений ради просто точного использования термопары. Может быть целесообразнее, да и проще, сразу пользоваться термометром сопротивления или тем же термистором? Нет, не проще и не целесообразнее.
Термисторы и термометры сопротивления не так механически прочны как термопары, да и безопасный рабочий температурный диапазон у них не велик. Дело в том, что термопары обладают рядом преимуществ, два из которых основные: очень широкий температурный диапазон (от −250 °C до +2500 °C) и высокое быстродействие, которое недостижимо на сегодняшний день ни термисторами, ни термометрами сопротивления, ни датчиками иных типов аналогичной ценовой категории.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Компенсация холодного спая в практике применения термоэлектрических преобразователей
На сегодняшний день термопары получили наибольшее распространение среди датчиков измерения температуры. Использование термопар в большом диапазоне температур более эффективно по сравнению с такими решениями, как термопреобразователь сопротивления (ТПС), термистор, или интегральный датчик температуры (ИДТ). Термопары используются, например, в автомобилях или бытовой технике. Вдобавок, их надежность, стабильность и малое время отклика делают термопары наилучшим выбором для многих видов оборудования.
Однако и в применении термопар есть некоторые сложности, в первую очередь — значительная нелинейность характеристик. К тому же, ТПС и ИДТ обычно обладают лучшими характеристиками по чувствительности и точности, что важно для прецизионных решений. Выходной сигнал термопары имеет очень малый уровень и требует усиления или применения цифровых преобразователей высокой разрядности для обработки сигнала.
Но, несмотря на все перечисленные недостатки, низкая стоимость, легкость применения и широкий температурный диапазон до сих пор являются причинами популярности термоэлектрических преобразователей.
Основные сведения о термопарах
Термопары относятся к дифференциальным измерителям температуры. Конструктивно они представляют из себя два термоэлектрода из разных металлов, один из которых принимается за положительный, другой – за отрицательный. В таблице 1 представлены наиболее распостраненные типы термопар, используемые металлы или сплавы и температурный диапазон для каждого варианта. Каждый тип термопар обладает уникальными термоэлектрическими свойствами в определенном для них температурном диапазоне.
Таблица 1. Основные характеристики термопар
Тип | Положительный Металл/Сплав | Отрицательный Металл/Сплав | Температурный диапазон, °С |
---|---|---|---|
T | Медь | Константан | -200…350 |
J | Железо | Константан | 0…750 |
K | Хромоникелевый сплав | Алюмель | -200…1250 |
E | Хромоникелевый сплав | Константан | -200…900 |
При соединении двух металлов (пайкой или сваркой) получают два перехода (спая), как показано на рис. 1а, разность потенциалов образуется в цепи вследствие разности температур спаев. Это явление называется эффектом Зеебека, он состоит в преобразовании тепловой энергии в электрическую. Эффект Зеебека обратен эффекту Пельтье, заключающемуся в преобразовании электрической энергии в тепловую, что применяется в частности в термоэлектрических охладителях. На рис. 1 показано, что выходное напряжение Vвых — это разница между потенциалами холодного и горячего спаев. Т.к. Vгор и Vхол образуются за счет разности температур спаев, Vвых является функцией этой разности. Коэффициент, равный отношению разности потенциалов к разности температур, известен как коэффициент Зеебека.
Рис. 1а. Напряжение в цепи в результате эффекта Зеебека
Рис. 1б. Наиболее распространенная схема реализации термопары
На рисунке 1б показана наиболее часто употребляемая схема использования термопары. Здесь использован третий металл (т.н. металл-посредник), что дает дополнительный спай. В этом примере каждый термоэлектрод соединен с медным проводом. Пока между ними нет разности температур, металл-посредник не оказывает никакого влияния на выходное напряжение. Эта схема позволяет использовать термопару без отдельного опорного спая. Напряжение Vвых так и остается функцией от разности температур холодного и горячего спаев, определяемой коэффициентом Зеебека. Однако до тех пор, пока измеряется именно разница температур, для определения актуальной температуры горячего спая необходимо знать температуру холодного.
Самый простой метод — поддержание температуры холодного спая на уровне 0°C. В этом случае Vвых = Vгор, и измерение напряжения дает непосредственную информацию о температуре горячего спая.
Раньше этот вариант считался стандартом при использовании термопар, однако сейчас обеспечение такого охлаждения холодного спая зачастую непрактично. Для получения результатов измерения в абсолютных величинах необходимо знать температуру холодного спая. Выходное напряжение термопары должно быть компенсировано с учетом влияния потенциала холодного спая при ненулевой температуре. Это и называется — компенсация холодного спая.
Выбор устройства для измерения температуры холодного спая
Данные о температуре холодного спая можно получить с помощью различных датчиков и устройств. Среди самых распространенных — резистивный температурный преобразователь (РТП), термистор и интегральный датчик температуры (ИДТ). Каждое из этих устройств имеет свои достоинства и недостатки, поэтому применение того или иного датчика определяется условиями конкретной задачи.
Для устройств с высокими требованиями по точности лучшим выбором будет калиброванный платиновый РТП с его широким температурным диапазоном. Однако это решение – дорогостоящее.
Термисторы и ИДТ – недорогая альтернатива РТП в случаях, когда требования к точности не столь строгие. У термисторов рабочий температурный диапазон шире, однако ИДТ используются чаще из-за линейности характеристик. Корректировка нелинейности термисторов может требовать слишком много ресурсов от микроконтроллера устройства. ИДТ обладают превосходной линейностью характеристик, но узким диапазоном измерений.
Итак, измеритель температуры холодного спая выбирается, исходя из требований к системе. На выбор оказывают влияние точность, диапазон измерения температур, линейность характеристик и стоимость.
Решение числовых задач
Когда вы определились с методом компенсации холодного спая, скомпенсированное выходное напряжение должно быть преобразовано в данные о температуре. Самый простой метод — воспользоваться таблицами, предоставленными Национальным Бюро Стандартов США (NBS) (в России значения расчетных коэффициентов можно найти в справочной литературе, базирующейся на ГОСТ Р 8.585-2001 ГСИ. «Термопары. Номинальные статические характеристики преобразования» – прим. ред.). Поиск данных в этих таблицах программным путем требует определенного объема памяти для их хранения, но это быстрое и точное решение в случаях, когда измерения повторяются с большой частотой. Два других метода для преобразования напряжения в данные требуют больших ресурсов, чем поиск данных в таблицах: 1) линейная аппроксимация с помощью полиномов; 2) аналоговая линеаризация выходного сигнала термопары.
Линейная аппроксимация программным путем популярна, т.к. необходима память только для хранения заранее известных коэффициентов полинома. Недостаток этого метода в том, что время измерения зависит от скорости расчета полиномов высокой степени. Время на расчет растет с возрастанием степени полинома, что обычно происходит при увеличении диапазона измерений прибора. Для температур, при измерении которых требуется использование полиномов высоких степеней, применение таблиц может оказаться более эффективным и точным.
До того, как появилось программное обеспечение современного уровня, аналоговая линеаризация достаточно часто применялась для преобразования напряжения в температурные данные (в дополнение к ручному поиску данных в таблицах). Этот аппаратный метод основывался на использовании аналоговых схем для корректировки нелинейности сигнала термопары. Точность зависела от реализации аналоговой корректировки. Такой подход до сих пор используется в мультиметрах, принимающих сигнал с термопар.
Схемы устройств
Рис. 2. Термочувствительная ИМС (MAX6610)
Пример 1
На схеме, показанной на рис. 2, термочувствительная ИМС (MAX6610) измеряет температуру холодного спая. ИДТ располагается в непосредственной близости от спая.
16-битный сигма-дельта АЦП (MX7705) преобразует низковольтный сигнал с термопары в выходной цифровой сигнал разрядностью 16 бит. Интегрированный усилитель с программируемым коэффициентом усиления позволяет увеличить разрешающую способность АЦП, что часто необходимо при работе с малыми напряжениями, генерируемыми термопарами. Интегральный датчик температуры, помещенный в непосредственной близости от соединителей термопары, измеряет температуру около холодного спая. Этот метод основан на допущении, что температура микросхемы в этом случае будет близка к температуре холодного спая. Выходное напряжение с датчика на холодном спае подается на канал 2 АЦП. Опорное напряжение термодатчика (2,56 В) должно быть развязано с напряжением питания микросхемы.
Работая в биполярном режиме, АЦП преобразует отрицательный и положительный уровни напряжения с выхода термопары, поступающие на канал 1. Канал 2 работает в однополярном режиме, АЦП преобразует выходное напряжение с интегральной микросхемы MAX6610 в данные, используемые впоследствии в работе микроконтроллера. Выходное напряжение интегрального датчика температуры изменяется пропорционально изменению температуры холодного спая.
Таблица 2. Измерения для схемы на рисунке 2
Температура холодного спая, °С | Измеренная температура горячего спая, °С | |
---|---|---|
Изм. 1 | -39,9 | +101,4 |
Изм. 2 | 0,0 | +101,5 |
Изм. 3 | +25,2 | +100,2 |
Изм. 4 | +85,0 | +99,0 |
Пример 2
Как показано на рис. 3, ИДТ на выносном диоде используется для измерения температуры холодного спая. Этот диод может быть смонтирован непосредственно на контактах термопары. MAX6002 обеспечивает опорное напряжение 2,5 В для АЦП. В отличие от предыдущего примера, датчик с использованием удаленного диода не должен обязательно находиться в непосредственной близости от термопары, для измерения используется диодно-включенный транзистор типа NPN. Этот транзистор монтируется непосредственно в месте соединения выходов термопары и медных выводов. ИДТ в свою очередь преобразует сигнал с транзистора в цифровой: на канал 1 АЦП поступает выходное напряжение термопары и преобразуется в цифровой сигнал. Канал 2 не используется и заземлен. Опорное напряжение АЦП 2,5 В обеспечивает отдельная интегральная микросхема.
Рис. 3. ИДТ с использованием удаленного диода
Таблица 3. Измерения для схемы на рисунке 3
Температура холодного спая, °С | Измеренная температура горячего спая, °С | |
---|---|---|
Изм. 1 | -39,8 | +99,1 |
Изм. 2 | -0,3 | +98,4 |
Изм. 3 | +25,0 | +99,7 |
Изм. 4 | +85,1 | +101,5 |
Пример 3
На рис. 4 представлена схема с использованием 12-битной АЦП с интегрированным термочувствительным диодом, который преобразует температуру окружающей среды в напряжение. Используя это напряжение и напряжение непосредственно с термопары, ИМС вычисляет компенсированную температуру горячего спая. Эти данные в виде цифрового сигнала поступают на цифровой выход микросхемы. Гарантированная температурная погрешность данного устройства ±9 LSB (младший значащий бит АЦП) в диапазоне температур горячего спая от 0 до 700°C. Хотя это устройство имеет широкий диапазон измеряемых температур, измерения ниже 0°C невозможны.
Рис. 4. Применение АЦП с интегрированной схемой компенсации
В табл. 4 представлены результаты измерений, полученные с помощью схемы на рис. 4 при изменении температуры холодного спая от 0 до 70°C при сохранении постоянной температуры на горячем, равной 100 °C.
Таблица 4. Измерения для схемы на рисунке 4
Температура холодного спая, °С | Измеренная температура горячего спая, °С | |
---|---|---|
Изм. 1 | 0,0 | +100,25 |
Изм. 2 | +25,2 | +100,25 |
Изм. 3 | +50,1 | +101,00 |
Изм. 4 | +70,0 | +101,25 |
Получение технической информации, заказ образцов, поставка —
e-mail: analog.vesti@compel.ru
Новый драйвер Ethernet с коррекцией предыскажений
Компания Maxim Integrated Products представила MAX3984 — одноканальный драйвер Ethernet с коррекцией предыскажений на выходе и компенсацией на входе, способный работать с быстродействием 1…10,3 Гбит/сек. Устройство компенсирует затухания в медных линиях связи (оптоволоконные каналы 8,5 Гбит/сек, Ethernet 10 Гбит/сек), позволяя достичь длины линии до 10 м при использовании провода 24 AWG. Драйвер предусматривает выбор четырех уровней коррекции предыскажений и возможность коррекции на входе. Это позволяет компенсировать потери сигнала при его передаче по проводникам длиной до 10 дюймов на текстолите FR-4.
MAX3984 также поддерживает SFP-совместимую функцию обнаружения потери сигнала (LOS) и имеет вход отключения передачи TX_DISABLE. Возможность выбора размаха выходного сигнала позволяет оптимизировать электромагнитные излучения и потребляемую мощность. MAX3984 выпускается в 16-выводном корпусе TQFN (3х3 мм) без содержания свинца и рассчитан на работу в пределах температурного диапазона 0…85°C.
Отличительные особенности:
Что такое термопара, принцип действия, основные виды и типы
Термопара – это устройство для измерения температур во всех отраслях науки и техники. Данная статья представляет общий обзор термопар с разбором конструкции и принципом действия устройства. Описаны разновидности термопар с их краткой характеристикой, а также дана оценка термопары как измерительного прибора.
Устройство термопары
Принцип работы термопары. Эффект Зеебека
Работа термопары обусловлена возникновением термоэлектрического эффекта, открытым немецким физиком Томасом Зеебеком (Tomas Seebeck) в 1821 г.
Явление основано на возникновении электричества в замкнутом электрическом контуре при воздействии определенной температуры окружающей среды. Электрический ток возникает при наличии разницы температур между двумя проводниками (термоэлектродами) различного состава (разнородных металлов или сплавов) и поддерживается сохранением места их контактов (спаев). Устройство выводит на экран подсоединенного вторичного прибора значение измеряемой температуры.
Выдаваемое напряжение и температура находятся в линейной зависимости. Это означает, что увеличение измеряемой температуры приводит к большему значению милливольт на свободных концах термопары.
Находящийся в точке измерения температуры спай называется «горячим», а место подключения проводов к преобразователю — «холодным».
Компенсация температуры холодного спая (КХС)
Компенсация холодного спая (КХС) – это компенсация, вносимая в виде поправки в итоговые показания при измерении температуры в точке подсоединения свободных концов термопары. Это связано с расхождениями между реальной температурой холодных концов с вычисленными показаниями градуировочной таблицы для температуры холодного спая при 0°С.
КХС является дифференциальным способом, при котором показания абсолютной температуры находятся из известного значения температуры холодного спая (другое название эталонный спай).
Конструкция термопары
При конструировании термопары учитывают влияние таких факторов, как «агрессивность» внешний среды, агрегатное состояние вещества, диапазон измеряемых температур и другие.
Особенности конструкции термопар:
1) Спаи проводников соединяются между собой скруткой или скруткой с дальнейшей электродуговой сваркой (редко пайкой).
ВАЖНО: Не рекомендуется использовать способ скручивания из-за быстрой потери свойств спая.
2) Термоэлектроды должны быть электрически изолированы по всей длине, кроме точки соприкосновения.
3) Способ изоляции подбирается с учетом верхнего температурного предела.
Материал должен быть термически и химически стойким, с хорошей теплопроводностью (металл, керамика). Использование чехла предотвращает коррозию в определенных средах.
Удлиняющие (компенсационные) провода
Данный вид проводов необходим для удлинения концов термопары до вторичного прибора или барьера. Провода не используются в случае наличия у термопары встроенного преобразователя с унифицированным выходным сигналом. Наиболее широкое применение получил нормирующий преобразователь, размещенный в стандартной клеммной головке датчика с унифицированным сигналом 4-20мА, так называемая «таблетка».
Материал проводов может совпадать с материалом термоэлектродов, но чаще всего заменяется на более дешевый с учетом условий, предотвращающих образования паразитных (наведенных) термо-ЭДС. Применение удлиняющих проводов также позволяет оптимизировать производство.
Лайфхак! Для правильного определения полярности компенсационных проводов и их подключения к термопаре запомните мнемоническое правило ММ — минус магнитится. То есть берём любой магнит и минус у компенсации будет магнитится, в отличии от плюса.
Типы и виды термопар
Многообразие термопар объясняется различными сочетаниями используемых сплавов металлов. Подбор термопары осуществляется в зависимости от отрасли производства и необходимого температурного диапазона.
Термопара хромель-алюмель (ТХА)
Положительный электрод: сплав хромель (90% Ni, 10% Cr).
Отрицательный электрод: сплав алюмель (95% Ni, 2% Mn, 2% Al, 1% Si).
Изоляционный материал: фарфор, кварц, окиси металлов и т.д.
Рабочая среда: инертная, окислительная (O2=2-3% или полностью исключено), сухой водород, кратковременный вакуум. В восстановительной или окислительно-восстановительной атмосфере в присутствии защитного чехла.
Недостатки: легкость в деформировании, обратимая нестабильность термо-ЭДС.
Возможны случаи коррозии и охрупчивания алюмеля в присутствии следов серы в атмосфере и хромеля в слабоокислительной атмосфере («зеленая глинь»).
Термопара хромель-копель (ТХК)
Положительный электрод: сплав хромель (90% Ni, 10% Cr).
Отрицательный электрод: сплав копель (54,5% Cu, 43% Ni, 2% Fe, 0,5% Mn).
Рабочая среда: инертная и окислительная, кратковременный вакуум.
Недостатки: деформирование термоэлектрода.
Возможно испарение хрома при длительном вакууме; реагирование с атмосферой, содержащей серу, хром, фтор.
Термопара железо-константан (ТЖК)
Положительный электрод: технически чистое железо (малоуглеродистая сталь).
Отрицательный электрод: сплав константан (59% Cu, 39-41% Ni, 1-2% Mn).
Применение складывается на совместном измерении положительных и отрицательных температур. Невыгодно использовать только для отрицательных температур.
Недостатки: деформирование термоэлектрода, низкая коррозийная стойкость.
Изменение физико-химических свойств железа около 700°С и 900 °С. Взаимодействует с серой и водными парами с образованием коррозии.
Термопара вольфрам-рений (ТВР)
Положительный электрод: сплавы ВР5 (95% W, 5% Rh)/ВАР5 (BP5 с кремнещелочной и алюминиевой присадкой)/ВР10 (90% W, 10% Rh).
Отрицательный электрод: сплавы ВР20 (80% W, 20% Rh).
Изоляция: керамика из химически чистых окислов металлов.
Отмечается механическая прочность, термостойкость, малая чувствительность к загрязнениям, легкость изготовления.
Измерение температур от 1800°С до 3000°С, нижний предел – 1300°С. Измерения проводятся в среде инертного газа, сухого водорода или вакуума. В окислительных средах только для измерения в быстротекущих процессах.
Недостатки: плохая воспроизводимость термо-ЭДС, ее нестабильность при облучении, непостоянная чувствительность в температурном диапазоне.
Термопара вольфрам-молибден (ВМ)
Положительный электрод: вольфрам (технически чистый).
Отрицательный электрод: молибден (технически чистый).
Изоляция: глиноземистая керамика, защита кварцевыми наконечниками.
Инертная, водородная или вакуумная среда. Возможно проведение кратковременных измерений в окислительных средах в присутствии изоляции. Диапазон измеряемых температур составляет 1400-1800°С, предельная рабочая температура порядка 2400°С.
Недостатки: плохая воспроизводимость и чувствительность термо-ЭДС, инверсия полярности, охрупчивание при высоких температурах.
Термопары платинородий-платина (ТПП)
Положительный электрод: платинородий (Pt c 10% или 13% Rh).
Отрицательный электрод: платина.
Изоляция: кварц, фарфор (обычный и огнеупорный). До 1400°С — керамика с повышенным содержанием Al2O3, свыше 1400°С — керамику из химически чистого Al2O3.
Предельная рабочая температура 1400°С длительно, 1600°С кратковременно. Измерение низких температур обычно не производят.
Рабочая среда: окислительная и инертная, восстановительная в присутствии защиты.
Недостатки: высокая стоимость, нестабильность при облучении, высокая чувствительность к загрязнениям (особенно платиновый электрод), рост зерен металла при высоких температурах.
Термопары платинородий-платинородий (ТПР)
Положительный электрод: сплав Pt c 30% Rh.
Отрицательный электрод: сплав Pt c 6% Rh.
Среда: окислительная, нейтральная и вакуум. Использование в восстановительных и содержащих пары металлов или неметаллов средах в присутствии защиты.
Максимальная рабочая температура 1600°С длительно, 1800°С кратковременно.
Изоляция: керамика из Al2O3 высокой чистоты.
Менее подвержены химическим загрязнениям и росту зерна, чем термопара платинородий-платина.
Схема подключения термопары
Стандарты на цвета проводников термопар
Цветная изоляция проводников помогает отличить термоэлектроды друг от друга для правильного подключения к клеммам. Стандарты отличаются по странам, нет конкретных цветовых обозначений для проводников.
ВАЖНО: Необходимо узнать используемый стандарт на предприятии для предотвращения ошибок.
Точность измерения
Точность зависит от вида термопары, диапазона измеряемых температур, чистоты материала, электрических шумов, коррозии, свойств спая и процесса изготовления.
Термопарам присуждается класс допуска (стандартный или специальный), устанавливающий доверительный интервал измерений.
ВАЖНО: Характеристики на момент изготовления меняются в период эксплуатации.
Быстродействие измерения
Быстродействие обуславливается способностью первичного преобразователя быстро реагировать на скачки температуры и следующим за ними потоком входных сигналов измерительного прибора.
Факторы, увеличивающие быстродействие:
Проверка работоспособности термопары
Для проверки работоспособности подключают специальный измерительный прибор (тестер, гальванометр или потенциометр) или измеряют напряжение на выходе милливольтметром. При наличии колебаний стрелки или цифрового индикатора термопара является исправной, в противном случае устройство подлежит замене.
Причины выхода из строя термопары:
Преимущества и недостатки использования термопар
Достоинствами использования данного устройства можно назвать:
К недостаткам следует отнести:
Термометр сопротивления — датчик для измерения температуры: что это такое, описание и виды
Что такое тензодатчик, типы тензометрических датчиков, схема подключения и их применение
Что такое люминесцентная лампа и как она работает?
Что такое частотный преобразователь, основные виды и какой принцип работы
Трансформаторы тока: устройство, принцип действия и типы
Как устроен электрический аккумулятор, его принцип работы, виды, назначение и основные характеристики