Что такое контекст потока

Реализация процессов и потоков

Изображенные на рис. 5.5 структуры, за исключением блоков переменных окружения потока (TEB), существуют в системном адресном пространстве. Помимо этого, параллельная структура для каждого потока, созданного в Win32-процессе, поддерживается процессом Csrss подсистемы Win32. В свою очередь, часть подсистемы Win32, работающая в режиме ядра (Win32k.sys), поддерживает для каждого потока структуру W32THREAD.

Создание потоков

Вслед за этим создается блок управления потоком вместе с сопутствующими структурами, формируется стек ядра потока и о создании потока уведомляется подсистема Win32. Наконец, вызывающему потоку возвращается описатель создаваемого потока и передается управление, а новому потоку может быть выделено процессорное время.

Функция CreateThread

Прогон программы создания потока

Программа, листинг которой приведен ниже, создает новый поток и передает ему параметр, числовое значение которого этот поток выводит на экран.

В качестве самостоятельного упражнения рекомендуется написать программу, иллюстрирующие простоту организации межпотокового обмена в рамках одного процесса, например, обмен через набор общих глобальных данных. Сравните данный способ с более громоздкими примерами из лекции «Межпроцессный обмен».

Подобно процессам при завершении потока сопоставленный с ним объект ядра «поток» не освобождается до тех пор, пока не будут закрыты все внешние ссылки на этот объект.

Контекст потока, переключение контекстов

Особую роль в структурах данных, описывающих потоки, играет контекст потока. Информацию, входящую в состав контекста, необходимо периодически сохранять и восстанавливать в случае возникновения различных событий, например, при переключении потоков. Обычно сохранению и последующему восстановлению подлежат:

Эта информация сохраняется в текущем стеке ядра потока.

Помимо перечисленных в системе имеется много полезных функций, реализующих API для управления потоками. Их полный перечень содержится в MSDN.

Заключение

Вопросы и ответы

Что такое контекст потока. Смотреть фото Что такое контекст потока. Смотреть картинку Что такое контекст потока. Картинка про Что такое контекст потока. Фото Что такое контекст потока

Что такое контекст потока. Смотреть фото Что такое контекст потока. Смотреть картинку Что такое контекст потока. Картинка про Что такое контекст потока. Фото Что такое контекст потока

Здравствуйте! Интересует следующий момент. Как осуществляется контроль доступа по тому или иному адресу с точки зрения обработки процессом кода процесса. Насколько я понял, есть два способа: задание через атрибуты сегмента (чтение, запись, исполнение), либо через атрибуты PDE/PTE (чтение, запись). Но как следует из многочисленных источников, эти механизмы в ОС Windows почти не задействованы. Там ключевую роль играет менеджер памяти, задающий регионы, назначающий им атрибуты (PAGE_READWRITE, PAGE_READONLY, PAGE_EXECUTE, PAGE_EXECUTE_READ, PAGE_EXECUTE_READWRITE, PAGE_NOACCESS, PAGE_GUARD: их гораздо больше, чем можно было бы задать для сегмента памяти) и контролирующий доступ к этим регионам. Непонятно, на каком этапе может включаться в работу этот менеджер памяти? Поскольку процессор может встретить инструкцию: записать такие данные по такому адресу (даже, если этот адрес относится к региону, выделенному менеджером памяти с атрибутом, например, PAGE_READONLY) и ничего не мешает ему это выполнить. Таким образом, менеджер памяти остается в стороне не участвует в процессе.

Источник

Потоки и работа с ними

Многопоточность позволяет увеличивать скорость реагирования приложения и, если приложение работает в многопроцессорной или многоядерной системе, его пропускную способность.

Процессы и потоки

Процесс — это исполнение программы. Операционная система использует процессы для разделения исполняемых приложений. Поток — это основная единица, которой операционная система выделяет время процессора. Каждый поток имеет приоритет планирования и набор структур, в которых система сохраняет контекст потока, когда выполнение потока приостановлено. Контекст потока содержит все сведения, позволяющие потоку безболезненно возобновить выполнение, в том числе набор регистров процессора и стек потока. Несколько потоков могут выполняться в контексте процесса. Все потоки процесса используют общий диапазон виртуальных адресов. Поток может исполнять любую часть программного кода, включая части, выполняемые в данный момент другим потоком.

Цели применения нескольких потоков

Используйте несколько потоков, чтобы увеличить скорость реагирования приложения и воспользоваться преимуществами многопроцессорной или многоядерной системы, чтобы увеличить пропускную способность приложения.

Представьте себе классическое приложение, в котором основной поток отвечает за элементы пользовательского интерфейса и реагирует на действия пользователя. Используйте рабочие потоки для выполнения длительных операций, которые, в противном случае будут занимать основной поток, в результате чего пользовательский интерфейс будет недоступен. Для более оперативной реакции на входящие сообщения или события также можно использовать выделенный поток связи с сетью или устройством.

Если программа выполняет операции, которые могут выполняться параллельно, можно уменьшить общее время выполнения путем выполнения этих операций в отдельных потоках и запуска программы в многопроцессорной или многоядерной системе. В такой системе использование многопоточности может увеличить пропускную способность, а также повысить скорость реагирования.

Наконец, можно использовать класс System.Threading.Thread, который представляет управляемый поток. Дополнительные сведения см. в разделе Использование потоков и работа с потоками.

Исключения следует обрабатывать в потоках. Необработанные исключения в потоках, как правило, приводят к завершению процесса. Дополнительные сведения см. в статье Исключения в управляемых потоках.

Источник

Процессы и потоки in-depth. Обзор различных потоковых моделей

Здравствуйте дорогие читатели. В данной статье мы рассмотрим различные потоковые модели, которые реализованы в современных ОС (preemptive, cooperative threads). Также кратко рассмотрим как потоки и средства синхронизации реализованы в Win32 API и Posix Threads. Хотя на Хабре больше популярны скриптовые языки, однако основы — должны знать все 😉

Потоки, процессы, контексты.

Системный вызов (syscall). Данное понятие, вы будете встречать достаточно часто в данной статье, однако несмотря на всю мощь звучания, его определение достаточно простое 🙂 Системный вызов — это процесс вызова функции ядра, из приложение пользователя. Режим ядра — код, который выполняется в нулевом кольце защиты процессора (ring0) с максимальными привилегиями. Режим пользователя — код, исполняемый в третьем кольце защиты процессора (ring3), обладает пониженными привилегиями. Если код в ring3 будет использовать одну из запрещенных инструкций (к примеру rdmsr/wrmsr, in/out, попытку чтения регистра cr3, cr4 и т.д.), сработает аппаратное исключение и пользовательский процесс, чей код исполнял процессор в большинстве случаях будет прерван. Системный вызов осуществляет переход из режима ядра в режим пользователя с помощью вызова инструкции syscall/sysenter, int2eh в Win2k, int80h в Linux и т.д.

И так, что же такое поток? Поток (thread) — это, сущность операционной системы, процесс выполнения на процессоре набора инструкций, точнее говоря программного кода. Общее назначение потоков — параллельное выполнение на процессоре двух или более различных задач. Как можно догадаться, потоки были первым шагом на пути к многозадачным ОС. Планировщик ОС, руководствуясь приоритетом потока, распределяет кванты времени между разными потоками и ставит потоки на выполнение.

На ряду с потоком, существует также такая сущность, как процесс. Процесс (process) — не что более иное, как некая абстракция, которая инкапсулирует в себе все ресурсы процесса (открытые файлы, файлы отображенные в память. ) и их дескрипторы, потоки и т.д. Каждый процесс имеет как минимум один поток. Также каждый процесс имеет свое собственное виртуальное адресное пространство и контекст выполнения, а потоки одного процесса разделяют адресное пространство процесса.

Классификация потоков

Классификация потоков по отображению в режим ядра

Модель N:M отображает некоторое число потоков пользовательских процессов N на M потоков режима ядра. Проще говоря имеем некую гибридную систему, когда часть потоков ставится на выполнение в планировщике ОС, а большая их часть в планировщике потоков процесса или библиотеки потоков. Как пример можно привести GNU Portable Threads. Данная модель достаточно трудно реализуема, но обладает большей производительностью, так как можно избежать значительного количества системных вызовов.

Модель N:1. Как вы наверное догадались — множество потоков пользовательского процесса отображаются на один поток ядра ОС. Например волокна.

Классификация потоков по многозадачной модели

Однако, кооперативная многозадачность со временем показала свою несостоятельность. Росли объемы данных хранимых на винчестерах, росла также скорость передачи данных в сетях. Стало понятно, что некоторые потоки должны иметь больший приоритет, как-то потоки обслуживания прерываний устройств, обработки синхронных IO операций и т.д. В это время каждый поток и процесс в системе обзавелся таким свойством, как приоритет. Подробнее о приоритетах потоков и процессов в Win32 API вы можете прочесть в книге Джефри Рихтера, мы на этом останавливатся не будем 😉 Таким образом поток с большим приоритетом, может вытеснить поток с меньшим. Такой прицип лег в основу вытесняющей многозадачности (preemptive multitasking). Сейчас все современные ОС используют данный подход, за исключением реализации волокон в пользовательском режиме.

Классификация потоков по уровню реализации

Win32 API Threads

Если вы все еще не устали, предлагаю небольшой обзор API для работы с потоками и средствами синхронизации в win32 API. Если вы уже знакомы с материалом, можете смело пропускать этот раздел 😉

Потоки в Win32 создаются с помощью функции CreateThread, куда передается указатель на функцию (назовем ее функцией потока), которая будет выполнятся в созданом потоке. Поток считается завершенным, когда выполнится функция потока. Если же вы хотите гарантировать, что поток завершен, то можно воспользоватся функцией TerminateThread, однако не злоупотребляйте ею! Данная функция «убивает» поток, и отнюдь не всегда делает это корректно. Функция ExitThread будет вызвана неявно, когда завершится функция потока, или же вы можете вызвать данную функцию самостоятельно. Главная ее задача — освободить стек потока и его хендл, т.е. структуры ядра, которые обслуживают данный поток.

Поток в Win32 может пребывать в состоянии сна (suspend). Можно «усыпить поток» с помощью вызова функции SuspendThread, и «разбудить» его с помощью вызова ResumeThread, также поток можно перевести в состояние сна при создании, установив значение параметра СreateSuspended функции CreateThread. Не стоит удивлятся, если вы не увидите подобной функциональности в кроссплатформенных библиотеках, типа boost::threads и QT. Все очень просто, pthreads просто не поддерживают подобную функциональность.

Средства синхронихации в Win32 есть двух типов: реализованные на уровне пользователя, и на уровне ядра. Первые — это критические секции (critical section), к второму набору относят мьютексы (mutex), события (event) и семафоры (semaphore).

Критические секции — легковесный механизм синхронизации, который работает на уровне пользовательского процесса и не использует тяжелых системных вызовов. Он основан на механизме взаимных блокировок или спин локов (spin lock). Поток, который желает обезопасить определенные данные от race conditions вызывает функцию EnterCliticalSection/TryEnterCriticalSection. Если критическая секция свободна — поток занимает ее, если же нет — поток блокируется (т.е. не выполняется и не отъедает процессорное время) до тех пор, пока секция не будет освобождена другим потоком с помощью вызова функции LeaveCriticalSection. Данные функции — атомарные, т.е. вы можете не переживать за целостность ваших данных 😉

Posix Threads или pthreads

Сложно представить, какая из *nix подобных операционных систем, не реализует этот стандарт. Стоит отметить, что pthreads также используется в различных операционных системах реального времени (RTOS), потому требование к этой библиотеке (вернее стандарту) — жестче. К примеру, поток pthread не может пребывать в состоянии сна. Также в pthread нет событий, но есть гораздо более мощный механизм — условных переменных (conditional variables), который с лихвой покрывает все необходимые нужды.

Поговорим об отличиях. К примеру, поток в pthreads может быть отменен (cancel), т.е. просто снят с выполнения посредством системного вызова pthread_cancel в момент ожидания освобождения какого-нибудь мьютекса или условной переменной, в момент выполнения вызова pthread_join (вызывающий поток блокируется до тех пор, пока не закончит свое выполнение поток, приминительно к которому была вызвана функция) и т.д. Для работы с мьютексами и семафорами существует отдельные вызовы, как-то pthread_mutex_lock/pthread_mutex_unlock и т.д.

Conditional variables (cv) обычно используется в паре с мьютексами в более сложных случаях. Если мьютекс просто блокирует поток, до тех пор, пока другой поток не освободит его, то cv создают условия, когда поток может заблокировать сам себя до тех пор, пока не произойдет какое-либо условия разблокировки. Например, механизм cv помогает эмулировать события в среде pthreads. Итак, системный вызов pthread_cond_wait ждет, пока поток не будет уведомлен о том, что случилось определенное событие. pthread_cond_signal уведомляет один поток из очереди, что cv сработала. pthread_cond_broadcast уведомляет все потоки, которые вызывали pthread_cond_wait, что сработала cv.

Прощальное слово

На сегодня пожалуй все, иначе информации станет слишком много. Для интересующихся, есть несколько полезных ссылок и книг внизу 😉 Также высказывайте свое мнение, интересны ли вам статьи по данной теме.

UPD: дополнил статью небольшой информацией о режиме ядра и режиме пользователя.
UPD2: исправил досадные промахи и ошибки. Спасибо комментаторам 😉

Источник

1.2 Процесс, контекст процесса и потоки

1.2 Процесс, контекст процесса и потоки

Процесс – это образ выполняемой программы в памяти. Процессу назначается область памяти до окончания его работы. Процесс может совместно использовать код (динамически подключаемые библиотеки) или данные (области совместно используемой памяти) с другим процессом. Процесс описывается объектом процесса, который поддерживается диспетчером объектов. В объекте процесса содержится информация о виртуальном адресном пространстве процесса, приоритете процесса, а также дескрипторы файлов и информация о выделении памяти. В объекте процесса хранятся и другие параметры, которые здесь не рассматриваются.

В Windows NT несколько процессов могут существовать одновременно; но только один процесс выполняется центральным процессором в определенный момент времени. Обратите внимание: драйверы вообще и драйверы систем хранения данных в частности не создают собственных процессов. Операционная система создает несколько процессов для своих нужд, а также определенные процессы в ответ на пользовательские команды, например когда пользователь запускает приложение, такое, как Microsoft Word или Microsoft Excel. Если драйвер вызывается во время работы процесса, считается, что он работает в контексте вызывающего процесса.

Контекст процесса можно обозначить как всю служебную информацию, необходимую для отслеживания работы процесса. К этой информации относятся виртуальная память процесса, значения регистров центрального процессора, различные дескрипторы файлов и объектов, а также различные маркеры безопасности, связанные с процессом. Контекст процесса исключительно важен, так как множество структур данных и ресурсов, таких, как дескрипторы файлов и указатели памяти, действительны только для данного процесса. Например, дескриптор файла, созданный в одном процессе, недействителен в другом процессе.

Поток – это структурная единица процесса; процесс может содержать один или несколько потоков. Поток совместно использует глобальные структуры данных и адресное пространство процесса, но при этом имеет собственные данные. Переключение между процессами – задача весьма трудоемкая, которая включает в себя сохранение состояния процессора в специальной структуре данных, зависящей от процесса, и-изменение регистров управления памятью и процессором. Переключение между потоками осуществляется намного быстрее, поскольку требует сохранения гораздо меньшего объема данных.

Каждый поток связан с объектом потока, поддерживаемым диспетчером объектов. Информация, которая содержится в объекте, включает в себя данные о первичном центральном процессоре в многопроцессорных системах, состояние потока (т.е. выполняется ли поток, или готов к выполнению, или заблокирован в процессе ввода-вывода), а также другие параметры потока.

Поток может работать в пользовательском режиме и в режиме ядра. Потоки в режиме ядра могут создаваться только структурами, работающими в этом режиме, например драйверами устройств, и они всегда выполняются в режиме ядра. Потоки пользовательского режима обычно выполняются именно в этом режиме, кроме тех случаев, когда это происходит в режиме ядра после запроса к службе Windows NT, как уже отмечалось в разделе 1.1.

Читайте также

Контекст процесса

Контекст процесса Одна из наиболее важных частей процесса— это исполняемый программный код. Этот код считывается из выполняемого файла (executable) и выполняется в адресном пространстве процесса. Обычно выполнение программы осуществляется в пространстве пользователя.

Контекст прерывания

Контекст прерывания При выполнении обработчика прерывания или обработчика нижней половины, ядро находится в контексте прерывания. Вспомним, что контекст процесса — это режим, в котором работает ядро, выполняя работу от имени процесса, например выполнение системного

Контекст рисования

Контекст рисования Рисование на канве выполняется с помощью особых свойств и методов объекта… нет, не HTMLCanvasElement, а CanvasRenderingContext2D. Этот объект представляет так называемый контекст рисования, который можно рассматривать как набор инструментов, используемый для рисования

Контекст процесса

Контекст процесса Каждый процесс UNIX имеет контекст, под которым понимается вся информация, требуемая для описания процесса. Эта информация сохраняется, когда выполнение процесса приостанавливается, и восстанавливается, когда планировщик предоставляет процессу

2.2.2.1 Контекст процесса

2.2.2.1 Контекст процесса Контекстом процесса является его состояние, определяемое текстом, значениями глобальных переменных пользователя и информационными структурами, значениями используемых машинных регистров, значениями, хранимыми в позиции таблицы процессов и в

6.3 КОНТЕКСТ ПРОЦЕССА

6.3 КОНТЕКСТ ПРОЦЕССА Контекст процесса включает в себя содержимое адресного пространства задачи, выделенного процессу, а также содержимое относящихся к процессу аппаратных регистров и структур данных ядра. С формальной точки зрения, контекст процесса объединяет в себе

Поисковый контекст

Поисковый контекст В случае с запросами из нескольких слов «Яндекс» умеет определять, каким должно быть максимальное расстояние между словами, чтобы страница наиболее точно отвечала запросу. Вы можете задать расстояние явным образом.Слова идут подрядТакой порядок слов

Контекст откровения

Контекст откровения Главное событие, решившее судьбу проекта, случилось 31 июля 2001 г., когда «Яндекс» запустил «Яндекс. Директ» — систему автоматического (в режиме онлайн) размещения контекстной рекламы с оплатой по кликам. Контекстная реклама по сей день остается

Контекст устройства

Контекст транзакции

Контекст транзакции Завершенное общение между клиентом и сервером называется транзакцией. Каждая транзакция имеет уникальный контекст, что приводит к тому, что транзакция будет изолирована от всех других транзакций указанным способом. Правила для контекста транзакции

Логический контекст

1.2.1 Графический контекст

1.2.1 Графический контекст Прежде чем начать работу с графикой, программа должна выделить себе специальную структуру данных и получить указатель на нее. Эта структура называется графическим контекстом (Graphic Context (GC)). Указатель на GC используется в качестве одного из

Контекст преобразования

Контекст преобразования При выполнении преобразования каждая из его инструкций, каждый из элементов обрабатывается в некотором контексте. Контекст преобразования состоит из двух частей: из текущего множества узлов и из текущего узла, которые показывают, что именно

Источник

Реализация процессов и потоков

Изображенные на рис. 5.5 структуры, за исключением блоков переменных окружения потока (TEB), существуют в системном адресном пространстве. Помимо этого, параллельная структура для каждого потока, созданного в Win32-процессе, поддерживается процессом Csrss подсистемы Win32. В свою очередь, часть подсистемы Win32, работающая в режиме ядра (Win32k.sys), поддерживает для каждого потока структуру W32THREAD.

Создание потоков

Вслед за этим создается блок управления потоком вместе с сопутствующими структурами, формируется стек ядра потока и о создании потока уведомляется подсистема Win32. Наконец, вызывающему потоку возвращается описатель создаваемого потока и передается управление, а новому потоку может быть выделено процессорное время.

Функция CreateThread

Прогон программы создания потока

Программа, листинг которой приведен ниже, создает новый поток и передает ему параметр, числовое значение которого этот поток выводит на экран.

В качестве самостоятельного упражнения рекомендуется написать программу, иллюстрирующие простоту организации межпотокового обмена в рамках одного процесса, например, обмен через набор общих глобальных данных. Сравните данный способ с более громоздкими примерами из лекции «Межпроцессный обмен».

Подобно процессам при завершении потока сопоставленный с ним объект ядра «поток» не освобождается до тех пор, пока не будут закрыты все внешние ссылки на этот объект.

Контекст потока, переключение контекстов

Особую роль в структурах данных, описывающих потоки, играет контекст потока. Информацию, входящую в состав контекста, необходимо периодически сохранять и восстанавливать в случае возникновения различных событий, например, при переключении потоков. Обычно сохранению и последующему восстановлению подлежат:

Эта информация сохраняется в текущем стеке ядра потока.

Помимо перечисленных в системе имеется много полезных функций, реализующих API для управления потоками. Их полный перечень содержится в MSDN.

Заключение

Вопросы и ответы

Что такое контекст потока. Смотреть фото Что такое контекст потока. Смотреть картинку Что такое контекст потока. Картинка про Что такое контекст потока. Фото Что такое контекст потока

Что такое контекст потока. Смотреть фото Что такое контекст потока. Смотреть картинку Что такое контекст потока. Картинка про Что такое контекст потока. Фото Что такое контекст потока

Здравствуйте! Интересует следующий момент. Как осуществляется контроль доступа по тому или иному адресу с точки зрения обработки процессом кода процесса. Насколько я понял, есть два способа: задание через атрибуты сегмента (чтение, запись, исполнение), либо через атрибуты PDE/PTE (чтение, запись). Но как следует из многочисленных источников, эти механизмы в ОС Windows почти не задействованы. Там ключевую роль играет менеджер памяти, задающий регионы, назначающий им атрибуты (PAGE_READWRITE, PAGE_READONLY, PAGE_EXECUTE, PAGE_EXECUTE_READ, PAGE_EXECUTE_READWRITE, PAGE_NOACCESS, PAGE_GUARD: их гораздо больше, чем можно было бы задать для сегмента памяти) и контролирующий доступ к этим регионам. Непонятно, на каком этапе может включаться в работу этот менеджер памяти? Поскольку процессор может встретить инструкцию: записать такие данные по такому адресу (даже, если этот адрес относится к региону, выделенному менеджером памяти с атрибутом, например, PAGE_READONLY) и ничего не мешает ему это выполнить. Таким образом, менеджер памяти остается в стороне не участвует в процессе.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *