Что такое крекинг в химии
Что такое крекинг в химии?
Значение крекинга в химии относится к такому процессу, который включает в себя расщепление высокомолекулярных соединений на более мелкие фрагменты. Такие соединения обычно представляют собой длинноцепочечные углеводороды.
Этот процесс находит широкое применение в нефтяной промышленности для производства дизельного топлива и бензина из керогенов и длинноцепочечных углеводородов. При крупномасштабном промышленном производстве получаются масла и множество других материалов, таких как нефти средней концентрации, бензин (легкие нефти), тяжелые нефти, кокс (углеродные остатки). Основываясь на полезности, а также на молекулярной массе, добываемая нефть может быть извлечена напрямую или подвергнута еще одной стадии крекинга для более мелких фрагментов.
Типы трещин
К разным типам крекинга относятся термический крекинг и каталитический крекинг. Вот краткое описание этих двух —
1. Термическое растрескивание
Термический метод крекинга использует давление и тепло для расщепления больших молекул углеводорода на более легкие. Этот процесс можно разделить на следующие категории:
Это более старый процесс, в котором используется тепловая энергия, вырабатываемая из пара. Это также называется пиролизом. Из-за наличия большего количества скрытой теплоты энергии в паре считается, что это полезный метод для производства алкенов.
Сырье, используемое в процессе, включает пропан-бутановую смесь, нафту (полученную путем прямой перегонки нефти и газойля (в редких случаях).
б. Современное термическое растрескивание
Для этого метода используются как высокое давление, так и высокая температура. Гомолитическое деление происходит между углеродными связями углеводородных соединений. Эта реакция приобретает промышленное значение с производством топлива для горелок.
При понижении температуры происходит замедленный процесс коксования. Это приводит к производству игольчатого кокса, который используется для изготовления угольных электродов.
2. Каталитический крекинг.
Как следует из этого термина, процесс каталитического крекинга проводят в присутствии катализатора. Большие молекулы разрушаются таким образом, что это приводит к максимальному увеличению выхода бензина.
В этом методе задействованы три подпроцесса:
Каталитический крекинг можно разделить на следующие категории:
Он включает двухэтапный процесс, который включает комбинацию гидрирования и каталитического крекинга. В присутствии водорода более тяжелое сырье подвергается крекингу для получения желаемых продуктов.
Для этого процесса нужны высокая температура, высокое давление, водород и катализатор. Процесс также во многом зависит от относительных скоростей двух реакций и природы сырья.
б. Каталитический крекинг в жидкости
Этот процесс немного отличается. Сырье подвергается умеренному давлению и высокой температуре. Затем он контактирует с порошкообразными и горячими катализаторами. Такой катализатор расщепляет длинноцепочечные молекулы на значительно более короткие молекулы.
Важность
Есть две основные функции взлома:
Если у вас есть какие-либо вопросы по теме взлома, предметные эксперты с Веданту всегда готовы помочь вам. Все, что вам нужно сделать, это загрузить приложение и приступить к работе сегодня же!
Что такое крекинг нефти
Добыча нефти и газа является ведущей отраслью экономики десятков стран. Спрос же на данные полезные ископаемые остается крайне высоким, что и неудивительно, поскольку они используются практически во всех сферах современного промышленного производства.
В частности, нефть, обладая сложным химическим составом и уникальными физическими свойствами, используется не только в качестве сырья для изготовления автомобильного топлива, но и во многих иных областях, в том числе и бурно развивающихся на данный момент. В этой связи добыча этого полезного ископаемого только растет.
В современных условиях в промышленности практически не используется сырая нефть. Для получения необходимых нефтепродуктов применяются специальные методы нефтепереработки. Это крайне сложные и технологичные процессы. Дело в том, что получить необходимый продукт из сырой нефти практически невозможно. Сначала происходит первичная ее перегонка, в результате получается разделение на фракции, после чего они подвергаются вторичной переработке. Одним из наиболее популярных ее методов является крекинг, речь о котором пойдет далее в данной статье.
История возникновения
Человечество знакомо с нефтью практически всю историю своего существования. Известно, что еще во времена античности при сражениях довольно часто использовались зажигательные смеси, в состав которых она входила. Однако в наибольшей степени на слуху так называемый «греческий огонь», применяемый в средневековых баталиях. Название же эта смесь, основой которой выступала вся та же сырая нефть, получила из-за того, что впервые она была использована византийцами во время морских сражений.
Такое ограниченное применение этого полезного ископаемого продолжалось вплоть до XIX столетия, когда впервые был разработан метод его первичной переработки. Однако до начала XX века в практических целях использовался только керосин для освещения улиц и жилищ. При этом более легкие фракции не находили применения и считались отходами нефтепереработки.
Данная ситуация в корне изменилась с изобретением автомобиля, в котором применялся двигатель внутреннего сгорания. С развитием автомобилизации требовалось все больше моторного топлива, которое можно было получить, используя только углубленные методы нефтеперегонки.
Изначально первая нефтеперерабатывающая установка для осуществления данного технологического процесса была сконструирована нашими соотечественниками – учеными Шуховым и Гавриловым. Произошло это в 1891 году, однако объективной массовой потребности в ней на тот момент не было.
Продолжателем дела Шухова и Гаврилова стал британский инженер Бартон, который значительно усовершенствовал метод российских ученых, что позволило получать бензин довольно высокого качества.
В промышленных масштабах крекинг начал использоваться в США в начале 20-х годов. В то же время в Советском Союзе первые нефтеперегонные установки такого типа появились лишь на десятилетие позже.
На сегодняшний день данный метод (в значительно более усовершенствованных вариантах) является одним из основных технологических процессов, применяемых в нефтеперерабатывающей промышленности.
Суть крекингового процесса
Термин «крекинг» происходит от английского слова cracking, что в переводе на русский язык означает «расщепление». Это название технологического процесса в полной мере отражает его суть.
В целом, под крекингом следует понимать такую переработку нефти или ее тяжелых фракций, при которой происходит разрыв углеродных цепей, то есть из веществ с высокой молекулярной массой образуются продукты с низкой. Данный процесс предполагает следующие химические реакции:
Исходным сырьем для крекинга, по большей части, выступают тяжелые нефтяные фракции, такие как мазут, керосин или газойль. В самом начале использования данного метода именно они и применялись. Однако позже было открыто, что в качестве сырья допустимо применять и сырую нефть. Это обстоятельство позволило унифицировать и ускорить производственный процесс. Однако использование мазута и газойля до сих пор остается актуальным.
Преимущества крекинга заключаются в том, что он позволяет получать более качественное топливо с большим октановым числом, чем это происходит при прямой нефтеперегонке. Кроме моторного топлива, данный технологический процесс предполагает образование крекингового остатка и нефтяного кокса – продуктов нефтепереработки, которые имеют широкое применение в химической промышленности.
Современные технологии позволяют применять в промышленных целях различные виды крекинга. К числу наиболее популярных методов относятся термический и каталитический.
Каталитический крекинг
Суть его заключается в том, что процесс переработки происходит при помощи специальных веществ, обеспечивающих большую скорость реакции и качество выведенных нефтепродуктов, которые называются катализаторами.
На сегодняшний день ими являются алюмосиликаты, в частности, цеолитсодержащий микросферический катализатор, который представляет собой частицы, имеющие размер до 150 мкм.
Основным сырьем для данного вида переработки выступает прямогонный тяжелый газойль, а также иные фракции, которые имеют температуру закипания более +350 градусов по шкале Цельсия. Технологически каталитический крекинговый процесс осуществляется при нормальном атмосферном давлении.
После его завершения на выходе имеются десятки продуктов, которые практически все нашли применение в народном хозяйстве. Так, более половины этого объема занимает крекинг-бензин высокого качества, который имеет октановое число 88-91. Содержание вредных примесей в нем минимально, поэтому именно оно становится основой для топлива Евро-4 и Евро-5.
Более четверти от общего объема выхода составляет газойль, при этом не очень хороший, что, впрочем, не препятствует тому, чтобы использовать его в качестве дизельного топлива.
Кроме этого, заметен выход изобутана и бутиленов, а также других газообразных предельных углеводородов. В их число входит пропилен, который используется в производстве полипропилена, широко применяемого в промышленности.
В целом, каталитический крекинг позволяет расщеплять фракции практически без потерь (не более 1,5%), именно поэтому он является наиболее распространенным способом углубленной нефтепереработки.
Термический метод
Данный способ характеризуется тем, что на выходе получаются продукты с меньшим октановым числом, такие как:
Большая часть автомобильного бензина получается в результате применения данного метода.
Исходным сырьем для него выступает мазут, который, как правило, проходит предварительную подготовку, а также иные фракции.
Технологический процесс заключается в перегонке сырья при высокой температуре и давлении. В зависимости от частных особенностей, оно может составлять от 2 до 7 МПа.
Технологическая схема
Процесс переработки нефти и ее фракций происходит в специальных установках. В зависимости и метода крекинга, их конструкционные особенности могут в значительной степени различаться между собой.
Однако, учитывая, что большая часть нефти и ее фракций перерабатывается посредством термокаталитических реакций, следует остановиться именно на технологической схеме метода с применением катализаторов.
Сам процесс заключается в следующем: вакуумный газойль подается в специальную печь (реактор), где сырье нагревается до высоких температур (порядка +550 градусов по шкале Цельсия).
Испаряясь, конденсат начинает контактировать с катализатором, находящимся в состоянии взвеси. Затем полученные продукты в парообразном состоянии выводятся из реактора, где в нижней части ректификационной колонны проходят очистку от частиц катализатора и кокса. Затем происходит сепарация, после чего продукты крекинга выводятся из установки.
Реакторный блок
Наиболее значимой частью крекинговой установки является реакторный блок, где и происходят основные химические реакции.
В нефтеперерабатывающей промышленности используется несколько видов реакторных блоков:
Различаются данные реакторные установки методом подачи и агрегатным состоянием катализатора.
Циклоны
Промышленные аппараты, используемые для того, чтобы очистить пар и газ от посторонних фракций, называются циклонами. Они применяются во многих отраслях производства, в том числе и в нефтепереработке.
В крекинговой установке есть пара циклонов. Там они служат для того, чтобы очистить пары нефтепродуктов, полученных в результате реакции, от катализаторной пыли, находящейся в состоянии взвеси. Циклонные сепараторы находятся вне реактора, а сама очистка является одним из завершающих этапов каталитического крекинга.
Крекинг – Cracking, переработка нефти
Определение крекинга, история возникновения крекинга
Определение крекинга, история возникновения крекинга, виды крекинга
История
Первая в мире промышленная установка непрерывного термического крекинга черного золота была создана и запатентована инженером В. Г. Шуховым и его помощником С. П. Гавриловым в 1891 году (патент единой Руси№ 12926 от 27 ноября 1891 года). Была сделана экспериментальная установка. Научные и инженерные решения В. Г. Шухова повторены У. Бартоном при сооружении первой промышленной установки в США в 1915-1918 годах. Первые отечественные промышленные установки крекинга построены В. Г. Шуховым в 1934 году на заводе «Советский крекинг» в Баку.
Установка имела следующее устройство. Работающий под давлением котел находился над топкою, снабженной дымогарной трубой. Котел изготавливался из хорошего прочного железа с толщиной стенок около 2 см и был тщательно проклепан. Поднимающаяся вверх труба вела к водяному холодильнику, откуда газопровод шел к сборному резервуару. После того как товар крекинга проходил через счетный аппарат для жидкостей, находившаяся на днище этого резервуара труба разветвлялась на две боковые трубки. Каждая боковая трубка снабжалась контрольным краном; одна из них вела к трубе, а другая к трубе.
В начале крекинга котел наполняли мазутом. Благодаря теплу печи содержимое котла медленно нагревалось приблизительно до 130 градусов. При этом из мазута испарялись остатки содержащейся в нем воды. Сгущаясь в холодильнике, вода стекала потом в резервуар, из которого через трубу спускалась в канаву. Одновременно из мазута выходил воздух и другие газы. Они также попадали через холодильник в резервуар и по трубе отводились в нефтепровод.
После того как мазут избавлялся от воды, растворенного в нем воздуха и газов, он был готов к крекингу. Топку усиливали, и температура в котле медленно повышалась до 345 градусов. При этом начиналось испарение легких углеводородов, которые даже в холодильнике оставались в газообразном состоянии. Они попадали в резервуар, а затем через трубу (выходной кран которой был закрыт) в газопровод, трубу и обратно в резервуар. Так как эти легкие газообразные фракции не находили выхода, давление внутри установки начинало повышаться. Когда оно достигало 5 атм, легкие углеводороды уже не могли улетучиваться из главного котла. Эти сжатые газы поддерживали одинаковое давление в котле, холодильнике и резервуаре. Между тем под влиянием высокой температуры происходил процесс расщепления тяжелых углеводородов, которые превращались в более легкие, то есть в бензин. При температуре порядка 250 градусов они испарялись, попадали в холодильник и здесь конденсировались. Из холодильника бензин перетекал в резервуар и по трубе, а потом поступал в специальные уплотненные котлы. Здесь при пониженном давлении из бензина испарялись растворенные в нем легкие газообразные углеводороды. Эти газы постепенно удалялись из котлов, а полученный сырой бензин сливался в специальные баки.
По мере испарения легких фракций с повышением температуры содержимое в котле становилось все более упорным по отношению к теплоте. Работа прерывалась как только более половины его содержимого превращалось в бензин и проходило через холодильник. (Это количество было легко рассчитать благодаря счетчику жидкости.) После этого соединение с газопроводом прерывалось, а кран газопровода, соединенный с компрессором, открывался, и газ медленно улетучивался в компрессор низкого давления (одновременно закрывался нефтепровод, прерывая связь установки с полученным бензином). Топку гасили, и когда содержимое котла остывало, его сливали. Затем котел очищали от коксового налета и приготавливали к следующему запуску.
Метод крекинга, разработанный Бартоном, положил начало новому этапу в нефтеперерабатывающей промышленности. Благодаря ему удалось повысить в несколько раз выход таких ценных нефтепродуктов, как бензин и ароматические углеводороды.
С изобретением крекинга глубина нефтепереработки увеличилась. Выход светлых составляющих, из которых затем можно приготовить бензин, керосин, дизтопливо (соляр) повысился с 40-45 до 55-60%. Но главное даже не в этом. Новая технология позволила повнимательнее присмотреться к мазуту, использовать его в качестве сырья для производства масел.
Крекинг проводят нагреванием нефтяного сырья или одновременным воздействием на него высокой температуры и Катализаторов.
В первом случае процесс применяют для получения бензинов (низкооктановые компоненты автомобильных топлив) и газойлевых (компоненты флотских мазутов, газотурбинных и печных топлив) фракций, высокоароматизированного нефтяного сырья в производстве технического углерода (сажи), а также альфа-олефинов (термический крекинг); котельных, а также автомобильных и дизельных топлив (висбрекинг); нефтяногококса, а также углеводородных газов, бензинов и керосино-газойлевых фракций; этена, пропена, а также ароматических углеводородов (пиролиз нефтяного сырья).
Во втором случае процесс используют для получения базовых компонентов высокооктановых бензинов, газойлей, углеводородных газов (каталитический крекинг); бензиновых фракций, реактивных и дизельных топлив, нефтяных масел, а также сырья для процессов пиролиза нефтяных фракций и каталитического риформинга (гидрокрекинг).
Используют также другие виды пиролитического расщепления сырья, например процесс получения этена и ацетилена действием электрического разряда в метане (электрокрекинг), осуществляемый при 1000-1300 °C и 0,14 МПа в течение 0,01-0,1 с.
При каталитическом крекинге распад гораздо быстрее, чем при термическом. Кроме того, в этом случае происходит изомеризация с образованием насыщенных углеводородов. В результате выход лёгких продуктов больше, чем при термическом крекинге, а получаемый бензин содержит много изопарафинов и мало непредельных углеводородов, что обусловливает его высокое качество. Сырьём для каталитического крекинга служит обычно газойль, из которого получают 30-40% бензина (с содержанием изопарафинов до 50%), 45-55% каталитического газойля, 10-20% газа (в т. ч. 6-9% C4H10-бутиленовой фракции, являющейся химическим сырьём) и 3-6% кокса.
Для переработки средних и тяжёлых нефтяных дистиллятов с большим содержанием сернистых и смолистых соединений, непригодных поэтому для переработки чисто каталитическим способом, большое распространение получил каталитический крекинг в присутствии водорода, так называемый гидрокрекинг. Он осуществляется при температурах 350-450°С, давлении водорода 3-14 Мн/м2 (30-140 am) и расходе водорода 170-350 M3 на 1M3 сырья. Катализаторами служат окислы или сульфиды молибдена и никеля, молибдат кобальта и др. на крекирующих носителях, например на алюмосиликатах. Применение водорода обеспечивает эффективное гидрирование на Катализаторе высокомолекулярных и сернистых соединений с их последующим распадом на крекирующем компоненте. Благодаря этому выход светлых продуктов повышается до 70% (в пересчёте на нефть) и сильно снижается содержание в продуктах серы и непредельных углеводородов. Получаемые моторные топлива (бензин, реактивное и дизельное топлива) отличаются высоким качеством.
Урок №54. Глубокая переработка нефти. Крекинг, риформинг
Геологический разрез нефтеносной местности
Нефть и нефтепродукты, их применение
Нефть – это маслянистая жидкость от желтого или светло-бурого до черного цвета с характерным неприятным запахом. Нефть легче воды и не растворима в ней. Она встречается во многих местах земного шара, пропитывая пористые горные породы на различной глубине.
У нефти есть удивительная способность – образовывать на поверхности воды тончайшие пленки: чтобы покрыть микронной пленкой 1 км 2 требуется всего 10 л нефти.
Большой вред приносит загрязнение нефтью и нефтепродуктами водоемов.
Состав
Нефть – смесь газообразных, жидких и твердых углеводородов (всего более 100 различных соединений). Кроме углеводородов в нефти еще содержатся в небольшом количестве органические соединения, содержащие O, N, S и др. Имеются также высокомолекулярные соединения в виде смол и асфальтовых веществ.
Состав нефти еще зависит от месторождения. Но все они обычно содержат три вида углеводородов:
парафины, в основном нормального соединения,
По мнению большинства ученых, нефть представляет собой геохимически измененные остатки некогда населявших земной шар растений и животных. Эта теория органического происхождения нефти подкрепляется тем, что в нефти содержатся некоторые азотистые вещества – продукты распада веществ, присутствующих в тканях растений.
Есть и теории о неорганическом происхождении нефти : образовании ее в результате действия воды в толщах земного шара на раскаленные карбиды металлов (соединения металлов с углеродом) с последующим изменением получающихся углеводородов под влиянием высокой температуры, высокого давления, воздействия металлов, воздуха, водорода и др.
При добыче из нефтеносных пластов, залегающих в земной коре иногда на глубине нескольких километров, нефть либо выходит на поверхность под давлением находящихся на нем газов, либо выкачивается насосами.
Нефтяная отрасль промышленности сегодня – это крупный народно-хозяйственный комплекс, который живет и развивается по своим законам.
Что значит нефть сегодня для народного хозяйства страны?
сырье для нефтехимии в производстве синтетического каучука, спиртов, полиэтилена, полипропилена, широкой гаммы различных пластмасс и готовых изделий из них, искусственных тканей;
источник для выработки моторных топлив (бензина, керосина, дизельного и реактивных топлив), масел и смазок, а также котельно-печного топлива (мазут), строительных материалов (битумы, гудрон, асфальт);
сырье для получения ряда белковых препаратов, используемых в качестве добавок в корм скоту для стимуляции его роста.
Нефть – наше национальное богатство, источник могущества страны, фундамент ее экономики.
Нефтяной комплекс России включает 148 тыс. нефтяных скважин, 48,3 тыс. км магистральных нефтепроводов, 28 нефтеперерабатывающих заводов общей мощностью более 300 млн т/год нефти, а также большое количество других производственных объектов.
Из нефти вырабатывают реактивное топливо
На предприятиях нефтяной отрасли промышленности и обслуживающих ее отраслей занято около 900 тыс. работников, в том числе в сфере науки и научного обслуживания – около 20 тыс. человек. За последние десятилетия в структуре топливной отрасли промышленности произошли коренные изменения, связанные с уменьшением доли угольной отрасли промышленности и ростом отраслей по добыче и переработке нефти и газа. Если в 1940 г. они составляли 20,5%, то в 1984 г. – 75,3% от суммарной добычи минерального топлива. Теперь на первый план выдвигается природный газ и уголь открытой добычи. Потребление нефти для энергетических целей будет сокращено, напротив, расширится ее использование в качестве химического сырья. В настоящее время в структуре топливно-энергетического баланса на нефть и газ приходится 74%, при этом доля нефти сокращается, а доля газа растет и составляет примерно 41%. Доля угля 20%, оставшиеся 6% приходятся на электроэнергию.
Первичная переработка нефти
Переработку нефти впервые начали братья Дубинины на Кавказе.
Первичная переработка нефти заключается в ее перегонке.
Перегонку производят на нефтеперерабатывающих заводах после отделения нефтяных газов.
Нефть нагревают в трубчатой печи до 350 С, образовавшиеся пары вводят в ректификационную колонну снизу.
Схема переработки нефти методом ректификации
Из нефти выделяют разнообразные продукты, имеющие большое практическое значение. Сначала из нее удаляют растворенные газообразные углеводороды (преимущественно метан). После отгонки летучих углеводородов нефть нагревают. Первыми переходят в парообразное состояние и отгоняются углеводороды с небольшим числом атомов углерода в молекуле, имеющие относительно низкую температуру кипения. С повышением температуры смеси перегоняются углеводороды с более высокой температурой кипения. Таким образом, можно собрать отдельные смеси (фракции) нефти. Чаще всего при такой перегонке получают четыре летучие фракции, которые затем подвергаются дальнейшему разделению.
Основные фракции переработки нефти методом ректификации
Керосиновая фракция включает углеводороды от С 12 Н 26 до С 18 Н 38 с температурой кипения от 180 до 300 °С. Керосин после очистки используется в качестве горючего для тракторов, реактивных самолетов и ракет.
М азут – о статок после перегонки нефти – содержит углеводороды с большим числом атомов углерода (до многих десятков) в молекуле.
Мазут также разделяют на фракции перегонкой под уменьшенным давлением, чтобы избежать разложения.
В результате получают:
Соляровые масла (дизельное топливо).
Смазочные масла (автотракторные, авиационные, индустриальные и др.).
Вазелин (технический вазелин применяется для смазки металлических изделий с целью предохранения их от коррозии, очищенный вазелин используется как основа для косметических средств и в медицине).
Из некоторых сортов нефти получают парафин (для производства спичек, свечей и др.).
Продукты переработки нефти
РИФОРМИНГ
(вторичная переработка нефти)
Бензина, получаемого при перегонке нефти, не хватает для покрытия всех нужд. В лучшем случае из нефти удается получить до 20% бензина, остальное – высококипящие продукты.
В связи с этим перед химией стала задача найти способы получения бензина в большом количестве. Удобный путь был найден с помощью, созданной А.М. Бутлеровым теории строения органических соединений. Высококипящие продукты разгонки нефти непригодны для употребления в качестве моторного топлива. Их высокая температура кипения обусловлена тем, что молекулы таких углеводородов представляют собой слишком длинные цепи. Если расщепить крупные молекулы, содержащие до 18 углеродных атомов, получаются низкокипящие продукты типа бензина.
Основным способом переработки нефтяных фракций являются различные виды крекинга. Впервые (1871–1878) крекинг нефти был осуществлен в лабораторном и полупромышленном масштабе сотрудником Петербургского технологического института А.А. Летним. Первый патент на установку для крекинга заявлен Шуховым в 1891 г. В промышленности крекинг получил распространение с 1920-х гг.
Крекинг – это термическое разложение углеводородов и других составных частей нефти. Чем выше температура, тем больше скорость крекинга и больше выход газов и ароматических углеводородов.
Крекинг нефтяных фракций кроме жидких продуктов дает первостепенно важное сырье – газы, содержащие непредельные углеводороды (олефины).
Различают следующие основные виды крекинга:
жидкофазный (20–60 атм, 430–550 °С), дает непредельный и насыщенный бензины, выход бензина порядка 50%, газов 10%;
парофазный (обычное или пониженное давление, 600 °С), дает непредельно-ароматический бензин, выход меньше, чем при жидкофазном крекинге, образуется большое количество газов;
пиролиз нефти – разложение органических веществ без доступа воздуха при высокой температуре (обычное или пониженное давление, 650–700 °С), дает смесь ароматических углеводородов (пиробензол), выход порядка 15%, более половины сырья превращается в газы;
деструктивное гидрирование (давление водорода 200–250 атм, 300–400 °С в присутствии катализаторов – железа, никеля, вольфрама и др.), дает предельный бензин с выходом до 90%;
каталитический риформинг – превращение низкосортных бензинов в высокосортные высокооктановые бензины или ароматические углеводороды.