Что такое квадрант координатной плоскости
Геометрия: координаты, фигуры
Координатная плоскость
Определение координатной плоскости
Теория
Координатная плоскость. Правила
Плоскость – это понятно. Легче объяснить, чего на плоскости нет – впадин, возвышений прогибов.
Координатная плоскость – это плоскость, на которой нарисованы две оси под прямым углом.
Второе число – проекция точки на ось Y.
Точка на координатной плоскости. Точка она совсем маленькая. Координаты точки это пара чисел, например
Координатная плоскость, квадранты
Задачи на бумаге
В каком квадранте лежит точка
Нарисовать эти точки на плоскости
Задачи найти координаты точки …
Игра – найди координаты точки.
Для этого запускаем скретч.
Улитка спрашивает: «где цель?»
Нужно правильно ввести положение точки по оси X и по оси Y внизу экрана.
Прямоугольная система координат
Содержание
Иногда в жизни, чтобы найти на плоскости какой-то объект, его описывают двумя значениями. Так каждое место в зале кинотеатра имеет два параметра: ряд и место. Каждая клетка на шахматной доске или при игре в «морской бой» описывается номером строки и буквой, обозначающей столбец.
В математике определение местоположения объекта на плоскости придумали быстро находить с помощью системы координат, образованной двумя прямыми, называемых координатными осями (или осями координат).
Ось координат
Абсцисса, ордината, начало координат и единичный отрезок
Оси пересекаются под прямым углом перпендикулярно друг к другу, поэтому такая система координат и называется прямоугольной.
На каждой оси выбирается единичный отрезок, с помощью которого вычисляются координаты объекта. Длиной единичного отрезка может выступать любая единица измерения, но она должна быть одинаковой на каждой из осей. То есть, если единичный отрезок на оси абсцисс задан, например, равным 1 см, то и на оси ординат единичный отрезок тоже должен быть равен одному сантиметру.
Абсцисса, ордината, начало координат и единичный отрезок
Положительное и отрицательное направление
У осей стрелкой задается положительное направление:
Таким образом, все вместе:
образуют в математике прямоугольную систему координат, плоскость называют координатной.
Или другими словами:
Четверти
Осями координат плоскость делится на 4 части, их обозначают римскими цифрами. Каждая часть называется «квадрант». Другие названия: «координатный угол» или «четверть». Нумерация четвертей принята против часовой стрелки в том порядке, в котором указано на рисунке ниже.
Четверти координатной плоскости
Немного из истории
В латинском языке слово «координаты» получилось из двух других: co – «совместно» и ordinatus – «определенный», «упорядоченный».
Впервые необходимость нахождения координат объектов возникла в географии и астрономии. Для этого использовали широту и долготу, определяющие расположение точки на небесной сфере или на поверхности земного шара. Таким образом начали вычислять координаты точек еще в 14 веке. Но упорядочил и систематизировал все знания в 17 веке французский математик по имени Рене Декарт. Поэтому прямоугольную систему координат также называют еще и «декартовой».
Урок 46 Бесплатно Координатная плоскость
До этого занятия мы обсуждали с вами только прямую и все, что с ней связано.
Сегодня урок посвятим изучению плоскости.
Узнаем, что называют координатной плоскостью и как получить её из обычной плоскости.
Познакомимся с прямоугольной системой координат на плоскости и разберем ее основные характеристики и особенности.
Выясним области применения и использования систем координат в практических целях и в жизни человека.
Научимся пользоваться прямоугольной системой координат на плоскости: определять координаты заданных точек и по заданным координатам точки находить ее положение на координатной плоскости.
Координатная плоскость и ее основные особенности
Представим движение автомобиля по прямолинейному участку дороги.
Любой прямолинейный участок дороги легко представить с помощью координатной прямой.
Координатная прямая позволяет нам связать точки на этой прямой с числом.
Вам уже известно, как из любой прямой получить координатную прямую.
Необходимо на прямой выбрать начало отсчета, задать направление и единичный отрезок (масштаб).
В результате с помощью координатной прямой вы однозначно определите, что конкретной точке на прямой соответствует ее единственное верное значение с соответствующим знаком.
И наоборот, если известна координата точки, то можно определить положение этой точки на координатной прямой.
Таким образом, для указания местоположения точки (в нашем случае автомобиля) на прямой нужна только одна координата на координатной оси.
В жизни часто приходится устанавливать положение точки по нескольким параметрам. В таком случае для однозначного определения положения точки требуется больше информации.
Предположим, купили мы билет на концерт.
Чтобы определить расположение конкретного кресла в зале, в билете указывают адрес места: номер ряда и номер кресла в ряду.
Так как каждому месту ставится в соответствие два числа, то для однозначного определения положения точки нам не будет хватать одной координатной прямой.
Для обозначения числами точного положения точки на плоскости используют математическую модель, которую называют координатной плоскостью.
Чтобы из обычной плоскости получить координатную, необходимо на этой плоскости задать определенную систему координат.
Существует различные системы координат.
Мы рассмотрим прямоугольную систему координат на плоскости.
Прямоугольной системой координат на плоскости называют систему из двух взаимно перпендикулярных прямых с общим началом отсчета и общей масштабной единицей.
Рассмотрим основные составляющие прямоугольной системы координат.
Единичный отрезок выбирается чаще всего одинаковый для каждой координатной оси.
Направление осей указывается стрелкой, каждая ось подписывается буквой.
Для координатных осей обычно выбирают положительное направление, т.е. «по умолчанию» принято использовать правостороннюю систему координат, в которой за положительное направление осей принимают ось ординат, направленную вверх, и ось абсцисс, направленную вправо.
Если приходится по каким-либо причинам использовать левостороннюю прямоугольную систему координат, то данный факт оговаривают в задаче.
Положение точки на плоскости определяется двумя упорядоченными числами: координатами х и y.
Координату точки на плоскости записывают так:
Например, координата точки A:
A(2;-1), где
У меня есть дополнительная информация к этой части урока!
Чтобы запомнить порядок следования абсциссы и ординаты в записи координаты точки, часто используют такое сравнение:
Представьте, многоэтажный дом, а в нем вашу квартиру.
Чтобы попасть домой, первым делом вам необходимо зайти в нужный подъезд (координата по оси Ох), а затем подняться на нужный этаж (координата по оси Оу).
Координаты могут иметь различные числовые значения, в том числе быть равными нулю.
Если ордината точки равна нулю, то точка лежит на оси Ох.
Если абсцисса точки равна нулю, то точка лежит на оси Оу.
Нумерация координатных плоскостей ведется против часовой стрелки римскими цифрами I, II, III, IV.
Если точка имеет положительную координату х (х > 0) и положительную координату у (у > 0), то она лежит в I координатной четверти.
Если точка имеет отрицательную координату х (х 0), то она лежит во II координатной четверти.
Античные ученые, мыслители (астрономы, философы, географы) на протяжении нескольких столетий пытались создать теорию о происхождении окружающего мира и всего мироздания в целом, изобразить известные им моря, океаны, страны в чертежах, а звездное небо на карте.
Благодаря великим умам появилось огромное множество фундаментальных знаний, понятий, представлений.
Появилось представление о Земле как о шаре, о ее расположение на звездном небе; создавались все более совершенные карты и планы, методы определения географических координат; на карту наносились линии широты и долготы, сетка параллелей и меридиан.
Долгое время лишь география и астрономия пользовались данными знаниями.
В XIV веке французский философ, астроном, математик Никола Орем пытался применить метод координат к геометрии.
Одной из самых важных математических работ Орема стал «Трактат о конфигурации качеств».
Именно в этой работе он ввел графическое изображение зависимости одной величины от другой с помощью прямоугольной системы координат, называя широтой и долготой то, что сейчас называют абсциссой и ординатой.
Это нововведение стало отправной точкой создания современного метода координат.
Научному обоснованию прямоугольной системы координат мы обязаны французскому ученому, философу Рене Декарту.
Он обобщил известные на то время знания по этой теме и дал научное истолкование прямоугольной системе координат.
Предложенная им прямоугольная система координат получила его имя, ее стали называть декартовой системой координат.
Координатный метод описания геометрических объектов положил начало аналитической геометрии.
Создание аналитической геометрии позволило переводить геометрические свойства тел и кривых на алгебраический язык, вместо геометрических построений использовать расчеты; кроме того, стало возможным анализировать геометрические объекты с помощью уравнений.
Развитием координатного метода и аналитической геометрии занимался также современник Рене Декарта, знаменитый французский ученый Пьер Ферма.
Однако все научные труды Ферма были опубликованы только после его смерти
Пройти тест и получить оценку можно после входа или регистрации
Прямоугольная система координат. Ось абсцисс и ординат
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).
Прямоугольная декартова система координат
Французский математик Рене Декарт преддложил вместо геометрических построений использовать математические расчеты. Так появился метод координат, о котором мы сейчас расскажем.
Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Например, координаты школы тоже можно записать числами — они помогут понять, где именно находится наша школа. С точками на плоскости та же история.
Координатой можно назвать номер столика в кафе, широту и долготу на географической карте, положение точки на числовой оси и даже номер телефона друга. Проще говоря, когда мы обозначаем какой-то объект набором букв, чисел или других символов, тем самым мы задаем его координаты.
Прямоугольная система координат — это система координат, которую изобрел математик Рене Декарт, ее еще называют «декартова система координат». Она представляет собой два взаимно перпендикулярных луча с началом отсчета в точке их пересечения.
Чтобы найти координаты, нужны ориентиры, от которых будет идти отсчет. На плоскости в этой роли выступят две числовые оси.
Чертеж начинается с горизонтальной оси, которая называется осью абсцисс и обозначается латинской буквой x (икс). Записывают ось так: Ox. Положительное направление оси абсцисс обозначается стрелкой слева направо.
Затем проводят вертикальную ось, которая называется осью ординат и обозначается y (игрек). Записывают ось Oy. Положительное направление оси ординат показываем стрелкой снизу вверх.
Оси взаимно перпендикулярны, а значит угол между ними равен 90°. Точка пересечения является началом отсчета для каждой из осей и обозначается так: O. Начало координат делит оси на две части: положительную и отрицательную.
Единичные отрезки располагаются справа и слева от оси Oy, вверх и вниз от оси Oy. Числовые значения на оси Oy располагаются слева или справа, на оси Ox — внизу под ней. Чаще всего единичные отрезки двух осей соответствуют друг другу, но бывают задачи, где они не равны.
Оси координат делят плоскость на четыре угла — четыре координатные четверти.
У каждой из координатных четвертей есть свой номер и обозначение в виде римской цифры. Отсчет идет против часовой стрелки:
Чтобы узнать координаты точки в прямоугольной системе координат, нужно опустить от точки перпендикуляр на каждую ось и посчитать количество единичных отрезков от нулевой отметки до опущенного перпендикуляра. Координаты записывают в скобках, первая по оси Ох, вторая по оси Оу.
Прямоугольная система координат в трехмерном пространстве
Трехмерное евклидово пространство состоит из трех взаимно перпендикулярных прямых: Ох, Оу, Оz, где Оz — ось аппликат. По направлению координатных осей есть разделение на правую и левую прямоугольные системы координат трехмерного пространства.
Оси координат пересекаются в точке О, которую называют началом. У каждой оси есть положительное направление, которое отмечается стрелкой. Если при повороте Ох против часовой стрелки на 90° ее положительное направление совпадает с положительным Оу, тогда это применимо для положительного направления Оz. Такую систему считают правой. Объясняем на пальцах! Если сравнить направление Х с большим пальцем руки, то указательный отвечает за Y, а средний за Z.
Также образуется левая система координат. Совмещать обе системы нет смысла, так как соответствующие оси не совпадут.
Координаты точки в декартовой системе координат
Для начала отложим точку М на координатной оси Ох. Любое действительное число xM равно единственной точке М, которая располагается на данной прямой. При этом начало отсчета координатных прямых всегда ноль.
Каждая точка М, которая расположена на Ох, равна действительному числу xM. Этим действительным числом и является ноль, если точка М расположена в начале координат, то есть на пересечении Оx и Оу. Если точка удалена в положительном направлении, то число длины отрезка положительно и наоборот.
Число xM — это координата точки М на заданной координатной прямой.
Пусть точка будет проекцией точки Mx на Ох, а My на Оу. Значит, через точку М можно провести перпендикулярные осям Оx и Оу прямые, после чего получим соответственные точки пересечения Mx и My.Тогда у точки Mx на оси Оx есть соответствующее число xM, а My на Оу — yM. Как это выглядит на координатных осях:
Каждой точке М на заданной плоскости в прямоугольной декартовой системе координат соответствует пара чисел (xM, yM), которые называются ее координатами. Абсцисса М — это xM, ордината М — это yM.
Обратное утверждение тоже верно: каждая пара (xM, yM) имеет соответствующую точку на плоскости.
Координаты точки в трехмерном пространстве
Сформулируем определение точки М в трехмерном пространстве.
Пусть Mx, My, Mz — это проекции точки М на соответствующие оси Оx, Оy, Оz. Тогда значения этих точек на осях примут значения xM, yM, zM. Как это выглядит на координатных прямых:
Чтобы получить проекции точки М, нужно добавить перпендикулярные прямые Оx, Оy, Оz, продолжить их и изобразить в виде плоскостей, которые проходят через М. Так плоскости пересекутся в Mx, My, Mz.
У каждой точки трехмерного пространства есть свои данные (xM, yM, zM), которые являются координатами точки М.
xM, yM, zM — это числа, которые являются абсциссой, ординатой и аппликатой данной точки М. Верно и обратное утверждение: каждая упорядоченная тройка действительных чисел (xM, yM, zM) в заданной прямоугольной системе координат имеет одну соответствующую точку М трехмерного пространства.
Прямоугольная система координат
Прямоугольная система координат — прямолинейная система координат с взаимно перпендикулярными осями на плоскости или в пространстве. Наиболее простая и поэтому часто используемая система координат. Очень легко и прямо обобщается для пространств любой размерности, что также способствует ее широкому применению.
Содержание
Прямоугольная система координат на плоскости
Прямоугольная система координат на плоскости образуется двумя взаимно перпендикулярными осями координат и
. Оси координат пересекаются в точке
, которая называется началом координат, на каждой оси выбрано положительное направление.
Положение точки на плоскости определяется двумя координатами
и
. Координата
равна длине отрезка
, координата
— длине отрезка
в выбранных единицах измерения. Отрезки
и
определяются линиями, проведёнными из точки
параллельно осям
и
соответственно.
При этом координате приписывается знак минус, если точка
лежит на луче
(а не на луче
, как на рисунке). Координате
приписывается знак минус, если точка
лежит на луче
. Таким образом,
и
являются отрицательными направлениями осей координат (каждая ось координат рассматривается как числовая ось).
Координата называется абсциссой точки
, координата
— ординатой точки
.
Символически это записывают так:
или указывают принадлежность координат конкретной точке с помощью индекса:
Прямоугольная система координат в пространстве
Прямоугольная система координат в пространстве (в этом параграфе имеется в виду трехмерное пространство, о более многомерных пространствах — см. ниже) образуется тремя взаимно перпендикулярными осями координат ,
и
. Оси координат пересекаются в точке
, которая называется началом координат, на каждой оси выбрано положительное направление, указанное стрелками, и единица измерения отрезков на осях. Единицы измерения обычно (не обязательно [2] ) одинаковы для всех осей.
— ось абсцисс,
— ось ординат,
— ось аппликат.
Положение точки в пространстве определяется тремя координатами
,
и
. Координата
равна длине отрезка
, координата
— длине отрезка
, координата
— длине отрезка
в выбранных единицах измерения. Отрезки
,
и
определяются плоскостями, проведёнными из точки
параллельно плоскостям
,
и
соответственно.
Координата называется абсциссой точки
, координата
— ординатой точки
, координата
— аппликатой точки
.
Символически это записывают так:
или привязывают запись координат к конкретной точке с помощью индекса:
Каждая ось рассматривается как числовая прямая, т. е. имеет положительное направление, а точкам, лежащим на отрицательном луче приписываются отрицательные значения координаты (расстояние берется со знаком минус). То есть, если бы, например, точка лежала не как на рисунке — на луче
, а на его продолжении в обратную сторону от точки
(на отрицательной части оси
), то абсцисса
точки
была бы отрицательной (минус расстоянию
). Аналогично и для двух других осей.
Прямоугольные все системы координат в трехмерном пространстве делятся на два класса — правые (также используются термины положительные, стандартные) и левые. Обычно по умолчанию стараются использовать правые координатные системы, а при их графическом изображении еще и располагать их если можно, в одном из нескольких обычных (традиционных) положений. (На рис. 2 изображена правая координатная система). Правую и левую системы координат невозможно поворотами [3] совместить так, чтобы совпали соответствующие оси (и их направления). Определить, к какому классу относится какая-либо конкретно взятая система координат можно используя правило правой руки, правило винта итп (положительное направление осей выбирают так, чтобы при повороте оси против часовой стрелки на 90° её положительное направление совпало с положительным направлением оси
, если этот поворот наблюдать со стороны положительного направления оси
).
Прямоугольная система координат в многомерном пространстве
Прямоугольная система координат может быть использована и в пространстве любой конечной размерности аналогично тому, как это делается для трехмерного пространства. Количество координатных осей при этом равно размерности пространства (в этом параграфе будем обозначать ее n).
Для обозначения координат обычно [4] применяют не разные буквы, а одну и ту же букву с числовым индексом. Чаще всего это:
Для обозначения произвольной i-ой координаты из этого набора используют буквенный индекс:
а нередко обозначение используют и для обозначения всего набора, подразумевая, что индекс пробегает весь набор значений:
.
Прямоугольные координаты вектора
Для векторов (направленных отрезков), начало которых не совпадает с началом координат, прямоугольные координаты можно определить одним из двух способов:
2. Вместо этого можно просто вычесть из координат конца вектора (направленного отрезка) координаты его начала.
В прямоугольных координатах очень просто записываются все операции над векторами:
а отсюда и вычитание и деление:
(Это верно для любой размерности n и даже, наравне с прямоугольными, для косоугольных координат).
(Только в прямоугольных координатах с единичным масштабом по всем осям).
для любой размерности пространства,
Очевидно, всё это позволяет, если надо, свести все операции над векторами к достаточно простым операциям над числами.
В трёхмерном случае такие орты обычно обозначаются
,
и
,
и
.
Могут также применяться обозначения со стрелками (,
и
или
,
и
) или другие в соответствии с обычным способом обозначения векторов в той или иной литературе.
При этом в случае правой системы координат действительны следующие формулы с векторными произведениями ортов:
Для более высоких, чем 3, размерностей (или для общего случая, когда размерность может быть любой) обычно для ортов применяют вместо этого обозначения с числовыми индексами, достаточно часто [10] это
Вектор любой размерности раскладывается по базису (координаты служат коэффициентами разложения):
а для ортонормированного базиса координаты еще и очень легко найти через скалярные произведения с ортами:
История
Впервые прямоугольную систему координат ввел Рене Декарт в своей работе «Рассуждение о методе» в 1637 году. Поэтому прямоугольную систему координат называют также — Декартова система координат. Координатный метод описания геометрических объектов положил начало аналитической геометрии. Вклад в развитие координатного метода внес также Пьер Ферма, однако его работы были впервые опубликованы уже после его смерти. Декарт и Ферма применяли координатный метод только на плоскости.
Координатный метод для трёхмерного пространства впервые применил Леонард Эйлер уже в XVIII веке.
Использование ортов восходит, по-видимому, к Гамильтону и Максвеллу.