Что такое квадрат паркера
math4school.ru
Греко-латинские квадраты Эйлера
История математики заполнена прозорливыми догадками — интуитивными гипотезами людей с большой математической интуицией. Часто эти гипотезы в течение столетий ждут своего доказательства или опровержения. Когда же, в конце концов, они появляются, то становятся математическими событиями первой величины. Об одном таком событии докладывалось в апреле 1959 года на ежегодной встрече Американского математического общества. Это опровержение известной гипотезы великого математика Леонарда Эйлера.
Леонард Эйлер (1707–1783 )
Эйлер был убежден, что греко-латинские квадраты определенных порядков теоретически не существуют. Три математика — Е.Т. Паркер, Р.С. Боуз и С.С. Шрикханде — полностью опровергли гипотезу Эйлера. Они разработали методы построения нескольких квадратов, существование которых, по мнению последователей Эйлера, 177 лет считалось невозможным.
Но с подробностями следует повременить, познакомимся сперва с основным предметом этой статьи. Итак, знакомьтесь.
Латинские и греко-латинские квадраты
Рисунок 1. Примеры латинских квадратов 2-го и 3-го порядков
Внимание Эйлера к латинским квадратам было вызвано изучением более сложных математических объектов — греко-латинских квадратов. Чтобы понять, что это такое, рассмотрим левый квадрат на рисунке 2.
Рисунок 2. Греко-латинский квадрат (справа), образованный наложением
двух латинских квадратов (левого и центрального)
Правый квадрат на рисунке 2 дает одно из решений популярной карточной задачи XVIII века:
Возьмите из карточной колоды всех тузов, королей, дам, валетов и расположите их в квадрате так, чтобы каждый ряд и каждая колонка содержали все четыре наименования и все четыре масти.
Читатель может поискать другое решение, удовлетворяющее условию, чтобы две главные диагонали содержали все четыре масти и все четыре наименования (см. в конце статьи).
Возможно существование и большего количества таких латинских квадратов, любая пара из которых ортогональна. На рисунке 3 изображено четыре взаимно-ортогональных латинских квадрата пятого порядка, для которых в качестве символов использованы цифры.
Рисунок 3. Четыре взаимно-ортогональных латинских квадрата 5-го порядка
Гипотеза Эйлера
Еще во времена Эйлера было доказано, что греко-латинские квадраты 2-го порядка не существуют. Были известны квадраты 3-го, 4-го и 5-го порядков. Ну а что можно сказать о квадратах 6-го порядка? Эйлер сформулировал этот вопрос в виде «задачи о 36 офицерах»:
Необходимо разместить 36 офицеров шести различных полков и шести различных воинских званий в каре так, чтобы в каждой колонне и в каждом ряду был ровно один офицер каждого полка и каждого воинского звания.
У меня нет сомнений в том, что невозможно построить квадрат с 36 ячейками. То же верно и для n = 10, n = 14 и вообще для всех чисел, не кратных 4.
Заключительное предложение упомянутой выше научной работы Эйлера гласит:
На этом я заканчиваю свои исследования вопроса, который, хотя сам по себе полезен мало, приводит нас к довольно важным результатам комбинаторики, а также общей теории магических квадратов.
В 1901 году французский математик Гастон Тьерри опубликовал доказательство того, что гипотеза Эйлера верна для квадратов 6-го порядка. Тьерри со своим братом проделал огромную работу. Он составил каталог всех возможных вариантов построения латинского квадрата 6-го порядка, а затем показал, что никакие пары не образуют греко-латинский квадрат. Это, конечно, подкрепило гипотезу Эйлера. Несколько математиков даже опубликовали «исчерпывающие доказательства» того, что гипотеза верна, но позже в этих доказательствах были обнаружены ошибки.
Мало полезный вопрос
История гипотезы Эйлера является знаменательным примером единства науки — ведь начальный импульс, который привел к ее решению, выдвинут практическими нуждами планирования экспериментирования. Исследования, которые сам Эйлер считал бесполезными, оказывается, имеют огромную ценность во многих отраслях науки.
Сэр Рональд Фишер, профессор генетики Калифорнийского университета и один из ведущих мировых статистиков и биологов своего времени, был первым, кто еще в начале 1920-х годов показал, как использовать латинские квадраты в аграрных исследованиях.
| | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
aα | bβ | cγ | dδ |
---|---|---|---|
bγ | aδ | dα | cβ |
cδ | dγ | aβ | bα |
dβ | cα | bδ | aγ |
История
Занимаясь греко-латинскими квадратами Эйлер доказал, что квадратов второго порядка не существует, зато были найдены квадраты 3, 4, и 5 порядков. Квадрата 6 порядка обнаружить не удалось, но доказать, что их не существует, Эйлеру не удалось. Но им была высказана гипотеза, что не существует квадрата порядка N, если N — чётное число, не делящееся на 4 (то есть 6, 10, 14 и т. д.). В 1901 гипотеза была подтверждена для N=6 математиком Гастоном Терри. Это было сделано перебором всех возможных вариантов квадрата. А в 1959 году гипотеза была опровергнута Э. Т. Паркером, Р. К. Боусом и С. С. Шрикхердом, обнаружившими квадрат порядка 10
00 | 47 | 18 | 76 | 29 | 93 | 85 | 34 | 61 | 52 |
86 | 11 | 57 | 28 | 70 | 39 | 94 | 45 | 02 | 63 |
95 | 80 | 22 | 67 | 38 | 71 | 49 | 56 | 13 | 04 |
59 | 96 | 81 | 33 | 07 | 48 | 72 | 60 | 24 | 15 |
73 | 69 | 90 | 82 | 44 | 17 | 58 | 01 | 35 | 26 |
68 | 74 | 09 | 91 | 83 | 55 | 27 | 12 | 46 | 30 |
37 | 08 | 75 | 19 | 92 | 84 | 66 | 23 | 50 | 41 |
14 | 25 | 36 | 40 | 51 | 62 | 03 | 77 | 88 | 99 |
21 | 32 | 43 | 54 | 65 | 06 | 10 | 89 | 97 | 78 |
42 | 53 | 64 | 05 | 16 | 20 | 31 | 98 | 79 | 87 |
После были обнаружены квадраты 14, 18 и т. д. порядков.
Задачи о греко-латинских квадратах
Сам Эйлер поставил задачу о нахождении квадрата 6 порядка так:
В 6 полках есть 36 офицеров 6 различных званий. Нужно так разместить их в каре чтобы все офицеры в каждой колонне и шеренге были разных званий и из разных полков. Как уже было указано такая задача неразрешима.
Другая задача звучит так:
нужно разложить 16 карт (валеты, дамы, короли и тузы разных мастей) так чтобы в каждом ряду и столбце было по одной карте каждой масти и значения. Эта задача была известна ещё до Эйлера. Её решением будет любой греко-римский квадрат порядка 4. Также для этой задачи есть варианты в которых требуется, чтобы на главных диагоналях выполнялись те же требования. В другом варианте требуется чтобы цвета мастей шли в шахматном порядке. Все эти задачи имеют решения.
Применение греко-латинских квадратов
Если есть система, на которую действуют 4 различных параметра (например воздействие N различных рекламных роликов на население N различных возрастных, социальных и этнических групп), которые могут принимать по N значений нужно рассмотреть греко-латинский квадрат порядка N. Тогда параметры будут соответствовать ряду, столбцу, первому и второму числу. таким образом можно провести экспериментов, вместо
(в случае полного перебора вариантов)
Греко-латинский квадрат
Греко-латинский квадрат — квадрат N×N в каждой клетке которого стоят 2 числа от 1 до N так, что выполняются следующие условия:
Такие квадраты, как видно и из названия, тесно связаны с латинскими квадратами, для которых выполняется лишь первое правило, и в каждой ячейке которого стоит только одно число. Само название и тех и других квадратов пошло от Эйлера который использовал вместо цифр греческие и латинские буквы.
Греко-латинский квадрат можно рассматривать как наложение двух ортогональных латинских квадратов.
|
|
aα | bβ | cγ | dδ |
---|---|---|---|
bγ | aδ | dα | cβ |
cδ | dγ | aβ | bα |
dβ | cα | bδ | aγ |
История
Занимаясь греко-латинскими квадратами Эйлер доказал, что квадратов второго порядка не существует, зато были найдены квадраты 3, 4, и 5 порядков. Квадрата 6 порядка обнаружить не удалось, но доказать, что их не существует, Эйлеру не удалось. Но им была высказана гипотеза, что не существует квадрата порядка N, если N — чётное число, не делящееся на 4 (то есть 6, 10, 14 и т. д.). В 1901 гипотеза была подтверждена для N=6 математиком Гастоном Терри. Это было сделано перебором всех возможных вариантов квадрата. А в 1959 году гипотеза была опровергнута Э. Т. Паркером, Р. К. Боусом и С. С. Шрикхердом, обнаружившими квадрат порядка 10
00 | 47 | 18 | 76 | 29 | 93 | 85 | 34 | 61 | 52 |
86 | 11 | 57 | 28 | 70 | 39 | 94 | 45 | 02 | 63 |
95 | 80 | 22 | 67 | 38 | 71 | 49 | 56 | 13 | 04 |
59 | 96 | 81 | 33 | 07 | 48 | 72 | 60 | 24 | 15 |
73 | 69 | 90 | 82 | 44 | 17 | 58 | 01 | 35 | 26 |
68 | 74 | 09 | 91 | 83 | 55 | 27 | 12 | 46 | 30 |
37 | 08 | 75 | 19 | 92 | 84 | 66 | 23 | 50 | 41 |
14 | 25 | 36 | 40 | 51 | 62 | 03 | 77 | 88 | 99 |
21 | 32 | 43 | 54 | 65 | 06 | 10 | 89 | 97 | 78 |
42 | 53 | 64 | 05 | 16 | 20 | 31 | 98 | 79 | 87 |
После были обнаружены квадраты 14, 18 и т. д. порядков.
Задачи о греко-латинских квадратах
Сам Эйлер поставил задачу о нахождении квадрата 6 порядка так:
В 6 полках есть 36 офицеров 6 различных званий. Нужно так разместить их в каре чтобы все офицеры в каждой колонне и шеренге были разных званий и из разных полков. Как уже было указано такая задача неразрешима.
Другая задача звучит так:
нужно разложить 16 карт (валеты, дамы, короли и тузы разных мастей) так чтобы в каждом ряду и столбце было по одной карте каждой масти и значения. Эта задача была известна ещё до Эйлера. Её решением будет любой греко-римский квадрат порядка 4. Также для этой задачи есть варианты в которых требуется, чтобы на главных диагоналях выполнялись те же требования. В другом варианте требуется чтобы цвета мастей шли в шахматном порядке. Все эти задачи имеют решения.
Применение греко-латинских квадратов
Если есть система, на которую действуют 4 различных параметра (например воздействие N различных рекламных роликов на население N различных возрастных, социальных и этнических групп), которые могут принимать по N значений нужно рассмотреть греко-латинский квадрат порядка N. Тогда параметры будут соответствовать ряду, столбцу, первому и второму числу. таким образом можно провести экспериментов, вместо
(в случае полного перебора вариантов)
- антхилл в мобайл легенд что
- Разбираемся с понятием развал схождения в автомобильном мире