Что такое квантовые генераторы
Квантовый генератор
Ква́нтовый генератор — общее название источников электромагнитного излучения, работающих на основе вынужденного излучения атомов и молекул. В зависимости от того, какую длину волны излучает квантовый генератор, он может называться по разному: лазер, мазер, разер, газер.
История создания
Квантовый генератор основан на принципе вынужденного излучения, предложенного А. Эйнштейном: когда квантовая система возбуждена и одновременно присутствует излучение соответствующей квантовому переходу частоты, вероятность скачка системы на более низкий энергетический уровень повышается пропорционально плотности уже присутствующих фотонов излучения. На возможность создания квантового генератора на этой основе указал советский физик В. А. Фабрикант в конце 40-х годов.
Первый мазер на молекулах аммиака был сделан в 1954 году одновременно и независимо в Физическом институте Академии наук СССР Н. Г. Басовым и А. М. Прохоровым и в Колумбийском университете Ч. Таунсом с сотрудниками. В 1964 году за эту работу им была присуждена Нобелевская премия по физике.
Литература
Полезное
Смотреть что такое «Квантовый генератор» в других словарях:
КВАНТОВЫЙ ГЕНЕРАТОР — генератор эл. магн. волн, в к ром используется явление вынужденного излучения (см. КВАНТОВАЯ ЭЛЕКТРОНИКА). К. г. радиодиапазона, так же как и квантовый усилитель, наз. мазером. Первый К. г. был создан в диапазоне СВЧ в 1955. Активной средой в нём … Физическая энциклопедия
КВАНТОВЫЙ ГЕНЕРАТОР — источник когерентного электромагнитного излучения, действие которого основано на вынужденном излучении фотонов атомами, ионами и молекулами. Квантовые генераторы радиодиапазона называются мазерами, квантовые генераторы оптического диапазона… … Большой Энциклопедический словарь
квантовый генератор — Источник когерентного излучения, основанный на использовании вынужденного испускания и обратной связи. Примечание Квантовые генераторы разделяются по типу активного вещества, способу возбуждения и по другим признакам, например, пучковые, газовые … Справочник технического переводчика
КВАНТОВЫЙ ГЕНЕРАТОР — источник монохроматического когерентного электромагнитного излучения (оптического или радиодиапазона), действующий на основе вынужденного излучения возбуждённых атомов, молекул, ионов. В качестве рабочего вещества используют газы, кристаллические … Большая политехническая энциклопедия
квантовый генератор — устройство для генерирования когерентного электромагнитного излучения. Когерентность – это согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов, проявляющееся при их сложении, напр. при интерференции … Энциклопедия техники
квантовый генератор — источник когерентного электромагнитного излучения, действие которого основано на вынужденном излучении фотонов атомами, ионами и молекулами. Квантовые генераторы радиодиапазона называются мазерами, квантовые генераторы оптического диапазона … … Энциклопедический словарь
квантовый генератор — kvantinis generatorius statusas T sritis Standartizacija ir metrologija apibrėžtis Elektromagnetinių bangų generatorius, kurio veikimas pagrįstas sužadintųjų atomų, molekulių, jonų priverstinio spinduliavimo reiškiniu. atitikmenys: angl. quantum… … Penkiakalbis aiškinamasis metrologijos terminų žodynas
квантовый генератор — kvantinis generatorius statusas T sritis fizika atitikmenys: angl. quantum generator vok. Quantengenerator, m rus. квантовый генератор, m pranc. oscillateur quantique, m … Fizikos terminų žodynas
Квантовый генератор — генератор электромагнитных волн, в котором используется явление вынужденного излучения (См. Вынужденное излучение) (см. Квантовая электроника). К. г. радиодиапазона сверхвысоких частот (СВЧ), так же как и Квантовый усилитель этого… … Большая советская энциклопедия
КВАНТОВЫЙ ГЕНЕРАТОР — источник электромагнитного когерентного излучения(оптич. или радиодиапазона), в к ром используется явление индуцированного излучения возбуждённых атомов, молекул, ионов и т. д. В качестве рабочего в ва в К. г. используют газы, жидкости, твёрдые… … Большой энциклопедический политехнический словарь
Квантовый генератор
Квантовый генератор.
Квантовый генератор – общее название источников электромагнитного излучения, работающих на основе вынужденного излучения атомов и молекул.
Квантовый генератор:
Квантовый генератор – общее название источников электромагнитного излучения, работающих на основе вынужденного излучения атомов и молекул. В зависимости от того, какую длину волны излучает квантовый генератор, он может называться по-разному:
– мазер (микроволновой диапазон);
– лазер (оптический диапазон);
– разер (рентгеновский диапазон);
Исторически первыми были созданы мазеры. Их создание открыло эру квантовой электроники. Впоследствии на принципах работы мазеров были созданы лазеры, затем разеры. Что касается газеров, тони существуют пока в виде научной идеи.
Принцип работы квантового генератора:
Доклад по физике «Квантовые генераторы
Сл
Сегодня нашу жизнь сложно представить без квантовых генераторов, хотя не все обращают на это внимание. Множество детских игрушек являют собой именно квантовые генераторы и это не единственная область их применения.
Что же такое квантовый генератор?
Ква́нтовый генера́тор — общее название источников электромагнитного излучения, работающих на основе вынужденного излучения атомов и молекул.
В зависимости от того, какую длину волны излучает квантовый генератор, он может называться по-разному:
лазер (оптический диапазон);
мазер (микроволновой диапазон);
разер (рентгеновский диапазон);
Реально работа данных устройств базируются на использовании постулатов Бора:
Атом и атомные системы могут длительно пребывать только в особенных стационарных или квантовых состояниях, каждому из которых отвечает определенная энергия. В стационарном состоянии атом не излучает электромагнитных волн. При достаточной мощности лампы большинство ионов хрома переводится в возбужденное состояние.
Излучение света происходит при переходе электрона из стационарного состояния с большей энергией в стационарное состояние с меньшей энергией. Энергия излученного фотона равна разности энергий стационарных состояний.
Наиболее распространены сегодня именно лазеры, то есть оптические квантовые генераторы. Кроме детских игрушек они получили распространение в медицине, физике, химии, компьютерной технике и прочих отраслях. Лазеры выступили в качестве «готового решения» множества проблем.
Рассмотрим детально принцип работы лазера
( 1. Спонтанное и вынужденное излучение.
Но возможно и индуцированное (вынужденное) излучение. Если электрон находится на верхнем уровне Е 2 (атом в возбужденном состоянии), то при падении фотона может произойти вынужденный переход электрона на нижний уровень испусканием второго фотона.
Свойства вынужденного излучения:
одинаковая частота и фаза фотонов первичного и вторичного;
одинаковое направление распространения;
Следовательно, при вынужденном излучении образуются два одинаковых фотона-близнеца.
2. Использование активных сред.
В среде с инверсной заселенностью энергетических уровней обеспечивается усиление световой волны. Это активная среда.
Усиление света можно сравнить с нарастанием лавины.
Для получения активной среды используют трехуровневую систему.
На третьем уровне система живет очень мало, после чего самопроизвольно переходит в состояние Е 2 без испускания фотона. Переход из состояния 2 в состояние 1 сопровождается излучением фотона, что и используется в лазерах.
3. Положительно обратная связь.
Для того чтобы из режима усиления света перейти к режиму генерации в лазере используют обратную связь.
Обратная связь осуществляется с помощью оптического резонатора, который обычно представляет собой пару параллельных зеркал. (слайд 11)
В результате одного из спонтанных переходов с верхнего уровня на нижний возникает фотон. При движении в сторону одного из зеркал фотон вызывает целую лавину фотонов. После отражения от зеркала лавина фотонов движется в противоположном направлении, попутно заставляя испускать фотоны все новые атомы. Процесс будет продолжаться до тех пор, пока существует инверсная заселенность уровня
Потоки света, идущие в боковых направлениях, быстро покидают активный элемент, не успевая набрать значительной энергии. Световая волна, распространяющаяся вдоль оси резонатора, многократно усиливается. Дно из зеркал делается полупрозрачным, и из него лазерная волна выходит наружу в окружающую среду.
Рубиновый лазер работает в импульсном режиме. Существуют и другие типы лазеров: газовые, полупроводниковые. Они могут работать в непрерывном режиме.
5. Свойства лазерного излучения :
самый мощный источник света;
исключительная монохроматичность( монохроматические волны – неограниченные в пространстве волны одной определенной и строго постоянной частоты) ;
дает очень малую степень расхождения угла;
необходима система накачки. То есть мы придадим атому либо атомной системе какую-либо энергию, тогда, согласно 2 постулату Бора атом перейдет на более высокий уровень с большим количеством энергии. Далее задача состоит в том, чтобы вернуть атом на прежний уровень, при этом, он излучает фотоны в качестве энергии.
При достаточной мощности лампы большинство ионов хрома переводится в возбужденное состояние.
Процесс сообщения рабочему телу лазера энергии для перевода атомов в возбужденное состояние называется накачкой.
Излученный при этом фотон может вызвать вынужденное испускание дополнительных фотонов, которые в свою очередь вызовут вынужденное излучение )
Физической основой работы лазера служит явление вынужденного (индуцированного) излучения. Суть явления состоит в том, что возбуждённый атом способен излучить фотон под действием другого фотона без его поглощения, если энергия последнего равняется разности энергий уровней атома до и после излучения. При этом излучённый фотон когерентен фотону, вызвавшему излучение (является его «точной копией»). Таким образом происходит усиление света.
Этим явление отличается от спонтанного излучения, в котором излучаемые фотоны имеют случайные направления распространения, поляризацию и фазу
Такой же принцип работы и у других квантовых генераторов: мазера, газера и разера, однако они излучают волны другого диапазона.
Мазер — квантовый генератор, излучающий
когерентные электромагнитные волны сантиметрового диапазона (микроволны).
Мазеры используются в технике (в частности, в космической связи), в физических исследованиях, а также как квантовые генераторы стандартной частоты.
Разер (рентгеновский лазер) — источник когерентного электромагнитного излучения в рентгеновском диапазоне, основанный на эффекте вынужденного излучения. Является коротковолновым аналогом лазера.
Работы в области газера ведутся, так как не создана эффективная система накачки.
Лазеры же используются в целом списке отраслей :
6. Применение лазеров : (слайд 16)
в радиоастрономии для определения расстояний до тел Солнечной системы с максимальной точностью (светолокатор);
обработка металлов (резка, сварка, плавка, сверление);
в хирургии вместо скальпеля (например, в офтальмологии);
для получения объемных изображений (голография);
связь (особенно в космосе);
запись и хранение информации;
в химических реакциях;
для осуществления термоядерных реакций в ядерном реакторе;
Таким образом, квантовые генераторы прочно вошли в быт человечества, позволив решить множество актуальных на тот момент проблем.
Квантовые генераторы
В квантовых генераторах для создания электромагнитных колебаний используется внутренняя энергия микросистем — атомов, молекул, ионов.
Квантовые генераторы называют еще лазерами. Слово лазер составлено из начальных букв английского названия квантовых генераторов — усилитель света за счет создания стимулированного излучения.
Микросистемы, в которых элементарные частицы взаимодействуют между собой, называются квантовыми системами.
Переход квантовой системы из одного энергетического состояния в другое сопровождается излучением или поглощением кванта электромагнитной энергии hv: Е2— Ei=hv, где Е1 и Е2— энергетические состояния: h — постоянная Планка; v — частота.
Известно, что наиболее устойчивым состоянием любой системы, в том числе атома и молекулы, является состояние с наименьшей энергией. Поэтому каждая система стремится занять и сохранять состояние с наименьшей энергией. Следовательно, в нормальном состоянии электрон движется по наиболее близкой к ядру орбите. Такое состояние атома называется основным или стационарным.
Под действием внешних факторов — нагрева, освещения, электромагнитного поля — энергетическое состояние атома может изменяться.
Если атом, например, водорода взаимодействует с электромагнитным полем, то он поглощает энергию Е2 — E1 = hv и его электрон переходит на более высокий энергетический уровень. Такое состояние атома называется возбужденным. В нем атом может находиться некоторое очень малое время, называемое временем жизни возбужденного атома. После этого электрон возвращается на нижний уровень, т. е. в основное устойчивое состояние, отдавая избыток энергии в виде излучаемого кванта энергии — фотона.
Излучение электромагнитной энергии при переходе квантовой системы из возбужденного состояния в основное без внешнего воздействия называется самопроизвольным или спонтанным. При спонтанном излучении фотоны испускаются в случайные моменты времени, в произвольном направлении, с произвольной поляризацией. Поэтому оно называется некогерентным.
Однако под действием внешнего электромагнитного поля электрон может быть возвращен на нижний энергетический уровень еще до истечения времени жизни атома в возбужденном состоянии. Если, например, два фотона воздействуют на возбужденный атом, то при определенных условиях электрон атома возвращается на нижний уровень, излучая квант в виде фотона. При этом все три фотона имеют общую фазу, направление и поляризацию излучения. В результате энергия электромагнитного излучения оказывается увеличенной.
Излучение электромагнитной энергии квантовой системой при снижении ее энергетического уровня под действием внешнего электромагнитного поля называют вынужденным, индуцированным или стимулированным.
Индуцированное излучение совпадает по частоте, фазе и направлению с внешним облучением. Отсюда такое излучение называют когерентным (когерентность—от латинского cogerentia — сцепление, связь).
Так как на стимулирование перехода системы на более низкий энергетический уровень энергия внешнего поля не затрачивается, то электромагнитное поле усиливается и его энергия возрастает на значение энергии излучаемого кванта. Это явление используется для усиления и генерирования колебаний с помощью квантовых приборов.
В настоящее время лазеры изготовляют из полупроводниковых материалов.
Полупроводниковым лазером называют полупроводниковый прибор, в котором происходит непосредственное преобразование электрической энергии в энергию излучения оптического диапазона.
Для работы лазера, т. е. для того, чтобы лазер создавал электромагнитные колебания, необходимо, чтобы в его веществе возбужденных частиц было больше, чем невозбужденных.
Но в нормальном состоянии полупроводника на более высоких энергетических уровнях при любой температуре количество электронов меньше, чем на более низких уровнях. Поэтому в нормальном состоянии полупроводник поглощает электромагнитную энергию.
Наличие электронов на том или ином уровне называется населенностью уровня.
Состояние полупроводника, в котором на более высоком энергетическом уровне находится больше электронов, чем на более низком уровне, называется состоянием с инверсной населенностью. Создавать инверсную населенность можно различными способами: с помощью инжекции носителей заряда при прямом включении р — я-перехода, путем облучения полупроводника светом и т. д.
Источник энергии, создавая инверсию населенностей, выполняет работу, передавая энергию веществу и далее электромагнитному полю. В полупроводнике с инверсной населенностью можно получить вынужденное излучение, так как в нем имеется большое количество возбужденных электронов, которые могут отдать свою энергию.
Если полупроводник с инверсной населенностью облучить электромагнитными колебаниями частотой, равной частоте перехода между энергетическими уровнями, то электроны с верхнего уровня переходят на нижний вынужденно, излучая фотоны. При этом происходит вынужденное когерентное излучение. Оно является усиленным. Создав в таком устройстве цепь положительной обратной связи, получим лазер — автогенератор электромагнитных колебаний оптического диапазона.
Для изготовления лазеров чаще всего используют арсенид галлия, из которого изготовляют кубик со сторонами длиной в несколько десятых долей миллиметра.
Глава 4. СТАБИЛИЗАЦИЯ ЧАСТОТЫ ПЕРЕДАТЧИКОВ
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Словари
Рис. 2. РЕЗОНАТОР квантового генератора (усилителя) в виде пары плоских параллельных зеркальных пластин. Существенно усиленным оказывается только то излучение, которое в конце концов выходит через полупрозрачную платину; оно и является выходным излучением квантового генератора.
Рис. 3. ТРЕХУРОВНЕВЫЙ ПРИНЦИП
(три энергетических уровня атомов активной среды квантового генератора).
Сначала все атомы находятся на нижнем уровне E1. Излучение накачки с соответствующей частотой заставляет атомы перескакивать на верхний уровень E3. При переходе атомов с верхнего уровня на промежуточный E2 происходит квантовая генерация на частоте, соответствующей этому переходу. Такая квантовая генерация, в отличие от двухуровневой, может осуществляться в непрерывном режиме, если систему охлаждать.
Накачкой можно перевести с уровня E1 на E3 не более половины атомов, так как далее эффект вынужденного излучения заставляет их возвращаться на нижний уровень. Но если вследствие столкновений или других процессов атомы с уровня E3 быстро переходят на уровень E2, то накачка их на верхний уровень с последующим переходом на промежуточный может продолжаться. Таким путем можно перекачать на уровень E3 больше половины атомов (и даже все). Тогда на промежуточном уровне оказывается больше атомов, чем на нижнем, и начинается генерация на частоте, соответствующей переходу Применение находят обе схемы трехуровневого квантового генератора и усилителя, причем та или другая выбирается в зависимости от свойств имеющегося материала с резонансами на нужных частотах. Вообще говоря, желательно, чтобы активная среда, удовлетворяя всем прочим требованиям, имела высокие резонансы. Если квантовый генератор предполагается использовать в качестве эталона частоты, то резонансы должны быть к тому же острыми. Такие резонансы характерны для спектров свободных атомов и молекул в газах. Резонансы же твердых материалов обычно довольно широкие, хотя ионы редкоземельных элементов и переходных металлов, таких как хром, в кристаллах имеют подходящие спектры.У некоторых материалов такого рода отмечаются высокие и острые резонансы как в СВЧ-, так и в оптическом диапазоне. Например, рубин (оксид алюминия), в котором какая-то доля процента ионов алюминия заменена ионами хрома, может служить активной средой для трехуровневого квантового генератора СВЧ-диапазона. Мейман показал, что рубин пригоден также для изготовления лазера. В обоих случаях используются энергетические уровни ионов хрома.
Лазер. Лазерами называются оптические квантовые генераторы, которые дают излучение, относящееся к видимой и инфракрасной областям спектра (где длины волн меньше 1 мм). По интенсивности такие генераторы намного превосходят все другие виды источников подобного излучения. Кроме того, их выходное излучение приходится на очень узкую полосу частот и имеет форму почти нерасходящегося пучка. К тому же лазерные лучи можно фокусировать в очень малое пятно, в котором плотность световой мощности и напряженность электрического поля колоссальны по сравнению с тем, что могут дать другие источники света. Выходное излучение почти полностью монохроматично и, что еще важнее, когерентно, т.е. полностью согласовано по фазе и лишено хаотической разупорядоченности обычного света. См. также ЛАЗЕР.
Молекулярный квантовый генератор. В первом квантовом генераторе, разработанном Гордоном, Цайгером и Таунсом, использовалась откачанная камера с пучком молекул аммиака. Молекулы пучка, находящиеся в нижнем энергетическом состоянии, выводились из пучка путем их отклонения в неоднородном электрическом поле. Молекулы же, находящиеся в верхнем энергетическом состоянии, фокусировались в объемном резонаторе, где и происходило вынужденное излучение (рис. 4).
Квантовый генератор с молекулярным пучком дает излучение с резко выделенной выходной частотой. Отчасти это обусловлено тем, что в пучке сравнительно мало молекул и они не могут влиять друг на друга. По причине малости числа молекул мала и выходная мощность.
Применение. Квантово-электронные приборы с атомарными и молекулярными системами в качестве активных сред используются в качестве усилителей и генераторов. На более низких частотах такие функции выполняют электронные лампы и транзисторы. Неудивительно, что семейство квантово-электронных приборов уже сейчас может поспорить в отношении многочисленности и разнообразия с более старыми электронными. Квантово-электронные приборы нашли ряд применений, для которых другие электронные приборы подходят плохо или вообще не годятся. Это функции СВЧ-усилителей с низким уровнем шумов, первичных эталонов частоты и времени, а также генераторов и усилителей излучения инфракрасной и видимой области спектра.
Малошумящие СВЧ-усилители. Назначение усилителя состоит в том, чтобы усиливать слабые сигналы, не искажая их при этом и не внося шума (хаотической составляющей). Электронные усилители всегда добавляют к сигналу собственный шум. При работе с крайне слабыми радиосигналами важно, чтобы усилитель вносил как можно меньше шума. Таковы радиосигналы, получаемые от небесных объектов, и радиолокационные сигналы, отраженные от предметов, удаленных на большие расстояния. В этих двух случаях сигнал наблюдается на фоне неба, которое вносит лишь незначительный шум. Это позволяет обнаружить очень слабый сигнал, если он не маскируется шумами самого приемника. Обычные усилители не отвечают требованиям такой задачи, и на помощь приходят квантовые усилители, почти не вносящие шума. Заменив на входе приемника усилитель на электронных лампах квантовым, можно повысить в сто раз чувствительность приемника в СВЧ-диапазоне. СВЧ-приемники с квантовыми усилителями столь чувствительны, что позволяют регистрировать тепловое излучение других планет и определять температуру их поверхности.
Сигмен Э. Мазеры. М., 1966 Ярив А. Квантовая электроника. М., 1980 Рябов С.Г., Торопкин Г.Н., Усольцев И.Ф. Приборы квантовой электроники. М., 1985 Херман Й., Вильгельми Б. Лазеры для генерации сверхкоротких световых импульсов. М., 1986