Что такое локальная операционная система

Что такое локальная операционная система

Что такое локальная операционная система. Смотреть фото Что такое локальная операционная система. Смотреть картинку Что такое локальная операционная система. Картинка про Что такое локальная операционная система. Фото Что такое локальная операционная система

1. Что такое сетевое программное обеспечение?

Сетевое программное обеспечение предназначено для организации совместной работы группы пользователей на разных компьютерах. Позволяет организовать общую файловую структуру, общие базы данных, доступные каждому члену группы. Обеспечивает возможность передачи сообщений и работы над общими проектами, возможность разделения ресурсов.

2. Сетевые операционные системы

(Network Operating System – NOS) – это комплекс программ, обеспечивающих обработку, хранение и передачу данных в сети.

Сетевая операционная система выполняет функции прикладной платформы, предоставляет разнообразные виды сетевых служб и поддерживает работу прикладных процессов, выполняемых в абонентских системах. Сетевые операционные системы используют клиент-серверную, либо одноранговую архитектуру. Компоненты NOS располагаются на всех рабочих станциях, включенных в сеть.

NOS определяет взаимосвязанную группу протоколов верхних уровней, обеспечивающих выполнение основных функций сети. К ним, в первую очередь, относятся:

При выборе NOS необходимо рассматривать множество факторов. Среди них:

3. Функции и характеристики сетевых операционных систем (ОС).

Различают ОС со встроенными сетевыми функциями и оболочки над локальными ОС. По другому признаку классификации различают сетевые ОС одноранговые и функционально несимметричные (для систем “клиент/сервер”).

Основные функции сетевой ОС:

Управление каталогами и файлами в сетях заключается в обеспечении доступа к данным, физически расположенным в других узлах сети. Управление осуществляется с по-мощью специальной сетевой файловой системы. Файловая система позволяет обращаться к файлам путем применения привычных для локальной работы языковых средств. При обмене файлами должен быть обеспечен необходимый уровень конфиденциальности обмена (секретности данных).

Управление ресурсами включает обслуживание запросов на предоставление ресурсов, доступных по сети.

Коммуникационные функции обеспечивают адресацию, буферизацию, выбор на-правления для движения данных в разветвленной сети (маршрутизацию), управление потоками данных и др. Защита от несанкционированного доступа — важная функция, способствующая поддержанию целостности данных и их конфиденциальности. Средства защиты могут раз-решать доступ к определенным данным только с некоторых терминалов, в оговоренное время, определенное число раз и т.п. У каждого пользователя в корпоративной сети могут быть свои права доступа с ограничением совокупности доступных директорий или списка возможных действий, например, может быть запрещено изменение содержимого некоторых файлов.

Отказоустойчивость характеризуется сохранением работоспособности системы при воздействии дестабилизирующих факторов. Отказоустойчивость обеспечивается применением для серверов автономных источников питания, отображением или дублированием информации в дисковых накопителях. Под отображением обычно понимают наличие в системе двух копий данных с их расположением на разных дисках, но подключенных к одному контроллеру. Дублирование отличается тем, что для каждого из дисков с копиями используются разные контроллеры. Очевидно, что дублирование более надежно. Дальнейшее повышение отказоустойчивости связано с дублированием серверов, что однако требует дополнительных затрат на приобретение оборудования.

Управление сетью связано с применением соответствующих протоколов управления. Программное обеспечение управления сетью обычно состоит из менеджеров и агентов. Менеджером называется программа, вырабатывающая сетевые команды. Агенты представляют собой программы, расположенные в различных узлах сети. Они выполняют команды менеджеров, следят за состоянием узлов, собирают информацию о параметрах их функционирования, сигнализируют о происходящих событиях, фиксируют аномалии, следят за трафиком, осуществляют защиту от вирусов. Агенты с достаточной степенью интеллектуальности могут участвовать в восстановлении информации после сбоев, в корректировке параметров управления и т.п.

4. Структура сетевой операционной системы

Сетевая операционная система составляет основу любой вычислительной сети. Каждый компьютер в сети автономен, поэтому под сетевой операционной системой в широком смысле понимается совокупность операционных систем отдельных компьютеров, взаимодействующих с целью обмена сообщениями и разделения ресурсов по единым правилам – протоколам. В узком смысле сетевая ОС – это операционная система отдельного компьютера, обеспечивающая ему возможность работать в сети.

Что такое локальная операционная система. Смотреть фото Что такое локальная операционная система. Смотреть картинку Что такое локальная операционная система. Картинка про Что такое локальная операционная система. Фото Что такое локальная операционная система

Рис. 1 Структура сетевой ОС

В соответствии со структурой, приведенной на рис. 1, в сетевой операционной системе отдельной машины можно выделить несколько частей.

5. Клиентское программное обеспечение

Для работы с сетью на клиентских рабочих станциях должно быть установлено клиентское программное обеспечение. Это программное обеспечение обеспечивает доступ к ресур-сам, расположенным на сетевом сервере. Тремя наиболее важными компонентами клиентского программного обеспечения являются редиректоры (redirector), распределители (desig-nator) и имена UNC (UNC pathnames).

Редиректоры

Редиректор – сетевое программное обеспечение, которое принимает запросы вво-да/вывода для удаленных файлов, именованных каналов или почтовых слотов и затем пере-назначает их сетевым сервисам другого компьютера. Редиректор перехватывает все запросы, поступающие от приложений, и анализирует их.

Фактически существуют два типа редиректоров, используемых в сети:

Оба редиректора функционируют на представительском уровне модели OSI. Когда клиент делает запрос к сетевому приложению или службе, редиректор перехватывает этот запрос и проверяет, является ли ресурс локальным (находящимся на запрашивающем ком-пьютере) или удаленным (в сети). Если редиректор определяет, что это локальный запрос, он направляет запрос центральному процессору для немедленной обработки. Если запрос пред-назначен для сети, редиректор направляет запрос по сети к соответствующему серверу. По существу, редиректоры скрывают от пользователя сложность доступа к сети. После того как сетевой ресурс определен, пользователи могут получить к нему доступ без знания его точно-го расположения.

Распределители

Распределитель (designator) представляет собой часть программного обеспечения, управляющую присвоением букв накопителя (drive letter) как локальным, так и удаленным сетевым ресурсам или разделяемым дисководам, что помогает во взаимодействии с сетевыми ресурсами. Когда между сетевым ресурсом и буквой локального накопителя создана ассоциация, известная также как отображение дисковода (mapping a drive), распределитель отслеживает присвоение такой буквы дисковода сетевому ресурсу. Затем, когда пользователь или приложение получат доступ к диску, распределитель заменит букву дисковода на сете-вой адрес ресурса, прежде чем запрос будет послан редиректору.

Имена UNC

Редиректор и распределитель являются не единственными методами, используемыми для доступа к сетевым ресурсам. Большинство современных сетевых операционных систем, так же как и Windows 95, 98, NT, распознают имена UNC (Universal Naming Convention — Универсальное соглашение по наименованию). UNC представляют собой стандартный спо-соб именования сетевых ресурсов. Эти имена имеют форму \\Имя_сервера\имя_ресурса. Способные работать с UNC приложения и утилиты командной строки используют имена UNC вместо отображения сетевых дисков.

6. Серверное программное обеспечение

Для того чтобы компьютер мог выступать в роли сетевого сервера необходимо установить серверную часть сетевой операционной системы, которая позволяет поддерживать ресурсы и распространять их среди сетевых клиентов. Важным вопросом для сетевых серверов является возможность ограничить доступ к сетевым ресурсам. Это называется сетевой защитой (network security). Она предоставляет средства управления над тем, к каким ресурсам могут получить доступ пользователи, степень этого доступа, а также, сколько пользователей смогут получить такой доступ одновременно. Этот контроль обеспечивает конфиденциальность и защиту и поддерживает эффективную сетевую среду.

В дополнение к обеспечению контроля над сетевыми ресурсами сервер выполняет следующие функции:

7. Клиентское и серверное программное обеспечение

Некоторые из сетевых операционных систем, в том числе Windows, имеют программные компоненты, обеспечивающие компьютеру как клиентские, так и серверные возможности. Это позволяет компьютерам поддерживать и использовать сетевые ресурсы и преобладает в одноранговых сетях. В общем, этот тип сетевых операционных систем не так мощен и надежен, как законченные сетевые операционные системы.

Главное преимущество комбинированной клиентско–серверной сетевой операционной системы заключается в том, что важные ресурсы, расположенные на отдельной рабочей станции, могут быть разделены с остальной частью сети.

Недостаток состоит в том, что если рабочая станция поддерживает много активно используемых ресурсов, она испытывает серьезное падение производительности. Если такое происходит, то необходимо перенести эти ресурсы на сервер для увеличения общей производительности.

В зависимости от функций, возлагаемых на конкретный компьютер, в его операционной системе может отсутствовать либо клиентская, либо серверная части.

На рис. 2 компьютер 1 выполняет функции клиента, а компьютер 2 – функции сервера, соответственно на первой машине отсутствует серверная часть, а на второй – клиентская.

Что такое локальная операционная система. Смотреть фото Что такое локальная операционная система. Смотреть картинку Что такое локальная операционная система. Картинка про Что такое локальная операционная система. Фото Что такое локальная операционная система

Рис. 2 Взаимодействие компонентов сетевой ОС

Если выдан запрос к ресурсу данного компьютера, то он переадресовывается локальной операционной системе. Если же это запрос к удаленному ресурсу, то он переправляется в клиентскую часть, где преобразуется из локальной формы в сетевой формат, и передается коммуникационным средствам. Серверная часть ОС компьютера 2 принимает запрос, преобразует его в локальную форму и передает для выполнения своей локальной ОС. После того, как результат получен, сервер обращается к транспортной подсистеме и направляет ответ клиенту, выдавшему запрос. Клиентская часть преобразует результат в соответствующий формат и адресует его тому приложению, которое выдало запрос.

8. Требования к современным операционным системам

Главным требованием, предъявляемым к операционной системе, является выполнение ею основных функций эффективного управления ресурсами и обеспечение удобного интерфейса для пользователя и прикладных программ. Современная ОС, как правило, должна поддерживать мультипрограммную обработку, виртуальную память, свопинг, многооконный графический интерфейс пользователя, а также выполнять многие другие необходимые функции и услуги. Кроме этих требований функциональной полноты к операционным системам предъявляются не менее важные эксплуатационные требования, которые перечислены ниже.

Расширяемость.

В то время как аппаратная часть компьютера устаревает за несколько лет, полезная жизнь операционных систем может измеряться десятилетиями. Примером может служить ОС UNIX. Поэтому операционные системы всегда изменяются со временем эволюционно, и эти изменения более значимы, чем изменения аппаратных средств. Изменения ОС обычно заключаются в приобретении ею новых свойств, например поддержке новых типов внешних устройств или новых сетевых технологий. Если код ОС написан таким образом, что дополнения и изменения могут вноситься без нарушения целостности системы, то такую ОС называют расширяемой. Расширяемость достигается за счет модульной структуры ОС, при которой про¬граммы строятся из набора отдельных модулей, взаимодействующих только через функциональный интерфейс.

Переносимость.

В идеале код ОС должен легко переноситься с процессора одного типа на процессор другого типа и с аппаратной платформы (которые различаются не только типом процессора, но и способом организации всей аппаратуры компьютера) одного типа на аппаратную платформу другого типа. Переносимые ОС имеют несколько вариантов реализации для разных платформ, такое свойство ОС называют также многоплатформенностью.

Совместимость.

Существует несколько «долгоживущих» популярных операционных систем (разновидности UNIX, Windows, Windows Server), для которых наработана широкая номенклатура приложений. Некоторые из них пользуются широкой популярностью. Поэтому для пользователя, переходящего по тем или иным причинам с одной ОС на другую, очень привлекательна возможность запуска в новой операционной системе привычного приложения. Если ОС имеет средства для выполнения прикладных программ, написанных для других операционных систем, то про нее говорят, что она обладает совместимостью с этими ОС. Следует различать совместимость на уровне двоичных кодов и совместимость на уровне исходных текстов. Понятие совместимости включает также поддержку пользовательских интерфейсов других ОС.

Надежность и отказоустойчивость.

Система должна быть защищена как от внутренних, так и от внешних ошибок, сбоев и отказов. Ее действия должны быть всегда предсказуемыми, а приложения не должны иметь возможности наносить вред ОС. Надежность и отказоустойчивость ОС прежде всего определяются архитектурными решениями, положенными в ее основу, а также качеством ее реализации (отлаженностью кода). Кроме того, важно, включает ли ОС программную поддержку аппаратных средств обеспечения отказоустойчивости, таких, например, как дисковые массивы или источники бесперебойного питания.

Безопасность.

Современная ОС должна защищать данные и другие ресурсы вычисли-тельной системы от несанкционированного доступа. Чтобы ОС обладала свойством безопасности, она должна как минимум иметь в своем составе средства аутентификации — определения легальности пользователей, авторизации — предоставления легальным пользователям дифференцированных прав доступа к ресурсам, аудита — фиксации всех «подозрительных» для безопасности системы событий. Свойство безопасности особенно важно для сетевых ОС. В таких ОС к задаче контроля доступа добавляется задача защиты данных, передаваемых по сети.

Производительность.

Операционная система должна обладать настолько хорошим быстродействием и временем реакции, насколько это позволяет аппаратная платформа. На производительность ОС влияет много факторов, среди которых основными являются архитектура ОС, многообразие функций, качество программирования кода, возможность исполнения ОС на высокопроизводительной (многопроцессорной) платформе.

9. Выбор сетевой операционной системы

При выборе сетевой операционной системы необходимо учитывать:

Во-первых, это команды ftp, telnet, реализующие файловый обмен и эмуляцию удаленного узла на базе протоколов TCP/IP. Во-вторых, протокол, команды и программы UUCP, разработанные с ориентацией на асинхронную модемную связь по телефонным линиям между удаленными Unix-узлами в корпоративных и территориальных сетях.

ОС Windows Server обеспечивает работу в сетях “клиент/сервер”. Windows обычно применяют в средних по масштабам сетях.

Источник

Сети и сетевые операционные системы

Появление многопроцессорных компьютеров не оказывает существенного влияния на работу операционных систем. В многопроцессорной вычислительной системе изменяется содержание состояния исполнение. В этом состоянии может находиться не один процесс, а несколько – по числу процессоров. Соответственно изменяются и алгоритмы планирования. Наличие нескольких исполняющихся процессов требует более аккуратной реализации взаимоисключений при работе ядра. Но все эти изменения не являются изменениями идеологическими, не носят принципиального характера. Принципиальные изменения в многопроцессорных вычислительных комплексах затрагивают алгоритмический уровень, требуя разработки алгоритмов распараллеливания решения задач. Поскольку с точки зрения нашего курса многопроцессорные системы не внесли в развитие операционных систем что-либо принципиально новое, мы их рассматривать далее не будем.

Для чего компьютеры объединяют в сети

Для чего вообще потребовалось объединять компьютеры в сети? Что привело к появлению сетей?

Сетевые и распределенные операционные системы

В сетевых операционных системах для того, чтобы задействовать ресурсы другого сетевого компьютера, пользователи должны знать о его наличии и уметь это сделать. Каждая машина в сети работает под управлением своей локальной операционной системы, отличающейся от операционной системы автономного компьютера наличием дополнительных сетевых средств (программной поддержкой для сетевых интерфейсных устройств и доступа к удаленным ресурсам), но эти дополнения существенно не меняют структуру операционной системы.

Распределенная система, напротив, внешне выглядит как обычная автономная система. Пользователь не знает и не должен знать, где его файлы хранятся, на локальной или удаленной машине, и где его программы выполняются. Он может вообще не знать, подключен ли его компьютер к сети. Внутреннее строение распределенной операционной системы имеет существенные отличия от автономных систем.

Изучение строения распределенных операционных систем не входит в задачи нашего курса. Этому вопросу посвящены другие учебные курсы – Advanced operating systems, как называют их в англоязычных странах, или «Современные операционные системы», как принято называть их в России.

Источник

Платформа в информационных технологиях

2.2. Операционные системы как составная часть платформы

Операционные системы (ОС) являются важной составной частью платформы в ИТ. Они отражают как развитие аппаратных средств, так и стремление разработчиков улучшить функциональные характеристики, повысить степень комфортности ОС по отношению к пользователям.

Операционная система выполняет функции автоматического управления рядом подсистем персонального компьютера и предоставляет готовые процедуры управления его внутренними и внешними ресурсами, т. е. операционная система является некоей автоматической системой управления работой и ресурсами компьютера, повышающей удобство и эффективность его использования.

Каждый персональный компьютер (аппаратная платформа) обязательно комплектуется операционной системой, для которой создается свой набор прикладных решений (приложений, прикладных программ).

В процессе развития большинство операционных систем модифицируются и совершенствуются в направлении исправления ошибок и включения новых возможностей. В целях сохранения преемственности новая модификация операционной системы не переименовывается, а приобретает название версии.

На одной и той же аппаратной платформе могут функционировать различные операционные системы, имеющие разную архитектуру и возможности. Однако при этом следует учитывать, что различные ОС представляют разную степень сервиса для программирования и работы с прикладными программами пользователей. Кроме того, для их работы необходимы различные ресурсы оперативной памяти.

Современные операционные системы можно классифицировать по различным признакам, представленным в табл. 2.1.

В целом функции, выполняемые операционными системами разных классов и видов, достаточно схожи и направлены на обеспечение поддержки работы прикладных программ, организацию их взаимодействия с устройствами, предоставление пользователям возможности работы в сетях, а также управление функционированием персонального компьютера. Поэтому при выборе операционной системы пользователь должен четко представлять, насколько та или иная ОС обеспечит ему решение его задач.

Чтобы выбрать ту или иную операционную систему, необходимо знать:

Источник

Операционные системы локальной сети

ТЕМА: ОПЕРАЦИОННЫЕ СИСТЕМЫ ЛОКАЛЬНОЙ СЕТИ

2. ОПЕРАЦИОННЫЕ СИСТЕМЫ

А) НАЗНАЧЕНИЕ ЛОКАЛЬНОЙ СЕТИ

4. ОПЕРАЦИОННЫЕ СИСТЕМЫ ЛОКАЛЬНЫХ СЕТЕЙ

Появление компьютерных сетей привело к развитию операционных систем для персональных компьютеров, позволяющих работать в сетях. Такие операционные системы обеспечивают не только совместное использование аппаратных ресурсов сети (принтеров, дисковых накопителей большой емкости и т.д.), но и использование распределенных коллективных технологий при выполнении разнообразных работ.

Подключение компьютера к локальной вычислительной сети является стандартным способом организации доступа к ресурсам корпоративной сети для большинства компаний. При этом могут быть использованы различные типы сетевых адаптеров (например, предполагающие беспроводной доступ или специальные кабельные модемы).

В процессе загрузки операционная система автоматически обнаруживает все установленные сетевые адаптеры и создает для них соответствующие подключения. Подключение к локальной сети — единственный тип подключения, которое автоматически становится активным после загрузки системы. Операционная система может «прослушивать» среды передачи и автоматически изменять состояние подключения в случае нарушения связи.

2. ОПЕРАЦИОННАЯ СИСТЕМА

Особое место среди программных средств всех типов занимают операционные системы, являясь ядром программного обеспечения.

Операционная система выполняет роль связующего звена между аппаратурой компьютера, с одной стороны, и выполняемыми программами, а также пользователем, с другой стороны.

Операционная система обычно хранится во внешней памяти компьютера — на диске. При включении компьютера она считывается с дисковой памяти и размещается в ОЗУ.

• управление ресурсами, т.е. согласованную работу всех аппаратных средств компьютера;

•управление процессами, т.е. выполнение программ, их взаимодействие с устройствами компьютера, с данными;

Такое определение операционной системы уже апеллирует к ее функциям, поэтому рассмотрим эти функции подробнее.

Операционные системы — наиболее машиннозависимый вид программного обеспечения, ориентированный на конкретные модели компьютеров, поскольку они напрямую управляют их устройствами или, как еще говорят, обеспечивают интерфейс между пользователем и аппаратной частью компьютера.

В той мере, в какой это необходимо для понимания функций операционных систем, аппаратную часть компьютера можно представлять себе состоящей из следующих элементов:

• центрального процессора, имеющего определенную архитектуру (структуру регистров, набор и форму представления команд, формат обрабатываемых данных и т.д.) и характеризующегося производительностью, т.е. количеством простейших операций, выполняемых в единицу времени, а также другими качествами;

• оперативной памяти, характеризующейся емкостью (объемом) и скоростью обмена данными (прежде всего с центральным процессором);

• периферийных устройств, среди которых имеются

• устройства ввода (клавиатура, мышь, сканер и др.);

• устройства вывода (дисплей, принтер, графопостроитель и др.);

• внешние запоминающие устройства (дисководы для магнитных и оптических дисков, устройства для работы с лентами и др.);

Все эти аппаратные устройства обобщенно называют ресурсами компьютера.

За время существования компьютеров операционные системы претерпели значительную эволюцию. Так, первые операционные системы были однопользовательскими и однозадачными. Эффективность использования ресурсов компьютера в этом случае оказывалось невысокой из-за простоев всех, кроме одного работающего периферийного устройств компьютера. Например, при вводе данных простаивал центральный процессор, устройства вывода и внешние запоминающие устройства.

В зависимости от количества одновременно обрабатываемых задач и числа пользователей, которых могут обслуживать ОС, различают четыре основных класса операционных систем:

— однопользовательские однозадачные, которые поддерживают одну клавиатуру и могут работать только с одной (в данный момент) задачей;

— однопользовательские однозадачные с фоновой печатью, которые позволяют помимо основной задачи запускать одну дополнительную задачу, ориентированную, как правило, на вывод информации на печать. Это ускоряет работу при выдаче больших объёмов информации на печать;

— однопользовательские многозадачные, которые обеспечивают одному пользователю параллельную обработку нескольких задач. Например, к одному компьютеру можно подключить несколько принтеров, каждый из которых будет работать на «свою» задачу;

— многопользовательские многозадачные, позволяющие на одном компьютере запускать несколько задач нескольким пользователям. Эти ОС очень сложны и требуют значительных машинных ресурсов.

По мере роста возможностей, производительности и изменениях в соотношении стоимости устройств компьютера положение стало нетерпимым, что привело к появлению многозадачных операционных систем, остававшихся однопользовательскими.

Наиболее совершенны и сложны многопользовательские многозадачные операционные системы, которые предусматривают одновременное выполнение многих заданий многих пользователей, обеспечивают разделение ресурсов компьютера в соответствии с приоритетами пользователей и защиту данных каждого пользователя от несанкционированного доступа. В этом случае операционная система работает в режиме разделения времени, т.е. обслуживает многих пользователей, работающих каждый со своего терминала.

Операционную систему можно назвать программным продолжением устройства управления компьютера. Операционная система скрывает от пользователя сложные ненужные подробности взаимодействия с аппаратурой, образуя прослойку между ними. В результате этого люди освобождаются от очень трудоёмкой работы по организации взаимодействия с аппаратурой компьютера.

В различных моделях компьютеров используют операционные системы с разной архитектурой и возможностями. Для их работы требуются разные ресурсы. Они предоставляют разную степень сервиса для программирования и работы с готовыми программами.

Операционная система для персонального компьютера, ориентированного на профессиональное применение, должна содержать следующие основные компоненты:

— программы управления вводом/выводом;

— программы, управляющие файловой системой и планирующие задания для компьютера;

— процессор командного языка, который принимает, анализирует и выполняет команды, адресованные операционной системе.

Каждая операционная система имеет свой командный язык, который позволяет пользователю выполнять те или иные действия:

— обращаться к каталогу;

— выполнять разметку внешних носителей;

— запускать программы и другие действия.

Анализ и исполнение команд пользователя, включая загрузку готовых программ из файлов в оперативную память и их запуск, осуществляет командный процессор операционной системы.

Для управления внешними устройствами компьютера используются специальные системные программы — драйверы. Драйверы стандартных устройств образуют в совокупности базовую систему ввода-вывода (BIOS), которая обычно заносится в постоянное ЗУ компьютера.

Операционная Система — это комплекс взаимосвязанных программ, предназначенный для повышения эффективности аппаратуры компьютера путем рационального управления его ресурсами, а также для обеспечения удобств пользователю путем предоставления ему расширенной виртуальной машины.

К числу основных ресурсов, управление которыми осуществляет ОС, относятся процессоры, основная память, таймеры, наборы данных, диски, накопители на магнитных лентах, принтеры, сетевые устройства и некоторые другие. Ресурсы распределяются между процессами. Для решения задач управления ресурсами разные ОС используют различные алгоритмы, особенности которых в конечном счете и определяют облик ОС.

Наиболее важными подсистемами ОС являются подсистемы управления процессами, памятью, файлами и внешними устройствами, а также подсистемы пользовательского интерфейса, защиты данных и администрирования.

Прикладному программисту возможности ОС доступны в виде набора функций, составляющих интерфейс прикладного программирования (API).

Если в одном помещении, здании или комплексе близлежащих зданий имеется несколько компьютеров, пользователи которых должны совместно решать какие-то задачи, обмениваться данными или использовать общие данные, то эти компьютеры целесообразно объединить в локальную сеть.

Локальные сети: общие понятия

Под локальной сетью (ЛВС, LAN) обычно подразумевают объединение компьютеров, расположенных в ограниченном пространстве. Локальные сети можно объединять в более крупные сети, такие как CAN (группа зданий), MAN (город), WAN (широкомасштабная сеть), GAN (глобальная сеть).

При построении современных сетей (и вообще создании коммуникационной инфраструктуры зданий) используется концепция СКС (структурированных кабельных систем). Существуют несколько стандартов на построение этих систем — ISO/IEC 11801 (международный), EN 50173:1995 (Европа), ANSI/TIA/EIA-568-A (США), но принцип в них заложен один и тот же. Каждое рабочее место должно быть оборудовано телекоммуникационным разъемом (ТР), соединенным горизонтальным кабелем (не более 90 м) с распределительным пунктом (РП) этажа. 10 метров отводятся для подключения компьютеров и оборудования к ТР. Все РП этажей соединяются вертикальными кабелями (рекомендуется не более 500 м) с РП здания и составляют магистральную подсистему здания. Ну и, наконец, все РП зданий соединяются кабелями длиной до 1500 м с РП комплекса и образуют магистральную систему комплекса. Вообще говоря, соблюдение этих длин не обязательно (хотя очень желательно), так как сетевые кабели находятся за рамками этих стандартов. Стандартом также определяется максимальная допустимая длина кабеля между источником и приемником в зависимости от физической среды передачи для различных технологий.

Основа всего: кабели

Очевидно, чтобы соединять различные устройства в проводной сети, вам необходимы кабели. Естественно, не каждый кабель можно использовать для соединения сетевых устройств. Например, шнур от старого утюга для этих целей лучше не применять (хотя некоторые умельцы, которым жалко денег на витую пару, делали и так). Поэтому во всех сетевых стандартах определены необходимые условия и характеристики используемого кабеля, такие как полоса пропускания, волновое сопротивление (импеданс), удельное затухание сигнала, помехозащищенность и другие.

Существуют два принципиально разных вида сетевых кабелей: медные и оптоволоконные.

Кабели на основе медных проводов, в свою очередь, делятся на коаксиальные и некоаксиальные. Обычно используемая витая пара (RG-45) формально не относится к коаксиальным проводам, но многие характеристики присущие коаксиальным проводам, применимы и к ней. Недавно появился новый способ построения сетей (в основном домашних), основанный на телефонной проводке. Отдельно стоят кабельные модемы, обеспечивающие соединение «точка-точка» по различным средам, и сеть, использующая электропроводку.

Коаксиальный кабель представляет собой центральный проводник, окруженный слоем диэлектрика (изолятора) и экраном из металлической оплетки, выполняющим также роль второго контакта в кабеле. Для повышения помехоустойчивости иногда поверх металлической оплетки помещают тонкий слой алюминиевой фольги. В лучших коаксиальных кабелях используют для изготовления серебро и даже золото. В локальных сетях применяются кабели с сопротивлением 50 Ом (RG-11, RG-58) и 93 Ом (RG-62). Главный недостаток коаксиальных кабелей — их пропускная способность, которая не превышает 10 Мбит/с, что в современных сетях считается недостаточным. На самом деле ограничение здесь накладывает не сам коаксиальный кабель (полоса передачи коаксиальных кабелей очень велика, затухание же у хороших кабелей очень низкое), а сам физический протокол. Коаксиальный кабель, возможно, использовали бы и дальше, но есть две проблемы: первая, и самая существенная, — точки доступа в такой сети расположены последовательно, и выход из строя одной из них приводит к неработоспособности всей сети, а вторая — стоимость хорошего коаксиального кабеля существенно выше стоимости витой пары.

Витая пара представляет собой несколько (обычно 8) пар скрученных проводников. Скручивание применяется для уменьшения помех как самой пары, так и внешних, влияющих на нее. У скрученной определенным образом пары появляется такая характеристика, как волновое сопротивление. Витая пара бывает нескольких типов: неэкранированная витая пара — UTP (Unscreened Twisted Pair), фольгированная — FTP (foiled), фольгированная экранированная — FBTP (foiled braided) и защищенная — STP (shielded).Защищенная пара отличается от остальных наличием индивидуального экрана для каждой пары. Витые пары делятся на категории по частотным свойствам. Не будем вдаваться в подробности, отметим только, что на сегодня наиболее желательной является витая пара категории 5 (полоса частот — до 100 МГц).

Оптоволоконный кабель состоит из одного или нескольких волокон, заключенных в оболочки, и бывает двух типов: одномодовый и многомодовый. Их различие в том, как свет распространяется в волокне — в одномодовом кабеле все лучи (посланные в один момент времени) проходят одинаковое расстояние и достигают приемника одновременно, а в многомодовом сигнал может «размазаться». Зато они намного дешевле одномодовых.

Плюсы оптоволоконного кабеля относительно медного — это нечувствительность первого к электромагнитным помехам, огромная скорость передачи данных за счет гораздо большей полосы пропускания (оптические частоты гораздо выше, чем частоты электромагнитных волн в проводнике) и сложность в перехвате информации. Проще перехватить электромагнитное излучение, чем оптическое, хотя и оптика не является панацеей. Но с другой стороны, по этой же причине вы можете легко соединять и монтировать медные провода (если длины кабелей не близки к критическим), а для монтажа оптоволоконного кабеля необходимо специальное оборудование, так как необходимо точное совмещение осей светопроводящего материала — волокон и коннекторов.

А) Назначение локальной сети.

Назначение всех компьютерных сетей можно выразить двумя словами: совместный доступ (или совместное использование). Прежде всего имеется в виду совместный доступ к данным. Людям, работающим над одним проектом, приходится постоянно использовать данные, создаваемые коллегами. Благодаря локальной сети разные люди могут работать над одним проектом не по очереди, а одновременно.

Локальная сеть предоставляет возможность совместного использования оборудования. Часто дешевле создать локальную сеть и установить один принтер на все подразделение, чем приобретать по принтеру для каждого рабочего места. Файловый сервер сети позволяет обеспечить совместный доступ к программам.

Здесь мосты создали расширенную сеть, которая обеспечивает своим пользователям доступ к прежде недоступным ресурсам. Кроме этого, мосты могут фильтровать пакеты, охраняя всю сеть от локальных потоков данных и пропуская наружу только те данные, которые предназначены для других сегментов сети. Маршрутизатор (англ. Router) объединяет сети с общим протоколом более эффективно, чем мост. Он позволяет, например, расщеплять большие сообщения на более мелкие куски, обеспечивая тем самым взаимодействие локальных сетей с разным размером пакета. Маршрутизатор может пересылать пакеты на конкретный адрес (мосты только отфильтровывают ненужные пакеты), выбирать лучший путь для прохождения пакета и многое другое. Чем сложней и больше сеть, тем больше выгода от использования маршрутизаторов. Мостовой маршрутизатор (англ. Brouter) — это гибрид моста и маршрутизатора, который сначала пытается выполнить маршрутизацию, где это только возможно, а затем, в случае неудачи, переходит в режим моста.

Шлюз (англ. GateWay), в отличие от моста, применяется в случаях, когда соединяемые сети имеют различные сетевые протоколы. Поступившее в шлюз сообщение от одной сети преобразуется в другое сообщение, соответствующее требованиям следующей сети. Таким образом, шлюзы не просто соединяют сети, а позволяют им работать как единая сеть. C помощью шлюзов также локальные сети подсоединяются к мэйнфреймам — универсальным мощным компьютерам.

4. ОПЕРАЦИОННЫЕ СИСТЕМЫ ЛОКАЛЬНЫХ СЕТЕЙ

Появление компьютерных сетей привело к развитию операционных систем для персональных компьютеров, позволяющих работать в сетях. Такие операционные системы обеспечивают не только совместное использование аппаратных ресурсов сети (принтеров, дисковых накопителей большой емкости и т.д.), но и использование распределенных коллективных технологий при выполнении разнообразных работ.

Существует много операционных систем локальных сетей. Наиболее широкое распространение получили операционные системы Novell NetWare и Windows NT для локальных сетей ПК. Ознакомимся с первой из них.

Фирма «NovellInc.», в компьютерном мире не менее известная чем фирмы IBM и «Microsoft», специализируется на создании операционных систем локальных сетей. Созданная в 1982 г. небольшой группой менеджеров и программистов, фирма уже к 1990 г. имела годовой оборот на уровне 500 млн. долларов. Ее сетевые ОС известны своим высочайшим качеством и надежностью.

Сетевая операционная система Novell NetWare 386 , начиная с версии 3.11, представляет собой 32-разрядную операционную систему реального времени, работающую в защищенном режиме процессоров 80386 и более мощных (80486 и Pentium ).

NetWare 386 является сетевой ОС с централизованным управлением, т.е. в сети один или несколько компьютеров должны быть выделены в качестве файл-серверов. На файл-серверах работает ОС NetWare 386 . Остальные компьютеры сети, число которых может достигать нескольких сотен, являются рабочими станциями, и на них должна быть загружена, так называемая, клиентская часть NetWare 386 специальная компонента системы.

Примером важнейшей утилиты является syscon . exe , с помощью которой администратор системы выполняет всю работу по разграничению доступа пользователей к информации.

После установки NetWare на файл-сервере на его винчестерском накопителе обязательно создается системный том SYS, содержащий несколько стандартных директорий:

• LOGIN, содержащую программу подключения пользователя к сетиhgin . exe и другие процедуры, обслуживающие потребности пользователя рабочей станции при подключении ее к сети;

• MAIL, в которой для каждого пользователя сети заводится отдельный подкаталог (с именем из цифр), содержащий стартовый файл пользователяLogin Script и файл конфигураций заданий на печать;

• SYSTEM, в которой хранятся файлы операционной системы NetWare , системные утилиты и некоторые другие служебные программы; этот каталог виден только системному администратору (имеющему идентификатор SUPERVISOR);

• PUBLIC, в которой содержатся сетевые программы и утилиты, доступные для всех пользователей сети;

• USERS, с индивидуальными подкаталогами пользователей сети. Файловая система NetWare на сервере не совместима с MSDOS. На рабочих же станциях, после запуска клиентской части системы, обеспечивается прозрачный доступ к разделам диска файл-сервера как к своим собственным дисководам.

Файловая система NetWare поддерживает разветвленную систему разграничения доступа к файлам и каталогам файл-сервера с различных рабочлх станций. Все пользователи сети могут быть разделены системным администратором на группы. Каждая группа обладает своими правами доступа, притом один и тот же пользователь может находиться одновременно в разных группах. В табл. 1.1 приведены типичные для Novell NetWare виды доступа к каталогам и файлам.

Некоторые виды доступа к каталогам и файлам

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *