Что такое медиана данных

Медиана

В статистических исследованиях довольно широко применяются средние величины. Их нахождение позволяет выявить типичное значение признака исследуемой совокупности. Например, типичный уровень доходов покупателей или возраст большинства клиентов компании. При этом вычисление, к примеру, среднего арифметического не всегда уместно.

Представим такую ситуацию: мы опросили 10 человек на предмет их уровня доходов. У 9-х доходы оказались примерно одинаковыми и составили 10 тыс. руб. Что касается 10-ого опрошенного, то оказалось, что его доход равняется 410 тыс. руб. в месяц. Если мы вычислим простое среднее арифметическое, то типичный доход будет равняться 50 тыс. руб.! Но это явно не так. В таких ситуациях более объективную и правдоподобную картину дает вычисление моды или медианы, которые относятся к структурным средним показателям.

Понятие медианы

Медиана (Me) — значение признака в исследуемом ряду величин, которое делит этот ряд на две равные части.

То есть половина (50%) всех значений в исследуемом ряду будет меньше медианы, а другая половина — больше ее. Поэтому медиану еще называют 50-й перцентиль или квантиль 0,5.

Формула для расчета медианы

Если значений немного, то медиану можно определить «на глазок». Для этого достаточно расположить все значения в порядке возрастания и найти середину.

Если число случаев четное и в центре ряда находятся два разных числа, то медианой будет среднее между ними (даже если такого значения нет в самом ряду исследуемых случаев). Например, в ряду 1 2 3 4 5 6, медианой будет 3,5.

Для нахождения медианы в более сложных случаях (по интервальным рядам) используется специальная формула:

Что такое медиана данных. Смотреть фото Что такое медиана данных. Смотреть картинку Что такое медиана данных. Картинка про Что такое медиана данных. Фото Что такое медиана данных

Xme — нижняя граница медианного интервала (того интервала, накопленная частота которого превышает полусумму всех частот);

ime — величина медианного интервала;

f — частота (сколько раз в ряду встречается то или иное значение);

Sme-1 — сумма частот интервалов предшествующих медианному интервалу;

fme — число значений в медианном интервале (его частота).

Пример вычисления медианы

Был проведен опрос среди покупателей с целью выяснить их типичный возраст. По результатам опроса было установлено, что: 25 покупателей имеют возраст до 20 лет; 32 покупателя — 20-40 лет; 18 покупателей — 40-60 лет; 15 покупателей — свыше 60 лет. Найдем медиану.

Что такое медиана данных. Смотреть фото Что такое медиана данных. Смотреть картинку Что такое медиана данных. Картинка про Что такое медиана данных. Фото Что такое медиана данных

Сначала находим медианный интервал. Для этого вычисляем сумму частот: 25 + 32 + 18 + 15 = 90. Половина этой суммы — 45. Это соответствует возрастной группе 20-40 лет (т. к. полученная полусумма частот — 45, и накопленная частота 1-й группы меньше ее, а 3-ей — больше). Тогда нижняя граница медианного интервала — 20 (лет), а величина медианного интервала — 20 (40 лет за вычетом 20). Сумма частот интервалов предшествующих медианному интервалу — 25. Число значений в медианном интервале — 32 (количество покупателей в возрасте 20-40 лет).

Что такое медиана данных. Смотреть фото Что такое медиана данных. Смотреть картинку Что такое медиана данных. Картинка про Что такое медиана данных. Фото Что такое медиана данных

Расчетное значение медианы — 32,5. Округив его, получим средний возраст покупателя — 33 года.

Область применения медианы

При вычислении типичного признака неоднородных рядов, имеющих «выбросы» — значения во много раз отличающиеся от других значений ряда.

Особенности медианы

© Копирование любых материалов статьи допустимо только при указании прямой индексируемой ссылки на источник: Галяутдинов Р.Р.

Источник

Медиана в статистике

Центральную тенденцию данных можно рассматривать не только, как значение с нулевым суммарным отклонением (среднее арифметическое) или максимальную частоту (мода), но и как некоторую отметку (значение в совокупности), делящую ранжированные данные (отсортированные по возрастанию или убыванию) на две равные части. Половина исходных данных меньше этой отметки, а половина – больше. Это и есть медиана.

Итак, медиана в статистике – это уровень показателя, который делит набор данных на две равные половины. Значения в одной половине меньше, а в другой больше медианы. В качестве примера обратимся к набору нормально распределенных случайных чисел.

Что такое медиана данных. Смотреть фото Что такое медиана данных. Смотреть картинку Что такое медиана данных. Картинка про Что такое медиана данных. Фото Что такое медиана данных

Очевидно, что при симметричном распределении середина, делящая совокупность пополам, будет находиться в самом центре – там же, где средняя арифметическая (и мода). Это, так сказать, идеальная ситуация, когда мода, медиана и средняя арифметическая совпадают и все их свойства приходятся на одну точку – максимальная частота, деление пополам, нулевая сумма отклонений – все в одном месте. Однако, жизнь не так симметрична, как нормальное распределение.

Допустим, мы имеем дело с техническими замерами отклонений от ожидаемой величины чего-нибудь (содержания элементов, расстояния, уровня, массы и т.д. и т.п.). Если все ОК, то отклонения, скорее всего, будут распределены по закону, близкому к нормальному, примерно, как на рисунке выше. Но если в процессе присутствует важный и неконтролируемый фактор, то могут появиться аномальные значения, которые в значительной мере повлияют на среднюю арифметическую, но при этом почти не затронут медиану.

Что такое медиана данных. Смотреть фото Что такое медиана данных. Смотреть картинку Что такое медиана данных. Картинка про Что такое медиана данных. Фото Что такое медиана данных

Медиана выборки – это альтернатива средней арифметической, т.к. она устойчива к аномальным отклонениям (выбросам).

Математическим свойством медианы является то, что сумма абсолютных (по модулю) отклонений от медианного значения дает минимально возможное значение, если сравнивать с отклонениями от любой другой величины. Даже меньше, чем от средней арифметической, о как! Данный факт находит свое применение, например, при решении транспортных задач, когда нужно рассчитать место строительства объектов около дороги таким образом, чтобы суммарная длина рейсов до него из разных мест была минимальной (остановки, заправки, склады и т.д. и т.п.).

Формула медианы

Формула медианы в статистике для дискретных данных чем-то напоминает формулу моды. А именно тем, что формулы как таковой нет. Медианное значение выбирают из имеющихся данных и только, если это невозможно, проводят несложный расчет.

Первым делом данные ранжируют (сортируют по убыванию). Далее есть два варианта. Если количество значений нечетно, то медиана будет соответствовать центральному значению ряда, номер которого можно определить по формуле:

Что такое медиана данных. Смотреть фото Что такое медиана данных. Смотреть картинку Что такое медиана данных. Картинка про Что такое медиана данных. Фото Что такое медиана данных

Me – номер значения, соответствующего медиане,

N – количество значений в совокупности данных.

Тогда медиана обозначается, как

Что такое медиана данных. Смотреть фото Что такое медиана данных. Смотреть картинку Что такое медиана данных. Картинка про Что такое медиана данных. Фото Что такое медиана данных

Это первый вариант, когда в данных есть одно центральное значение. Второй вариант наступает тогда, когда количество данных четно, то есть вместо одного есть два центральных значения. Выход прост: берется средняя арифметическая из двух центральных значений:

Что такое медиана данных. Смотреть фото Что такое медиана данных. Смотреть картинку Что такое медиана данных. Картинка про Что такое медиана данных. Фото Что такое медиана данных

В интервальных данных выбрать конкретное значение не представляется возможным. Медиану рассчитывают по определенному правилу.

Для начала (после ранжирования данных) находят медианный интервал. Это такой интервал, через который проходит искомое медианное значение. Определяется с помощью накопленной доли ранжированных интервалов. Где накопленная доля впервые перевалила через 50% всех значений, там и медианный интервал.

Не знаю, кто придумал формулу медианы, но исходили явно из того предположения, что распределение данных внутри медианного интервала равномерное (т.е. 30% ширины интервала – это 30% значений, 80% ширины – 80% значений и т.д.). Отсюда, зная количество значений от начала медианного интервала до 50% всех значений совокупности (разница между половиной количества всех значений и накопленной частотой предмедианного интервала), можно найти, какую долю они занимают во всем медианном интервале. Вот эта доля аккурат переносится на ширину медианного интервала, указывая на конкретное значение, именуемое впоследствии медианой.

Обратимся к наглядной схеме.

Что такое медиана данных. Смотреть фото Что такое медиана данных. Смотреть картинку Что такое медиана данных. Картинка про Что такое медиана данных. Фото Что такое медиана данных

Немного громоздко получилось, но теперь, надеюсь, все наглядно и понятно. Чтобы при расчете каждый раз не рисовать такой график, можно воспользоваться готовой формулой. Формула медианы имеет следующий вид:

Что такое медиана данных. Смотреть фото Что такое медиана данных. Смотреть картинку Что такое медиана данных. Картинка про Что такое медиана данных. Фото Что такое медиана данных

где xMe — нижняя граница медианного интервала;

iMe — ширина медианного интервала;

∑f/2 — количество всех значений, деленное на 2 (два);

S(Me-1)— суммарное количество наблюдений, которое было накоплено до начала медианного интервала, т.е. накопленная частота предмедианного интервала;

fMe — число наблюдений в медианном интервале.

Как нетрудно заметить, формула медианы состоит из двух слагаемых: 1 – значение начала медианного интервала и 2 – та самая часть, которая пропорциональна недостающей накопленной доли до 50%.

Для примера рассчитаем медиану по следующим данным.

Что такое медиана данных. Смотреть фото Что такое медиана данных. Смотреть картинку Что такое медиана данных. Картинка про Что такое медиана данных. Фото Что такое медиана данных

Требуется найти медианную цену, то есть ту цену, дешевле и дороже которой по половине количества товаров. Для начала произведем вспомогательные расчеты накопленной частоты, накопленной доли, общего количества товаров.

Что такое медиана данных. Смотреть фото Что такое медиана данных. Смотреть картинку Что такое медиана данных. Картинка про Что такое медиана данных. Фото Что такое медиана данных

По последней колонке «Накопленная доля» определяем медианный интервал – 300-400 руб (накопленная доля впервые более 50%). Ширина интервала – 100 руб. Теперь остается подставить данные в приведенную выше формулу и рассчитать медиану.

Что такое медиана данных. Смотреть фото Что такое медиана данных. Смотреть картинку Что такое медиана данных. Картинка про Что такое медиана данных. Фото Что такое медиана данных

То есть у одной половины товаров цена ниже, чем 350 руб., у другой половины – выше. Все просто. Средняя арифметическая, рассчитанная по этим же данным, равна 355 руб. Отличие не значительное, но оно есть.

Расчет медианы в Excel

Медиану для числовых данных легко найти, используя функцию Excel, которая так и называется — МЕДИАНА. Другое дело интервальные данные. Соответствующей функции в Excel нет. Поэтому нужно задействовать приведенную выше формулу. Что поделаешь? Но это не очень трагично, так как расчет медианы по интервальным данным – редкий случай. Можно и на калькуляторе разок посчитать.

Напоследок предлагаю задачку. Имеется набор данных. 15, 5, 20, 5, 10. Каково среднее значение? Четыре варианта:

Мода, медиана и среднее значение выборки – это разный способ определить центральную тенденцию в выборке.

Ниже видеоролик о том, как рассчитать медиану в Excel.

Источник

Пример расчета медианы

Пример расчета медианы

План (содержание) работы Пример расчета медианы:

Понятие медианы

Формула расчета медианы

Применяемая для расчета медианы формула зависит от типа ряда распределения. Например, в неинтервальном ряду с четным количеством наблюдений медиана будет являться средним арифметическим значением из двух центральных величин, т.е. если совокупность состоит из десяти элементов, то искомый показатель будет равняться среднему значению пятого и шестого элемента. В случае, когда ряд неинтервальный и количество наблюдений нечетное, то медианным будет значение признака, находящегося в центре ранжированного ряда, т.е. для 11 элементов это будет шестой элемент.

В интервальном ряду распределения для вычисления медианы используют следующую формулу:

Что такое медиана данных. Смотреть фото Что такое медиана данных. Смотреть картинку Что такое медиана данных. Картинка про Что такое медиана данных. Фото Что такое медиана данныхФормула расчета медианы

В том случае, если вариационный ряд является дискретным, то медианным будет величина признака в той группе, в которой накопленные частоты превысили половину количества единиц исследуемой совокупности.

Пример расчета медианы в интервальном вариационном ряду

В качестве исходных данных для расчета и анализа медианы используем статистическую группировку банков по величине собственных средств. Таким образом, расчет искомого показателя осуществим на основе следующего интервального ряда распределения:

Источник

Эффективная оценка медианы

Итак, у Вас есть какой-то поток данных. Большой такой поток. Или уже готовый набор. И хочется определить какие-то его характеристики. Алгоритм определения минимального и максимального значения могут придумать даже не программисты. Вычисление среднего уже чуть сложнее, но тоже не представляет никаких трудностей — знай подсчитывай себе сумму да инкрементируй счетчик на каждое новое значение. Среднеквадратичное отклонение — все то же самое, только числа другие. А как насчет медианы?

Для тех, кто забыл, что это такое, напоминаю — медиана (50-й перцентиль) выборки данных — это такое значение, которое делит эту выборку пополам — данные из одной половины имеют значение не меньше медианы, а из второй — не больше. Ценность её заключается в том, что её значение не зависит от величины случайных всплесков, которые могут очень сильно повлиять на среднее.

Строго говоря, из определения следует, что для вычисления точного значения медианы нам нужно хранить всю выборку, иначе нет никаких гарантий, что мы насчитали именно то, что хотели. Но для непрерывных и больших потоков данных точное значение все равно не имеет большого смысла — сейчас оно одно, а через новых 100 отсчетов — уже другое. Поэтому эффективный метод оценки медианы, который не будет требовать много памяти и ресурсов CPU, и будет давать точность порядка одного процента или лучше — как раз то что нужно.

Сразу предупрежу — предложенный метод обладает рядом ограничений. В частности, он очень плохо работает на отсортированных выборках (но зато очень хорошо работает на более-менее равномерно распределенных). Дальше рассматривается более простой случай неотрицательных значений, для общего случая нужны дополнительные вычисления.

Идея метода состоит в том, чтобы построить такой процесс вычисления, который будет сходиться к действительному значению медианы. Если мы уже обработали какой-то обьем данных и имеем какую-то оценку медианы, то про поступлении нового обьема (с почти такой же медианой, что важно) наша оценка должна быть улучшена. Если более точно — то оценка должна быть улучшена с большей вероятностью, чем ухудшена.

Можно использовать разного рода окна вычисления медианы, например, посчитать точную медиану последних 100 значений, и усреднить с постоянно уменьшающимся весом с предыдущей оценкой. Такой метод будет хорошо работать, но есть гораздо более легкий и практически такой же точный. А именно — просто сдвигать текущую оценку медианы к новому значению на какую-то небольшую константную дельту. В случае, если предыдущая оценка была не точной, то при обработке нового объема данных она приблизится к действительному значению, т.е. станет более точной. А если оценка уже и так точная, то на обработке нового объема данных на половине значений будет сдвиг в одну сторону, а на другой половине — в другую, в итоге оценка вернется к точному значению.

Важно, что дельта должна иметь одинаковое абсолютное значение для сдвигов как в большую, так и в меньшую сторону, иначе мы получим не 50-й перцентиль. Но теперь встает проблема подбора значения дельты — слишком маленькое даст медленную сходимость, а слишком большое — получим большую погрешность, особенно если дельта сравнима с самим значением медианы. Автоматическое вычисление дельты уже лишает её звания константы, но это и неважно, если в итоге мы получим лучший результат.

Имеет смысл делать дельту постоянно уменьшающейся, чтобы улучшить сходимость. Но не слишком быстро, иначе, при неблагоприятных условиях оценка рискует никогда не догнать действительное значение медианы. Коэфициент 1/count подходит идеально — он легко вычисляется, и ряд sum(1/n) — расходящийся, так что в конце-концов оценка достигнет действительной медианы, какой бы плохой она ни была изначально.

Привязывать значение дельты к текущей оценке медианы — рискованно. В неудачных условиях слишком заниженной оценке будет сложно расти. Лучше всего вычислять дельту исходя из другой вполне устойчивой характеристики выборки — среднего значения. С коэфициентом 1/count значение дельты будет постоянно уменьшаться (за исключением немногочисленных случаев, когда текущее среднее вырастет слишком сильно по сравнению с предыдущим). Для данных, которые могут принимать не только неотрицательные значение, такой подход уже не сработает, но мы можем легко выйти из положения, если считать два средних — положительных и отрицательных значений, и использовать сумму их абсолютных значений.

Итоговый алгоритм оценки медианы почти такой же простой, как и алгоритм вычисления среднего значения:

Погрешность и скорость сходимости, по моему мнению, у него отличная — на выборке в 100 значений погрешность обычно около 10-20%, на 1000 — уже около 1-3%, и дальше погрешность уменьшается ещё больше.

Для желающих самостоятельно оценить качество работы алгоритма — небольшой скриптик на perl-е:

Статистика для разных распределений:

Источник

Медиана

Материал из MachineLearning.

Медиана (50-й процентиль, квантиль 0,5) — возможное значение признака, которое делит ранжированную совокупность (вариационный ряд выборки) на две равные части: 50 % «нижних» единиц ряда данных будут иметь значение признака не больше, чем медиана, а «верхние» 50 % — значения признака не меньше, чем медиана.

Медиана является важной характеристикой распределения случайной величины и так же, как математическое ожидание, может быть использовано для центрирования распределения. Однако, медиана более робастна и поэтому может быть более предпочтительным для распределений с т.н. тяжёлыми хвостами.

Медиана определяется для широкого класса распределений (например, для всех непрерывных), а в случае неопределённости, естественным образом доопределяется, в то время как математическое ожидание может быть не определено (например, у распределения Коши).

Медиана вероятностных распределений

РаспределениеМедиана
Нормальное
Равномерное
Логнормальное
Стьюдента
Экспоненциальное
Вейбулла
Коши

где интеграл понимается в смысле Лебега-Стилтьеса.

Для многих вероятностных распределений значение медианы выражается непосредственно через их параметры.

Пример использования

Неуникальность значения

В случае, когда имеется чётное количество случаев и два средних значения различаются, медианой, по определению, может служить любое число между ними (например, в выборке <1, 2, 3, 4>медианой, по определению, может служить любое число из интервала (2,3)). На практике в этом случае чаще всего используют среднее арифметическое двух средних значений.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *