Что такое мембраны головного мозга
Гематоэнцефалический барьер и лекарства
Поделиться:
Нормальная деятельность головного мозга возможна лишь в условиях биохимического и электролитного гомеостаза (равновесия). Поэтому жизненно необходимо, чтобы мозг был надежно защищен от попадания веществ, способных изменить работу центральной нервной системы. Для этого и существует гематоэнцефалический барьер, или сокращенно ГЭБ.
Для чего нам нужен ГЭБ
ГЭБ — это полупроницаемая мембрана, которая отделяет мозг от кровеносного русла. Этот барьер состоит из эндотелиальных клеток, астроцитов и перицитов. Мембрана имеет особо «плотное» расположение капилляров, что и является основой барьера, предохраняющего мозг от проникновения большинства веществ, циркулирующих в крови.
ГЭБ сохраняет специфическую внеклеточную среду вокруг нейронов, поддерживая концентрацию аминокислот, аскорбиновой и фолиевой кислот даже при снижении их концентрации в сыворотке крови.
Читайте также:
Инновации в нейронауках
Кроме того, абсолютно необходимо, чтобы никакие патогенные микробы не могли попасть в головной мозг. Иначе наступает катастрофа. Типичный пример: микроб менингита, так называемый менингококк, вполне мирно может проживать в носоглотке, но при ослаблении защитных сил (и нарушении проницаемости ГЭБ) менингококк попадает в центральную нервную систему, поражая оболочки головного мозга и вызывая потенциально смертельную болезнь — гнойный менингит.
Повышение проницаемости ГЭБ также характерно и для других заболеваний нервной системы. Например, при рассеянном склерозе активированные Т-лимфоциты легко преодолевают ГЭБ и вызывают поражение мозга.
Как ГЭБ работает на практике
Проницаемость гематоэнцефалического барьера напрямую зависит от величины молекул. Маленькие молекулы кислорода, углекислого газа проходят вообще без проблем. Но чем крупнее молекула вещества, тем труднее ей пробраться. Впрочем, существуют способы облегчить эту задачу. Например, давно замечено, что жирорастворимые вещества диффундируют через барьер на ура. Это свойство используется при создании некоторых лекарств, например снотворных барбитуратов.
Интересна ситуация с таким важным веществом, как глюкоза. Пониженный ее уровень — гипогликемия мозга — проявляет себя в виде головной боли, нарушений внимания, спутанности сознания и эпилептических приступов. При этом концентрация сахара в крови может оставаться нормальной (!). Тут «заупрямился» ГЭБ и возникли нарушения в системе переноса глюкозы.
Кстати, все больше и больше свидетельств, что классическая эпилепсия, происхождение которой в известной мере остается загадкой для врачей, является «болезнью ГЭБ», когда нарушен транспорт глюкозы в тканях мозга.
ГЭБ и фармакология
Давайте сразу уясним, что большинству лекарств незачем преодолевать этот барьер. К примеру, средство от расстройства желудка должно держаться подальше от мозга и заниматься своим прямым делом в пищеварительном тракте. Но если возникло серьезное поражение центральной нервной системы, «тогда мы идем к вам!».
Антибиотикам желательно добраться до мозга при инфекционных поражениях, противоконвульсивным препаратам — для лечения судорог и, уж конечно, нейролептикам — для купирования острых психозов. Эффективность вышеперечисленных препаратов напрямую зависит от проницаемости ГЭБ.
А вот при болезни Паркинсона, для которой характерен недостаток допамина в мозге, не удастся восполнить этот дефицит ни таблетками, ни уколами, потому что допамин через ГЭБ, к сожалению, не проходит. Хотя, например, предшественник допамина — Л-допа — способен преодолеть ГЭБ. Но все-таки это не совсем то, что нужно.
Кстати, похожая ситуация при депрессиях, в патогенезе которых большую роль играет глютамат. Глютамат также не проникает через через ГЭБ. Поэтому глотать его бессмысленно.
Когда ГЭБ может рухнуть?
Существует ряд ситуаций, при которых страдает ГЭБ и мозг остается незащищенным. Это может случиться при высоком артериальном давлении, поэтому стоит держать его под контролем. Внутривенное введение гиперосмолярных растворов также несет в себе угрозу нарушения барьера. Длительное воздействие микроволнового излучения и радиации доказанно считается причинами нарушений ГЭБ. Инфекции центральной нервной системы типично дают сбои в работе барьера. Также нарушения возможны при травмах мозга, его ишемии, воспалении и инсультах.
А если ГЭБ не пускает, но нам очень нужно?
Существует ряд заболеваний головного мозга, когда жизненно важно пропихнуть лекарство в определенный участок мозга. Чаще всего это онкология. Для этого используется метод «локального открытия ГЭБ». Лучше всего работают маннитол и его аналоги, которые вводятся в артерию мозга под контролем компьютерного томографа.
Маннитол открывает ГЭБ примерно на час, и за это время опухоль подвергается воздействию химиотерапии. С уходом маннитола дверь в мозг закрывается. И правильно — нельзя оставлять мозг без защиты.
Подобным эффектом открытия ГЭБ обладают Лейкотриен С4 и брадикинин. В определенной дозе ГЭБ открывает и гистамин. Кстати, «закрыть дверь» за гистамином можно его антиподом — цимедином. Имейте в виду, что все эти препараты вводятся прицельно в надлежащий кровеносный сосуд. Если принимать их в виде таблеток или инъекций, результата не будет.
Информация для простого пациента
Не ведитесь на рекламу деятелей «народной медицины», утверждающих, что нашли средства, улучшающие состояние психики. Далеко не всякая таблетка, вами проглоченная, вообще доберется до головы. На страже вашего мозга стоит ГЭБ, и чаще всего это только на пользу.
Что такое мембраны головного мозга
Защитную функцию для структур центральной нервной системы (ЦНС) выполняют оболочки мозга и спинномозговая жидкость. К оболочкам мозга относят прочную твердую мозговую оболочку, или пахименинкс (греч. pachymeninx—толстая обо-лочка),и лептоменинкс (греч. leptomeninges—тонкие оболочки), представленный паутинной мозговой оболочкой и мягкой мозговой оболочкой. Между паутинной и мягкой оболочками мозга расположено субарахноидальное (подпаутинное) пространство, заполненное спинномозговой жидкостью.
а) Твердая мозговая оболочка. В различных источниках можно встретить разное описание твердой мозговой оболочки. Твердая мозговая оболочка представляет собой толстый слой фиброзной ткани. Твердая мозговая оболочка сращена с эндостом черепа (внутренней частью надкостницы) практически на всем протяжении, за исключением участка, где оболочка загибается к внутренней стороне свода черепа и области, где оболочка проходит вдоль основания черепа. В местах отхождения от надкостницы твердая мозговая оболочка формирует венозные синусы.
Твердая мозговая оболочка формирует в полости черепа две большие складки, функция которых — стабилизация структур мозга: серп мозга и намет мозжечка.
Серп мозга расположен в продольной трещине между двумя полушариями. Серп мозга прикрепляется к петушиному гребню решетчатой кости и, расширяясь, доходит до верхнего края намета мозжечка. Вдоль линии свода черепа фиксированный край серпа мозга ограничивает верхний сагиттальный синус. Свободный край серпа мозга образует нижний сагиттальный синус, который, объединяясь с большой мозговой веной Галена, вливается в прямой синус. Прямой синус расположен вдоль линии соединения серпа мозга с наметом мозжечка и сливается с верхним сагиттальным синусом в области стока синусов.
Намет мозжечка полулунной формы присоединяется к серпу мозга и огибает сверху заднюю черепную ямку. Фиксированный край намета мозжечка на внутренней поверхности затылочной кости формирует поперечные синусы, а на верхней границе каменистой части височной кости — верхние каменистые синусы. Намет мозжечка прикрепляется к заднему клиновидному отростку клиновидной кости. Большая часть крови из верхнего сагиттального синуса переходит в правый поперечный синус.
Свободный край намета мозжечка по форме напоминает подкову. Верхние концы этой «подковы» прикрепляются к переднему клиновидному отростку и соединяются между собой листком твердой мозговой оболочки — диафрагмой турецкого седла. Латеральнее твердая мозговая оболочка от концов «подковы» намета мозжечка переходит на область средней черепной ямки и с каждой стороны формирует пещеристые (кавернозные) синусы. Позади клиновидной кости вогнутая часть «подковы» намета мозжечка окружает средний мозг.
Пещеристые синусы принимают кровь из глазных вен орбиты. Верхний каменистый синус соединяется с поперечным синусом в месте его перехода в сигмовидный синус. Сигмовидный синус спускается вдоль затылочной кости и открывается в луковицу внутренней яремной вены. Кроме того, в луковицу внутренней яремной вены открывается нижний каменистый синус, который проходит вниз вдоль края затылочной кости.
Твердая мозговая оболочка и ее синусы.
Средний мозг располагается в вырезке намета мозжечка.
Иннервация твердой мозговой оболочки. Иннервацию твердой мозговой оболочки, выстилающей супратенториальное пространство, обеспечивает тройничный нерв. Иннервацию передней черепной ямки, передней части серпа мозжечка и намета мозжечка осуществляет глазная ветвь тройничного нерва, а иннервацию средней черепной ямки и средней части свода черепа — в основном остистый нерв (менингеальная ветвь нижнечелюстного нерва). Тройничный нерв образует нижнечелюстную ветвь, которая выходит из полости черепа через овальное отверстие. Затем тройничный нерв проходит через остистое отверстие, сопровождая среднюю менингеальную артерию и ее ветви. Растяжение или воспаление твердой мозговой оболочки супратенториального пространства вызывает головные боли в лобной и теменной зонах.
Иннервацию твердой мозговой оболочки, выстилающей субтенториальное пространство, обеспечивают ветви трех шейных спинномозговых нервов, проходящих через большое затылочное отверстие, а также ветви блуждающего и подъязычного нервов. В состав всех менингеальных нервов входят вегетативные симпатические постганглионарные нервные волокна. Патологические процессы в твердой мозговой оболочке субтенториального пространства вызывают боли в затылочной области и в задней части шеи. Острое воспаление оболочек мозга с вовлечением оболочек задней черепной ямки проявляется ригидностью шейных мышц и часто приведением головы вследствие рефлекторного сокращения задних затылочных мышц, иннервацию которых осуществляют шейные спинномозговые нервы. Субарахноидальные кровоизлияния, локализующиеся вокруг задней части мозга, сопровождаются сильнейшей головной болью.
Венозные синусы основания черепа. Твердая мозговая оболочка справа удалена.
На вставке показано место расположения углублений для синусов в черепе.
С левой стороны показан средний мозг (срез на уровне вырезки намета мозжечка).
С правой стороны показано место прикрепления тройничного нерва к варолиеву мосту (срез на нижнем уровне). Пещеристый синус (коронарный срез).
б) Менингеальные артерии. Некоторые менингеальные артерии проходят в надкостнице; главная функция этих артерий — кровоснабжение губчатого вещества костного мозга. Самая крупная — средняя менингеальная артерия, разветвляющаяся на внутренней поверхности височной и теменной костей. Разрыв средней менингеальной артерии и сопровождающей ее вены — самая частая причина эпидуральных кровоизлияний.
2. Субдуральные гематомы возникают в результате повреждения поверхностных вен мозга, идущих от мозга к венозным синусам. Острые субдуральные кровоизлияния в большинстве случаев возникают у детей при тяжелых повреждениях головы, в связи с чем необходимо предполагать этот диагноз, если ребенок потерял сознания после травмы головы. Причиной возникновения такой ситуации в домашних условиях может быть избиение ребенка. Подострые субдуральные кровоизлияния возникают после травмы головы и характерны для людей любого возраста. Симптомы и признаки повышенного внутричерепного давления (глава 6) могут развиваться в течение трех недель после травмы.
3. Хронические субдуральные кровоизлияния характерны для людей старшей возрастной группы, поскольку у пожилых людей вены мозга становятся хрупкими и натягиваются в результате сжатия «стареющего» мозга. Для возникновения таких кровоизлияний достаточно даже легкой травмы головы; в некоторых случаях гематома возникает в отсутствие травмы. У большей части пациентов наблюдают нарушения свертывания крови (например, в результате приема антикоагулянтов или злоупотребления алкоголем). Отмечают разнообразные симптомы хронических субдуральных кровоизлияний: изменения личности, головные боли, а также эпилептические припадки.
Череп (вид сбоку).
Птерион (выделен кружком). Коронарный срез верхнего сагиттального синуса и прилежащих структур.
(А) Обзорное изображение. Большая часть скальпа удалена, чтобы показать две эмиссарные вены, переносящие кровь от губчатого вещества костей черепа к венам поверхности сухожильного шлема.
В правой части изображения показано кровоснабжение губчатого вещества костей черепа менингеальными сосудами.
Кроме того, изображена мозговая вена, впадающая в верхний сагиттальный синус.
(Б) Увеличенный фрагмент изображения (А): показана пахионова грануляция, обеспечивающая транспорт спинномозговой жидкости из субарахноидального пространства в лакуны, сообщающиеся с верхним сагиттальным синусом.
(В) Увеличенный фрагмент изображения (А): показана артерия, окруженная последовательно периваскулярным пространством, мягкой мозговой оболочкой и подсосудистым пространством.
Звездочкой отмечено пространство между твердой и паутинной мозговыми оболочками, в котором локализуется субдуральное кровоизлияние в случае разрыва вены мозга.
Обратите внимание, что менингеальные сосуды расположены эпидурально.
в) Паутинная оболочка мозга. Паутинная (греч, arachne — паук) оболочка мозга представляет собой тонкий спой фиброзной ткани, плотно прилетающий к твердой мозговой оболочке. Клетки наружного слоя паутинной оболочки образуют плотные контакты, изолирующие субарахноидальное пространство. От паутинной оболочки отходят многочисленные трабекулы к мягкой оболочке мозга.
г) Мягкая оболочка мозга. Мягкая, или сосудистая, оболочка плотно прилегает к мозгу, повторяет его очертания и выстилает многочисленные борозды мозга. Мягкая мозговая оболочка, как и паутинная, образована фиброзной соединительной тканью. Расположенные поверхностно клеточные структуры проницаемы для спинномозговой жидкости. Волокнистые структуры расположены в узком подсосудистом пространстве, которое также переходит на пери-васкулярные пространства сосудов поверхностных слоев мозга.
Обратите внимание: в норме субдуральное пространство очень незначительно выражено (узкое и щелевидное). Однако оно расширяется при просачивании крови в область контакта клеточного и фиброзного компонентов твердой мозговой оболочки в результате повреждения вен мозга.
д) Подпаутинные цистерны. По обеим сторонам ствола мозга вдоль основания черепа расположены подпаутинные цистерны,заполненные спинномозговой жидкостью. Самая крупная — большая цистерна, расположенная между мозжечком и продолговатым мозгом. Ростральнее большой цистерны и спереди от моста мозга находится цистерна моста. Пространство между ножками мозжечка занимает межножковая цистерна. Охватывающая (обходящая) цистерна расположена латеральнее среднего мозга. Полный список цистерн мозга представлен в таблице ниже.
е) Оболочки зрительного нерва. Зрительный нерв образован белым веществом ЦНС и, подобно мозгу, окружен тремя мозговыми оболочками. Твердая оболочка зрительного нерва срастается со склеральной оболочкой глаза; субарахноидальное пространство представляет собой слепо замкнутую полость. Оболочки зрительного нерва окружают направляющиеся к сетчатке центральные сосуды сетчатки. Любое стойкое повышение внутричерепного давления распространяется на окружающее зрительный нерв субарахноидальное пространство, в результате чего происходит сдавление центральной вены сетчатки, приводящее к расширению венозной сети сетчатки и отеку диска зрительного нерва. Диск (сосок) зрительного нерва представляет собой образование, соответствующее началу зрительного нерва. Отек диска зрительного нерва можно диагностировать при офтальмоскопии.
Подпаутинные цистерны
МРТ (горизонтальная проекция)
Левая орбита (горизонтальный срез).
Субарахноидальное пространство распространено до уровня слияния твердой оболочки со склеральной оболочкой глазного яблока (указано стрелочками). Глазное дно (офтальмоскопия).
(А) Норма. (Б) Отек диска зрительного нерва в результате повышения внутричерепного давления.
ж) Резюме. Выделяют твердую, паутинную и мягкую оболочки мозга. Субарахнодальное пространство заполнено спинномозговой жидкостью.
Твердая оболочка головного мозга представлена двумя крупными складками: серпом мозга и наметом мозжечка. Прилегающий участок серпа мозга окружает верхний сагиттальный синус, который, как правило, переходит в правый поперечный синус. Свободный край серпа мозга окружает нижний сагиттальный синус, который, соединяясь с большой мозговой веной Галена, образует прямой синус, открывающийся в сток верхнего сагиттального и поперечного синусов.
Прилегающий край намета мозжечка окружает поперечный синус, который спускается вниз и переходит в сигмовидный синус, открывающийся в яремную вену. Свободный край намета мозжечка образует «подкову», прикрепляющуюся к переднему клиновидному отростку клиновидной кости; внутри этой «подковы» расположен средний мозг. Твердая мозговая оболочка переходит на область средней черепной ямки от концов этой «подковы» и формирует пещеристые синусы. Пещеристые синусы принимают кровь из вен глаза и переходят в сигмовидный синус через каменистые синусы. Иннервацию супратенториальной твердой мозговой оболочки осуществляет тройничный нерв, а иннервацию субтенториальной твердой мозговой оболочки — верхние грудные нервы.
Менингеальные сосуды проходят над твердой мозговой оболочкой и кровоснабжают губчатое вещество плоских костей черепа; при переломе черепа кровоизлияния из этих сосудов вызывают образование экстрадуральной гематомы, которая может привести к сдавлению мозга. Субдуральная гематома может возникнуть из-за просачивания крови при ее прохождении из вены мозга в верхний сагиттальный синус.
Также рекомендуем видео анатомии и топографии синусов твердой мозговой оболочки
Редактор: Искандер Милевски. Дата публикации: 10.11.2018
Оболочки головного мозга
Все структуры головного мозга надежно защищены специальными оболочками, которые будто бы листы создают защитный каркас. Защитные слои имеют абсолютно разную структуру и функции. В этой статье вы узнаете, как устроены оболочки головного мозга, и каковы их функции.
Анатомия строения
Спинномозговая жидкость защищает при травмах, заполняя пространство между оболочками. Внутренний защитный слой представляет собой ткань, заполняющую пустоты. Внутри ткани располагаются сосуды, способствующие транспортировке питательных веществ. Далее идет соединительная ткань с коллагеновыми волокнами. Называется данный слой срединным. Его можно назвать самым мягким и глубоким. Между двумя защитными пространствами находится межободочное пространство, в котором активно функционирует ликвор. Твердый защитный слой имеет наружную и внутреннюю поверхности. В твердой мозговой оболочке присутствуют коллагеновые тяжи.
Снаружи оболочка имеет большое количество сосудов, а ее поверхность рыхлая. Внутренняя же часть достаточно гладкая. Поверхностная область выступает в качестве надкостницы и не очень плотно прилегает к своду. Фиброзная ткань образует некий тоннель в области соединения костей. Плотная ткань представлена двумя листами, выступающими в роли отростков твердой оболочки.
Синусы и отростки
Фиброзная ткань образует щели. Один из крупных отростков располагается в углублении, которое разделяет два полушария. Затылочная часть с большим мозгом разделены палаткой мозжечка. Над черепной ямкой располагается отросток. Между двух полушарий находится серп мозжечка. Синусы твердой оболочки создают отростки и расщепление ТМО. Синусы — это каналы, помогающие перемещению венозной крови. Каналы бывают следующих типов:
Каналы соединяются с наружными сосудами черепа и с тонкостенными сосудами.
Функционирование
Для максимальной защиты центральной нервной системы природа создала наружный каркас из костей и мягкие тканевые прослойки внутри. Оболочка головного мозга выполняет три основные функции:
Все листки оболочки созданы для того, чтобы надежно защищать клетки и ткани. Образование мягкой оболочки произошло для доставки кислорода и питания. Фиброзные волокна в твердой мозговой оболочке способствуют защите структур при травмах, а также выполняют функцию дренажа. Мягкая оболочка и твердый слой существенно отличаются друг от друга, а также имеют разные функции. Твердая мозговая оболочка имеет несколько защитных слоев. Благодаря совокупности волокон и их прочной связи центральная нервная система обладает надежным каркасом.
Ежедневные тренировки помогут сделать ваш мозг мощнее и эффективнее. Развивайтесь каждый день с тренажерами Викиум!
Неврологические аспекты головных болей. Часть 1.
В 1899 году Вильям Гарнер Сазерленд, будучи студентом Американской школы остеопатии в Кирксвилле, обратил внимание на разборный череп своего учителя. Его внимание привлекли суставные поверхности клиновидно-чешуйчатого шва со сменой направления скосов, которые напомнили ему жабры рыбы и навели на мысль о наличии возможной подвижности в области швов черепа. Он предположил наличие дыхательного механизма в черепе, поскольку ритмичный механизм имеется во всем теле: экскурсия грудной клетки, сокращение сердца, перистальтика кишечника.
Рис.1 Вильям Гарнер Сазерленд, 1899 г.
В течение следующих 30 лет Сазерленд полностью посвятил себя изучению и исследованию костей черепа.
Поначалу остеопатия краниальной области воспринималась как ересь и фантастика. Рукописи не принимали к печати, выступления на форумах остеопатических ассоциаций встречали полным непониманием. Однако со временем, полученные результаты стали неопровержимыми. Они противоречили существующим на тот момент представлениям о том что кости черепа у взрослых жестко соединены друг с другом.
«Сазерлендом были сделаны шокирующие выводы:
Концепция работы с черепом, предложенная Сазерлендом, подразумевает устранение застоя спинномозговой жидкости,отека головного мозга, нарушений венозного оттока, застойных состояний, скопление продуктов обмена, зон ишемии, окружающих периваскулярные и периневральные каналы. Улучшая работу мозга, освобождая его от застоя, ишемии и отека, мы получим воздействие на множество органов и систем.
Краниальный ритм
Движение костей черепа по своей природе является постоянным, ритмичным и цикличным дыхательным механизмом в организме. При этом движение каждой кости в отдельности синхронизировано с движением других костей, флуктуациейликвора, изменениями нервной оси и мозговых оболочек, что оставляет единый физиологический комплекс. В черепе имеется фаза вдоха – флексия, и фаза выдоха – экстензия.
Движение костных структур обеспечивается следующими составляющими:
Исследования с помощью черепных датчиков многократно показывали наличие краниального ритма. Использовались различные приспособления, позволяющие регистрировать микроподвижность костей черепа и параллельно исключающие влияние артефактов, связанных с дыханием и сердечной деятельностью.
Также в 1991 году Ю.Е. Москаленко подтвердил микромобильность черепа с помощью точных записывающих зондов, используя биоимпедансный метод и транскраниальную допплерографию.
Максимальный размах движения костей черепа здорового человека на уровне швов, выявленный при этих исследованиях, не превышает 1-1,5 мм.
Флуктуация ЦСЖ
В свою очередь равномерный краниальный ритм регулирует гомеостаз и цикличность ликвородинамики. Баланс может нарушиться при различных заболеваниях ЦНС, или при сбое краниального ритма. Это приводит к повышенному давлениюликвора и, как пример, к гидроцефалии (см. патология краниального ритма).
Следствием такого нарушения может быть психосоматические нарушения, ухудшение общего самочувствия. Пострадает работа гипоталамуса, включая терморегуляцию, сон, жировой обмен, эмоции.
Может возникнуть симптоматика, связанная с работой ствола мозга: тошнота, рвота, диарея, запор, нарушение сердечного ритма, астма, головокружение, шум в ушах и прочие расстройства (см. патофизиологию краниального ритма).
Мембраны реципрокного натяжения
Твердая мозговая оболочка является единой структурой, сверхпрочной и нерастяжимой. Ее складки и отростки образуютсерп мозга, палатку и намет мозжечка, также она выстилает спинномозговой канал и частично выходит с периферическими нервными волокнами. Все составляющие твердой мозговой оболочки принято называть мембранами реципрокного натяжения. Это означает, что пластическая деформация одной из них влечет за собой натяжение и деформацию других.
Рис.2 Схема мембран реципрокного натяжения, образованных твердой мозговой оболочкой. Натяжение твердой мозговой оболочки. Стрелками указаны векторы движения костей и мембран по ходу волокон твердой мозговой оболочки (слева и вверху) и распределение векторов сил вдоль костей черепа (внизу).
Анатомия вен и венозных синусов головного мозга в их взаимоотношении с твердой мозговой оболочкой такова, что натяжение последней влияет на их размеры и на способность транспортировать кровь. Венозные синусы образуются в местах расщепления листков твердой мозговой оболочки и осуществляют отток венозной крови из полости черепа.
Рис. 3 Твердая оболочка головного мозга, вид справа и сверху (правая часть крыши черепа удалена горизонтальным и сагиттальным распилами): 1 — серп большого мозга; 2 — верхний продольный синус; 3 — нижний продольный синус; 4 — межпещеристый синус; 5 — клиновидно-теменной синус; 6 — диафрагма седла; 7 — межпещеристый синус; 8 — пещеристый синус; 9 — базилярное сплетение: 10 — правый верхний каменистый синус; 11 — верхняя луковица внутренней яремной вены; 12 — сигмовидный синус; 13 — намет мозжечка; 14 — поперечный синус; 15 — сток синусный; 16 — прямой синус; 17 — большая мозговая вена; 18 — левый верхний каменистый синус; 19 — левый нижний каменистый синус.
Фасциальные мембраны могут приобрести натяжение вследствие изменения конфигурации черепа, отдельных костей, блоков в определенных швах, при нарушении краниального ритма (см. патогенез краниальных нарушений).
При натяжении мембран, стенка венозных синусов приобретает ригидность, отток венозной крови при этом нарушается.
Все вышеперечисленное приводит к застойным явлениям в черепе и, как следствие:
3) Зона ствола головного мозга (где расположены ядра практически всех черепных нервов, также сердечный и дыхательный центры)
4) Дистрофия черепных нервов вызовет следующие нарушения