Что такое нейтронное излучение
Нейтронное излучение
Из Википедии — свободной энциклопедии
Нейтронное излучение возникает при ядерных реакциях (в ядерных реакторах, промышленных и лабораторных установках, при ядерных взрывах). Свободный нейтрон — это нестабильная, электрически нейтральная частица с временем жизни около 15 минут (880,1 ± 1,1 секунды [1] ).
При неупругих взаимодействиях возникает вторичное излучение, которое может состоять как из заряженных частиц, так и из гамма-квантов.
При упругих взаимодействиях возможна обычная ионизация вещества. Проникающая способность нейтронов очень велика по причине отсутствия заряда и, как следствие, слабого взаимодействия с веществом. Проникающая способность нейтронов зависит от их энергии и состава атомов вещества, с которыми они взаимодействуют. Слой половинного ослабления нейтронного излучения для лёгких материалов в несколько раз меньше, чем для тяжёлых. Тяжёлые материалы, например металлы, хуже ослабляют нейтронное излучение, чем гамма-излучение. Условно нейтроны в зависимости от кинетической энергии разделяются на быстрые (до 10 МэВ), сверхбыстрые, промежуточные, медленные и тепловые. Медленные и тепловые нейтроны вступают в ядерные реакции, в результате могут образовываться стабильные или радиоактивные изотопы.
Энциклопедичный YouTube
Субтитры
Содержание
Защита
Быстрые нейтроны плохо поглощаются любыми ядрами, поэтому для защиты от нейтронного излучения применяют комбинацию замедлитель — поглотитель. Наилучшие замедлители — водородсодержащие материалы. Обычно применяют воду, парафин, полиэтилен. Также в качестве замедлителей применяют бериллий и графит. Замедленные нейтроны хорошо поглощаются ядрами бора, кадмия.
Поскольку поглощение нейтронного излучения сопровождается гамма-излучением, необходимо применять многослойные экраны из различных материалов: свинец — полиэтилен, сталь — вода и т. д. В ряде случаев для одновременного поглощения нейтронного и гамма-излучений применяют водные растворы гидроксидов тяжёлых металлов, например железа Fe(OH)3.
Радиоактивное излучение, взаимодействуя с облучаемой средой, образует ионы разных знаков. Этот процесс называется ионизацией и обусловлен действием на облучаемую среду ядер атомов гелия (α-частицы), электронов и позитронов (β-частицы), а также незаряженных частиц (корпускулярное и нейтронное излучение), электромагнитного/фотонного (рентгеновское [характеристическое и тормозное] и γ-излучение) и другого излучений. Ни один из этих видов радиоактивного излучения не воспринимается органами чувств человека.
Нейтронное излучение является потоком электронейтральных частиц ядра. Так называемое вторичное излучение нейтрона, когда он сталкивается с каким-либо ядром или электроном, оказывает сильное ионизирующее воздействие. Ослабление нейтронного излучения эффективно осуществляется на ядрах лёгких элементов, особенно водорода, а также на материалах, содержащих такие ядра — воде, парафине, полиэтилене и др.
В качестве защитного материала часто используют парафин, толщина которого для Ро—Be- и Ро—В-источников нейтронов будет примерно в 1,2 раза меньше, чем толщина водной защиты. Следует отметить, что нейтронное излучение радиоизотопных источников часто сопровождается γ-излучением, поэтому необходимо проверять, обеспечивает ли защита от нейтронов также защиту от γ-излучения. Если не обеспечивает, то необходимо вводить в защиту компоненты с высоким атомным номером (железо, свинец).
При внешнем облучении основную роль играют гамма- и нейтронное излучение. Альфа- и бета-частицы составляют главный поражающий фактор радиоактивных облаков, образуемых продуктами деления, остатками расщепляющегося материала и вторично активированными веществами при ядерном взрыве, однако эти частицы легко поглощаются одеждой и поверхностными слоями кожи. Под действием медленных нейтронов в организме создаётся наведённая радиоактивность, которая была обнаружена в костях и других тканях многих людей, умерших в Японии от лучевой болезни.
Нейтронная бомба
Нейтронное излучение.
Нейтронное излучение является результатом спонтанного деления ядер делящихся радиоактивных материалов, либо результатом взаимодействия альфа частиц с легкими ядрами. Нейтроны обладают энергией от долей до десятков МэВ. Нейтроны с малой энергией (тепловые) легко проникают в ядра, вызывая их перегруппировку с образованием искусственного радиоактивного изотопа того же элемента. Например:
Образовавшийся изотоп кобальта обладает искусственной радиоактивностью. Испуская бета – частицу, он превращается в стабильный изотоп никеля . В процессе распада ядра
испускаются два γ – кванта с энергией 1,17 и 1,33 МэВ.
Фиксация нейтронного излучения может служить основанием для подозрения о наличии в перевозимом грузе делящихся материалов.
Для защиты от нейтронного излучения используются материалы с высокой концентрацией атомов водорода, такие как вода, парафин, полиэтилен, гидриды металлов и т.п. Контейнеры из этих материалов могут применяться и для маскировки незаконной перевозки ДРМ, испускающих нейтронное излучение. Хорошим материалом защиты от нейтронов является бетон, который достаточно эффективно ослабляет и гамма-излучение.
Нейтронное и гамма-излучение относятся к проникающим излучениям, так как они достаточно легко проходят через различные материалы. В связи с этим для грузов радиоактивных материалов, испускающих эти виды излучений, требуется специальная конструктивная защита, которая должна обеспечивать радиационную безопасность персонала и населения при их транспортировке. Вследствие высокой проникающей способности именно эти два вида излучений обычно используются для обнаружения и аттестации ДРМ в перемещаемых через границу товарах и транспортных средствах.
Энергию ИИ и его воздействие можно оценивать дозой и мощностью дозы. Существуют разные виды доз: экспозиционная, поглощенная, эквивалентная и эффективная.
Первым критерием для измерения экспозиционной дозы ИИ стал суммарный заряд частиц с электрическим зарядом одного знака, образовавшихся в единичном объеме массы сухого атмосферного воздуха вследствие его ионизации.
Единицей экспозиционной дозы в системе СИ является кулон, деленный на килограмм (Кл/кг). В литературе чаще применяется внесистемная единица экспозиционной дозы – рентген (Р), соответствующая образованию 2,1 × 10 9 пар ионов с зарядом, равным по абсолютной величине заряду электрона в 1 см 3 сухого воздуха при нормальных условиях.
Мощность экспозиционной дозы (МэД) ИИ определяется как экспозиционная доза, полученная в единицу времени. В системе СИ она измеряется в Кл/кг×с = или в амперах на килограмм А/кг. Чаще используются внесистемные единицы: Р/с и Р/ч, а также мкР/ч и мР/ч. Экспозиционную дозу и её мощность используют для оценки полей радиации с энергией квантов не выше 3 МэВ.
Изменения, вызываемые излучением в воздухе и в других средах (в том числе в тканях человеческого организма) количественно различны.
Это связано с разным количеством энергии, передаваемой излучением одинаковым по массе количествам разных веществ. Учесть этот фактор можно, выражая количество ИИ в единицах поглощенной дозы (D).
Физический смысл поглощенной дозы – это количество энергии, переданная излучением единичной массе вещества.
Биологически значимые величины поглощенных доз измерить трудно из-за незначительности энергии, передаваемой организму излучением. Так, при облучении человека массой 76 кг дозой 4 Гр его телу будет передана энергия 305 Дж. Этого хватает лишь для подъема тела на высоту 40 см или для его нагревания на 0,001˚С.
Поэтому экспозиционная доза ИИ, как правило, измеряется, а поглощенная доза рассчитываетсяс учетом свойства среды, на которую действует облучение. В воздухе 1 рентген соответствует 0,89 рад, а в тканях организма в среднем составляет 0,95 рад.
Степень воздействия ИИ на облучаемый объект зависит не только от её мощности, т.е. полученной дозы, но и от времени, за которое эта доза была получена. В радиационных расчетах важно знать за какое время объект может получить ту или иную заранее заданную дозу в конкретной радиационной обстановке.
Поэтому мощность поглощенной дозы (МПД) – это скорость накопления дозы. В системе СИ мощность поглощенной дозы (или «мощность дозы излучения») определяется как 1Гр/1с. Наиболее часто используются внесистемные единицы: рад/с, Гр/ч, рад/ч.
Различные ИИ вызывают в биосистемах количественно различные эффекты даже при одной поглощенной дозе. Это связано, главным образом, с такими характеристиками излучений, как линейная передача энергии (ЛПЭ) и коэффициент ослабления m.
Для сравнительной оценки биологического действия различных видов ИИ введено понятие эквивалентной дозы (Н), которая определяется как поглощенная доза в органе или ткани (D), умноженная на соответствующий взвешивающий коэффициент для данного вида излучения (Q):
где: D – поглощенная доза в данной точке ткани, а Q – средний коэффициент качества излучения, который устанавливается для каждого вида излучения в зависимости от его ЛПЭ (табл. 12.1).
Средние значения коэффициента качества для
различных видов излучения
Вид излучения | Коэффициент качества, Q |
Фотоны любых энергий | 1 |
Электроны и мюзоны любых энергий | 1 |
Нейтроны с энергией E 20 МэВ | 5 |
Протоны с энергией E > 2 МэВ | 5 |
a-частицы, осколки деления, тяжелые ядра | 20 |
В системе СИ единицей эквивалентной дозы служит зиверт (Зв), а внесистемной единицей является бэр (аббревиатура слов «биологический эквивалент рада»). 1 Зв = 100 бэр. Для рентгеновского, g- и b-излучений 1 Зв соответствует поглощенной дозе в 1 Гр.
При кратковременных лучевых воздействиях эквивалентную дозу можно рассчитать по формуле:
где Н – эквивалентная доза, бэр; D – поглощенная доза, рад; ОБЭ – коэффициент относительной биологической эффективности ИИ, который для рентгеновского и g-излучения обычно принимают равным единице. Величина ОБЭ для других ИИ зависит от их природы и от выбранного критерия оценки биологической эффективности излучения. ОБЭ > 1 у излучений, более эффективных по конкретному критерию, чем рентгеновское или g-излучения.
Коэффициент качества показывает, во сколько раз рассматриваемый вид излучения опаснее для организма, чем g-излучение при одной и той же величине полученной дозы.
Мощность эквивалентной дозы H’ измеряется в Зв/с, а также в бэр/с, (1зВ = 100 бэр) мкЗ/ч, мбэр/ч. Уровень измерения – соответствует мощность дозы, выраженная в миллизивертах в час.
Средняя эквивалентная доза в органе – среднее значение эквивалентной дозы HT в ткани или органе T массой mT:
где H – доза в элементе массы dm.
В повседневной практике радиационного контроля исторически более привычной для людей является использование термина «микроретген в час» для описания мощности эквивалентной дозы (см. таб. 12.2).
Следует учитывать, что одни органы и ткани более чувствительны к действию радиации, чем другие. Поэтому дозы облучения органов и тканей также следует учитывать с различными коэффициентами. Это положение лежит в основе определения эффективной дозы (HE), которая также измеряется в зивертах (Зв).
Взвешивающие коэффициенты для тканей и органов
при расчете эквивалентной дозы
Орган | wT | Орган | wT |
Гонады | 0,20 | Мочевой пузырь | 0,05 |
Грудная железа | 0,05 | Пищевод | 0,05 |
Красный костный мозг | 0,12 | Печень | 0,05 |
Желудок | 0,12 | Щитовидная железа | 0,05 |
Легкие | 0,12 | Кожа | 0,01 |
Кость (поверхность) | 0,01 | ||
Остальные органы (ткани)* | 0,05 |
Эффективная доза НЕ равна сумме произведений средней эквивалентной дозы облучения (таблица 12.3) органа Нт на взвешивающие коэффициенты для соответствующих органов wT (wT характеризуют отношение риска облучения данного органа (ткани) к суммарному риску при равномерном облучении всего тела). Значения wT рекомендованы МКР3 и приняты НРБ для расчета эффективной дозы персонала и населения любого возраста с учетом радиочувствительности разных органов и тканей организма человека.
Единицы основных видов дозы и соотношения между ними.
Единицы основных видов доз излучения**
В соответствии с НРБ-99/2009 доза эффективная (НE) – это величина, используемая как мера риска возникновения последствий облучения всего тела человека и отдельных его органов и тканей с учетом их радиочувствительности.
Для оценки опасности ИИ для группы людей или для популяции в целом следует пользоваться понятием коллективная эффективная доза. Она рассчитывается как сумма индивидуальных эффективных доз, полученных группой людей, и измеряется в человеко-зивертах (чел.-Зв). НРБ-99/2009 дает следующее определение этой дозы: доза эффективная коллективная – это мера коллективного риска возникновения стохастических эффектов облучения, равная сумме индивидуальных эффективных доз.
Для оценки вредности радионуклидов используют два подхода:
1. Оценивают его вклад в индивидуальную усредненную годовую дозу для критической группы людей. Под критической группой понимают контингент лиц, находящихся в наихудших условиях с точки зрения радиационного воздействия.
2. Оценивают его вклад в популяционную дозу. Некоторые авторы (Фрай, О.Риорден) представляют классификацию источников радиационного загрязнения внешней среды следующим образом:
Памятка начинающему радиофобу или как правильно бояться радиации.
Радиация. Я лично знаю людей, которых это слово повергает в ужас. Смертельно-опасное явление, от которого нет ни спасения, ни защиты. Есть даже комплекс трудно поддающихся лечению психических расстройств под общим названием «радиофобия».
Бояться радиации люди стали не сразу с её открытием, а во многом, благодаря информационным кампаниям времён холодной войны. Авария на Чернобыльской АЭС добавила ужаса, и теперь находятся люди, всерьёз опасающиеся даже WiFi роутеров, параболических антенн (даже принимающих!) и вообще всего, у чего наблюдается антенна.
Есть и проверенное средство защиты — шапочка из фольги, которая, вопреки расхожему мнению, может быть даже стильной. Впрочем, защитные свойства подобного головного убора сильно преувеличены.
Сегодня я хочу в деталях поговорить об этом явлении, которое точнее называть ионизирующим излучением. Оно называется ионизирующем, как нетрудно догадаться, потому что может являться причиной ионизации атомов вещества — потерей атомами своих электронов.
Явление радиоактивности случайно открыл француз Антуан Анри Беккерель. Подробности открытия можно найти в интернете, однако, «случайность» здесь — немного неуместное слово. После открытия Рентгеном своих Х-лучей, открытие радиоактивности в природных веществах было лишь вопросом времени. Важным для нас является более позднее исследование нового вида лучей, а именно — разделение их на три вида в электрическом поле:
Поскольку в тот момент никто понятия не имел, с чем имеет дело, разным типам излучения дали просто названия по буквам греческого алфавита: положительно-заряженным лучам, которые притягивались к отрицательно-заряженной пластине дали название «альфа», отрицательно-заряженным – «бета», а нейтральным (которые не отклонялись — «гамма»).
Есть и другие виды радиации, но к ним мы вернёмся чуть позже, а пока разберём по порядку эти:
Альфа-излучение — поток «альфа частиц», которые по сути являются ядрами гелия-4 и состоят из 2 протонов и двух нейтронов.
Альфа-частица — это сравнительно тяжёлая и сравнительно медленно-движущаяся частица, которая испускается в процессе так называемого «альфа-распада», когда тяжёлое атомное ядро может спонтанно «отпустить» погулять на волю 2 протона, «сцепленные» с двумя нейтронами. При этом массовое число ядра, внезапно закономерно, уменьшается на 4, а атомный номер — на 2. Альфа-распад свойственен почти всем тяжёлым элементам. Чтобы вырваться из цепких лапок сильного ядерного взаимодействия, альфа-частица должна «телепортироваться» (совершить туннельный переход) за пределы его действия — процесс этот абсолютно спонтанный и непредсказуемый, так что предсказать точно, когда именно произойдёт альфа-распад, мы не можем, однако, он обязательно произойдёт.
Что радиофобу необходимо знать об альфа-излучении — во-первых, встретиться с ним хоть в сколько-нибудь значимых количествах довольно сложно (если вы не работаете, разумеется, с большим количеством радия, тория, урана или плутония). Ещё вам нужно знать, что в силу того, что альфа-частицы движутся относительно медленно и имеют относительно крупный размер, они задерживаются практически любой преградой (даже простой лист бумаги на пути потока альфа-частиц полностью его остановит).
Неприятной новостью является то, что по степени биологической опасности, альфа-излучение в силу тех же причин оказывает наиболее разрушительное воздействие на клетки живого организма. Особенную опасность они будут предоставлять, если вы вдруг вдохнёте пыль, излучающую альфа-частицы, поэтому я настоятельно рекомендую носить респиратор в местах, где подобная пыль хотя бы теоретически может содержаться, и никогда не пить чай с полонием!
Бета-частицы на поверку оказались старыми добрыми электронами, которые образуются в процессе который ВНЕЗАПНО называется «бета-распад». За него у нас отвечает слабое фундаментальное взаимодействие. Представьте себе, одному нейтрону в ядре атома наскучило быть нейтроном. Тогда он превращается в протон, а отрицательный электрический заряд уносится вместе с родившимся в процессе электроном (ещё рождается анти-нейтрино, но оно нам абсолютно не опасно, так как практически никак не взаимодействует с веществом).
Где можно встретить бета-лучи? В природе в чистом виде — практически нигде (разве что внутри старого кинескопа), однако, там, где есть радиоактивные материалы, они будут испускаться наравне с альфа-частицами. Есть, впрочем, такие элементы как прометий, криптон и стронций, которые можно назвать более активными излучателями бета-частиц.
Что о бета-излучении надо знать радиофобу — то, что их свободный пробег в воздухе весьма ограничен. Он, конечно, зависит от скорости, которая колеблется от 0,3 до почти скорости света, но дело в том, что преодолеть в свободном полёте электрон сможет лишь метра два, никак не больше. А внутрь организма человека он сможет проникнуть не дальше, чем на 2,5 см. Опять, таки, если не есть, не пить и не дышать ничем радиоактивным, бета-лучи нам «подарят» всего лишь ожоги разной степени тяжести. Берегите глаза! Защитой может служить лист алюминия или даже плексигласа, но в целом, бета лучи являются самым безобидным видом ионизирующего излучения.
Следующим, и, наверное, самым гадким из видов излучения, является не «гамма», как можно было ожидать, а нейтронное излучение. Как следует из названия, данный вид излучения представляет собой поток нейтронов. Почему она самая гадкая? Потому что, от неё очень сложно защититься. Нейтрон не имеет электрического заряда, поэтому имеет очень высокую проникающую способность.
Быстрые нейтроны плохо поглощаются любыми ядрами, поэтому для защиты от нейтронного излучения применяют комбинацию замедлитель-поглотитель. Наилучшие замедлители — водородсодержащие материалы. Обычно применяют воду, парафин, полиэтилен. Также в качестве замедлителей применяют бериллий и графит. Замедленные нейтроны хорошо поглощается ядрами бора, кадмия.
Но на этом прелести нейтронного излучения не заканчиваются. Представьте, что происходит с ядром стабильного атома, в который врезается нейтрон. Почти всегда, вне зависимости от того, как именно был захвачен нейтрон, ядро становится нестабильным (т. е. — радиоактивным). Такой изотоп может «фонить» ещё годы, если не десятилетия, даже после того, как само нейтронное излучение прекратилось. Данный феномен называется «наведённая радиоактивность».
Нейтроны загрязняют материалы, из которых сделаны ядерные реакторы, ещё больше загрязнение будет в термоядерных установках (практически любая реакция синтеза выделяет нейтрон — потому-то и говорят много о гелии-3, которого много на Луне и мало на Земле, если его использовать как термоядерное топливо, то выход нейтронов из этой реакции будет минимальным). При строительстве реакторов стараются избегать использования таких материалов, как, например, никель, серебро, молибден или висмут — они при облучении нейтронами дают изотопы с периодом полураспадада, исчисляющиеся тысячами лет. В то же время, такие материалы, как титан, вольфрам, марганец или хром — наоборот, дают изотопы, которые потеряют активность уже через несколько десятков лет (успокаивает, не правда ли?).
Поскольку поглощение нейтронного излучения сопровождается гамма-излучением, необходимо применять многослойные экраны из различных материалов: свинец-полиэтилен, сталь — вода и т. д.
Гамма-излучение — то же электромагнитное излучение, что и видимый свет, только с намного меньшей длиной волны и, соответственно, — большей частоты. Малая длина волны обеспечивает отличную проницаемость сквозь практически любой материал. В природе мы получаем гамма-кванты из тех же источников, что и в случае с альфа- и бета- излучением, то есть — в качестве продукта радиоактивного распада. После эмиссии альфа- или бета- частицы, ядро может находиться в возбуждённом состоянии. При переходе электронов в ядре в более низкое энергетическое состояние, они избавляются от избытка энергии, испуская фотон, обычно в гамма-диапазоне. Гамма-излучение так же сопровождает почти любую ядерную или термоядерную реакцию.
Чем опасно — если не попадать под него напрямую, то ничем. Разве что может нагреть материалы, которые были у него на пути. Если же подставиться под пучок гамма-квантов, то можно получить загар. Причём, так как ни кожа, ни мышцы гамма-излучение не останавливают, то загар внутренних органов, которые для этого не совсем приспособлены.
Как защититься? Толстым слоем свинца, бетона, хоть обеднённого урана — в целом, принцип такой — чем плотнее вещество, тем лучше. 1 см свинца здесь будет эквивалентен 4 см гранита, 6 см бетона или 9 см грунта.
Учёные придумали большое количество единиц измерения радиоактивности. Я перечислю только часть из них: рентген, рад, грэй, кюри, беккерель и даже такие экзотические, как «банановый эквивалент». В той или иной степени они отвечали потребностям учёных, однако они не являются универсальными, а главное — плохо информируют о степени биологического вреда, который может причинить то или иное излучение. В системе Си для этих целей имеется своя единица, определённая, как 1 джоуль полученной с излучением энергии, на 1 килограмм биологической ткани. Данная единица получила название в честь шведа Рольфа Зиверта.
Но не всё с Зивертом так просто, как может показаться. Раньше (а иногда и сейчас) использовалась единица бэр (биологический эквивалент рентгена), англ. rem (roentgen equivalent man) — устаревшая внесистемная единица измерения эквивалентной дозы. 100 бэр равны 1 зиверту. Также верно, что 100 рентген = 1 зиверт с оговоркой, что рассматривается биологическое действие рентгеновского излучения (или другого фотонного излучения, например, гамма-к=излучения).
Что здесь надо знать — что дозы бывают разными:
Поглощённая доза — тупо характеризует, сколько джоулей энергии было передано излучением веществу (любому). Её можно измерить объективно, измеряется в джоулях на килограмм и имеет название грей.
Эквивалентная доза. Не все излучения одинаково полезны. По воздействию на человеческий организм, равная поглощённая доза разных видов излучения наносит разный вред живым тканям. Для учёта данного вреда выражает биологический эффект облучения живого организма. Считается так же, как и поглощённая доза, однако потом домножается на специальный коэффициент (коэффициент качества, Q factor) самого излучения:
Здесь стоит обратить внимание на нейтроны. Может показаться, что чем больше энергия нейтронов, тем они будут вреднее, однако, это не совсем так. Наиболее вредными являются нейтроны с энергией около 1 МэВ, более быстрые нейтроны имеют тенденцию пролетать вас насквозь, причиняя меньше вреда.
Эквивалентная доза выражается уже в зивертах, однако, и она не позволяет достоверно оценить степень вреда, наносимого радиацией, так как не учитывает разную восприимчивость тканей действию ионизирующего излучения, поэтому ещё говорят об эффективной дозе.
Эффективная доза (или эффективная эквивалентная доза). Та же эквивалентная доза, но с учётом радиочувствительности разных тканей организма, иными словами — мера риска возникновения отдаленных последствий облучения. Эффективная доза рассчитывается как сумма эквивалентных доз по всем органам и тканям, умноженных на взвешивающие коэффициенты для этих органов, и отражает суммарный эффект облучения для организма. Коэффициенты выведены медиками с использованием статистики заболеваемости онкологическими заболеваниями в зависимости от полученной эквивалентной дозы (по версии 2007 года). Ранее использовалась статистика смертности и коэффициенты были несколько другие. Точные значения можно почерпнуть здесь.
Теперь, подкованные этим знанием, можно оценить дозы радиации не количественно, что скучно и не наглядно, а качественно — в сравнении друг с другом (да, эта картинка уже много раз публиковалась, но уж больно она хороша):
Собственно, весь этот раздел можно уместить в одной картинке. Что тут можно сказать — мы живём в радиоактивном мире, в котором излучает практически всё. Даже ваше собственное тело является источником радиоактивного излучения, и если вы спите рядом с кем-то, то нахватаетесь дозы и от соседа по койке. Бананы — и те содержат радиоактивный Калий-40.
На заре исследования радиоактивности для измерения уровня радиации использовали фотоплёнки — чем сильнее она засвечена, тем, соответственно, сильнее излучение.
В настоящее время самым распространённым детектором ионизирующего излучения является счётчик Гейгера (точнее Гейгера-Мюллера).
Его принцип действия до безобразия прост и использует тот факт, что излучение является ионизирующим. Внутри металлического полого цилиндра расположен металлический стержень, которые разъединены непроводящим электрический ток газом. На цилиндр и на стержень подаётся напряжение очень близкое к тому, чтобы пробить разрядом зазор между ними. По сути — это конденсатор. Если в цилиндр ударяет гамма-квант, то атом стенки ионизируется и испускает внутрь цилиндра электрон, который и инициирует пробой, который и создаёт характерный щелчок в динамике, подключённому в цепь. Чем больше в единицу времени прилетает гамма-квантов, тем интенсивнее треск.
Минус данного устройства в том, что он очень плохо регистрирует (вернее, совсем не регистрирует) нейтроны и альфа-частицы.
Есть и более совершенные, более чувствительные приборы, однако они более дорогостоящи, более громоздки и практически недоступны для доморощенного радиофоба.
Счётчик Гейгера является детектором излучения, не стоит путать его с дозиметром — более сложным прибором, который может иметь несколько детекторов разного типа. Такие приборы, как следует из названия, призваны измерять именно дозу полученной радиации согласно последним инструкциям ВЦСПС Международная комиссия по радиологической защите.
Накопленная доза и вред
Все эти детали запоминать радиофобу-параноику особо не нужно. Важно понимать смысл накопленной дозы. Если вы один час находитесь рядом с источником излучения 100 миллирентген в час, вы получите дозу в 100 миллирентген. И это будет равносильно вашему нахождению рядом с источником в 10 рентген в час, при условии, что возле него вы проведёте 36 секунд. Иными словами, важна не только мощность излучения, но и время, в течение которого вы ему подвергались — гораздо лучше получить 100 рентген за 20 лет, чем те же 100 рентген за минуту.
Если кто-то продолжает думать, что радиация сможет породить Годзиллу или, что укус радиоактивного паука дарует вам сверхспособности, но я поспешу их разочаровать — ничего такого не произойдёт.
Повреждённая ДНК либо не сможет обеспечить нормальный процесс деления клетки и тогда клетка умрёт, «не дав потомства», то есть клетки умирают в нормальном темпе, но не делятся. Может быть и хуже — клетка разделится, но уже с мутацией и будет продолжать делиться, что со временем может перерасти в раковую опухоль (это не обязательно, но риск возрастает на порядки).
Где найти радиацию?
Как ни странно — практически везде. Более того, именно природному радиоактивному фону мы должны быть благодарны за эволюцию и, в конечном счёте, — за наше существование. Простому обывателю весьма сложно схватить действительно большую дозу радиации, даже если он забредёт в зоны отчуждения в Припяти или Фукусиме (что, впрочем, не означает, что для дурака это невозможно). По большому счёту, даже если вы и окажетесь рядом с радиоактивными объектами, маловероятно, что вы успеете получить хоть сколько-нибудь значимую дозу.