Что такое огонь с точки зрения физики и химии
Огонь
Из Википедии — свободной энциклопедии
Ого́нь (обозначается 🔥) — интенсивный процесс окисления (горение), сопровождающийся излучением в видимом диапазоне и выделением тепловой энергии. В науке — совокупность раскалённых газов (низкотемпературная плазма), выделяющихся в результате:
Огонь является основной фазой процесса горения и имеет свойство к самораспространению по затронутым им другим горючим материалам. Хотя среди процессов горения химических веществ бывают и исключения, когда вещество сгорает без пламени. Собственная температура огня зависит от вещества, выступающего в качестве топлива и давления окислителя. Собственный цвет зависит от горящего вещества и его чистоты (например, огонь от костра или свечи, в котором присутствует значительная доля углекислого газа, горит оранжевым цветом, относительно чистый от углерода — красным, самый чистый — голубым).
Для возникновения и существования огня требуются три компонента: топливо, которое горит, окислитель, который позволяет протекать этому процессу, и температура. В качестве топлива могут выступать многие вещества (см. ниже). В роли окислителя чаще всего выступает кислород, но могут выступать и другие элементы, — например, хлор или фтор. Любопытно, что вода горит в атмосфере фтора бледно-фиолетовым пламенем, при этом вода является топливом, а в результате горения выделяется кислород. Иными словами, без окислителя тело не может загореться. Если же телу передать путём нагрева энергию, которая превзойдёт энергию межмолекулярных связей, оно распадётся на горючие составляющие. Например, при нагревании дерева без доступа воздуха происходит его разделение сначала на древесный уголь и смолу, а затем на горючие газы — углеводороды. Третий компонент существования огня — температура, которая определяется свойствами окислителей и топлива. Таким образом, при отсутствии любого из трёх факторов возникновение огня невозможно.
Что такое огонь с точки зрения физики и химии
ФАЗЫ ОГНЯ
Процесс горения делится на определенные стадии. Каждая фаза (или стадия) характеризуется различиями в комнатной температуре и атмосферном составе.
Начальная фаза (стадия роста)
В первой фазе значительно увеличивается содержание кислорода в воздухе, и огонь производит водяной пар, углекислый газ, возможно небольшое количество двуокиси серы, угарного газа и других газов. Вырабатывается некоторое количество тепла и это количество увеличится в процессе огня. Огонь может производить температуру пламени намного больше 10000F (5370C), однако температура в комнате на данном этапе может быть небольшая.
Свободно горящая фаза (полностью развитая стадия)
Вторая фаза горения охватывает все свободно горящие действия огня. Во время этой фазы богатый кислородом воздух вовлечен в пламя, поскольку конвекция (повышение горячих газов) несет высокую температуру к верхнему слою ограниченного пространства. Горячие газы распространяются сверху вниз, вынуждая более прохладный воздух искать более низкие уровни, и, в конечном счете, зажигают весь горючий материал в верхних уровнях комнаты. На данном этапе температура в верхних слоях может превысить 1,3000F (7000C). В то время как огонь прогрессирует через последние стадии этой фазы, он продолжает потреблять свободный кислород, пока он не достигает точки, где недостаточно кислорода, чтобы реагировать с топливом. Огонь тогда уменьшается до тлеющей фазы и нуждается только в поступлении кислорода, чтобы быстро вспыхнуть или взорваться.
Тлеющая фаза (стадия распада)
Классификация пожара
Природа огня
Огонь БЫСТРЫЙ. Времени крайне мало! Меньше чем за 30 секунд маленькое пламя может полностью выйти из-под контроля и превратиться в основной огонь. Для образования плотного слоя черного дыма требуется лишь несколько минут, чтобы заполнить дом, после чего он полностью будет охвачен огнем. Самые смертельные пожары происходят сами по себе в то время, пока люди спят. Если Вы почувствуете возгорание, то у Вас не будет времени, чтобы захватить какие-либо ценности, потому что огонь распространяется слишком быстро, и дым слишком плотный. У Вас будет время только на то, чтобы покинуть здание.
Огонь ТЕМНЫЙ. Огонь не яркий, он черный как смола. Огонь начинается яркой вспышкой, но быстро производит черный дым и, тем самым, создает полную темноту. Если Вы оказались в огне, Вы можете быть ослеплены, дезориентированы и неспособны найти выход из дома, в котором Вы жили в течение многих лет.
Огонь СМЕРТЕЛЕН. Дым и токсичные газы убивают больше людей, чем огонь. Огонь израсходовал кислород, в котором Вы нуждаетесь, и производит дым и ядовитые газы, которые убивают. Вдыхание даже небольшого количества дыма и токсичных газов может оказывать на Вас седативное действие, дезориентировать и нарушить дыхание. Бесцветные пары без запаха могут убаюкать Вас в глубокий сон прежде, чем огонь достигнет Вашей двери. Вы не сможете проснуться вовремя, чтобы убежать.
Скорость распространения огня
Огонь распространяется чрезвычайно быстро, у потенциальной жертвы есть крайне мало времени, чтобы выжить. Огонь может удваиваться в размере каждые 30 секунд. Всего через две минуты огонь может стать опасным для жизни. Через пять минут место жительства может быть охвачено огнем.
Что такое огонь с точки зрения физики и химии
Огонь свечи, огонь костра,
Огонь могучего пожара.
Огни – они все мастера
Ниспосланного людям дара.
Он может родиться, окрепнуть и вырасти. Может ослабнуть и умереть. Может быть трепетным и ласковым или жестоким и жадным. Он набрасывается, пожирает, поглощает. С ним можно бороться и он отступит побежденным. Он может спасти или обернуться жуткой трагедией.
Достаточно примеров. Они лишь должны напомнить, какую роль играет этот подарок природы в нашей жизни. Наш язык наделил его чертами живого существа и, наоборот, внешность и эмоции человека часто связывают со свойствами пламени.
Огонь издавна является неотъемлемой частью жизни людей. Можно ли представить наше существование без огня? Разумеется, нет. С процессами горения современный человек сталкивается ежедневно.
Цель работы: изучить процесс горения с разных точек зрения.
Изучить литературу и интернет ресурсы, связанные с темой горения;
Познакомиться с историей овладения огнем;
Найти информацию и точные инструкции по проведению опытов, связанных с процессами горения.
Горение – это первая химическая реакция, с которой познакомился человек.
По легенде огонь, замёрзшим и несчастным людям, принёс титан Прометей, не смотря на запрет Зевса. Но, скорее всего, первобытные человекоподобные особи столкнулись с огнём во время пожаров, вызванных ударами молний и извержением вулканов. Они не умели добывать его сами, но могли переносить и поддерживать его. Первые свидетельства использования людьми огня относятся к таким археологическим стоянкам древнего человека, как Чесованья в Восточной Африке, Сварткранс в Южной Африке, Чжоукоудянь и Сихоуду в Китае и Триниль, на острове Ява. Были найдены кострища, зола и древесные угли, датируемые 1,5-2 млн лет назад, обгоревшие орудия труда первобытных людей и кости млекопитающих.
Когда человек стал добывать огонь самостоятельно было доподлинно не известно до 2008 года, когда группа израильских археологов назвала относительно точную дату 790 тыс. лет назад. Такой вывод учёные сделали на основании результатов раскопок на известной раннепалеолитической стоянке Гешер-Бнот-Яаков. Согласно отчёту в журнале «Quaternary Science Reviews» они обнаружили следы применения примитивных средств для добывания огня, использовавшихся на протяжении жизни почти двенадцати поколений, заселявших данную местность. Так же выводы делались на основе более детальных исследований камней и каменных орудий, найденных здесь же ранее.
Первым способом самостоятельной добычи огня человеком было трение. Этот способ изредка используется и в наше время, например в походных условиях.
Постепенно, по мере накопления человечеством практического опыта и новых знаний об окружающем мире, на смену пришёл другой способ добывания огня, основанный на высекании искры. Он заключается в том, что при резком ударе камнем по некоторым минералам из их поверхности вылетают мельчайшие частицы, которые тут же воспламеняются и, попадая на горючий материал, поджигают его. К таким относится, например, пирит (дисульфид железа (II) – FeS2). Известны и другие минералы с таким же свойством. С течением времени этот способ был усовершенствован: огонь стали получать, высекая искры из более распространенного и доступного минерала кремния железным кресалом. Горючими веществами были трут или пережженная пакля. Для получения огня таким способом в Европе вплоть до середины XIX в. Использовалось устройство, получившее в России название «огниво».
Ещё один интересный способ использовался с древности до середины ХХ века племенами островов Суматра, Ява, Калимантан и Сулавеси: добыча огня путем резкого сжатия воздуха в специальных приспособлениях.
Огонь глазами ученого
Почему мы видим огонь? Частички горючего материала и продукты горения светятся, потому что имеют высокую температуру (обычное излучение абсолютно черного тела). Высокая температура позволяет атомам перемещаться на некоторое время в более высокие энергетические состояния, а потом, по возвращении в исходное состояние, излучать свет определённой частоты, которая соответствует структуре электронных оболочек данного элемента.
В чем разница между «огнем» и «горением»? Огонь – это быстрая форма горения, при которой выделяются и свет и тепло. Горение – сложный физико-химический процесс превращения исходных веществ в продукты сгорания в ходе экзотермических реакций. Для процесса горения необходимы:
— горючее вещество (топливо);
— окислитель (чаще всего кислород);
— источник зажигания (не всегда)
Окислитель и горючее вещество вместе составляют горючую систему. Она может быть однородной и неоднородной:
Однородными являются системы, в которых горючее вещество и окислитель равномерно перемешаны друг с другом (смеси горючих газов, паров). Горение таких систем называют горением кинетическим. При определенных условиях такое горение может носить характер взрыва.
Огонь основная (свободно горящая) фаза горения, это явление физико-химическое, значит, рассматривать его только с точки зрения химии неразумно. С точки зрения физики огонь – совокупность раскалённых газов, выделившихся в результате:
произвольного или непроизвольного нагревания топлива (горючего вещества) до определённой температуры при наличии окислителя;
химической реакции (например, взрыва);
протекания электрического тока в среде (электрическая дуга, электросварка)
Процесс горения делится на определенные стадии (фазы):
1. Начальная фаза (стадия роста),
2. Свободно горящая фаза (полностью развитая стадия),
3. Тлеющая фаза (стадия распада).
В первой – начальной – фазе расход приточного кислорода увеличивается, затем начинает уменьшаться. Вырабатывается некоторое количество тепла и это количество увеличивается в процессе горения. Пламя может нагреться до температуры более 5370°C, но температура в помещении на данном этапе может быть небольшая.
Во время второй – свободно – горящей фазы богатый кислородом воздух вовлечен в пламя, так как конвекция несет высокую температуру к верхнему слою ограниченного пространства. Горячие газы распространяются сверху вниз, вынуждая более прохладный воздух искать более низкие уровни, и, в конечном счете, зажигают весь горючий материал в верхних уровнях комнаты. На данном этапе температура в верхних слоях может превысить 7000°C. Огонь продолжает потреблять свободный кислород, пока он не достигнет точки, где недостаточно кислорода, чтобы реагировать с топливом. Пламя уменьшается до тлеющей фазы и нуждается только в поступлении кислорода, чтобы быстро вспыхнуть.
Ярким примером возгорания является «фокус» древнеиндийских жрецов: в древней Индии, при совершении священных обрядов, в полумраке храмов внезапно вспыхивали и рассыпались искрами таинственные красные огни, наводившие суеверный страх на молящихся. Разумеется, могучий Будда здесь был ни при чем, зато его верные служители, жрецы, пугали и обманывали верующих с помощью бенгальских огней. Соли стронция, придававшие пламени красный цвет, смешивались с углем, серой и хлоратом калия (бертолетовой солью). В нужный момент смесь поджигалась.
Тепловое самовозгорание вещества возникает в результате самонагревания под воздействием скрытого или внешнего источника нагрева. Самовоспламенение возможно только в том случае, если количество тепла, выделяемого в процессе самоокисления, будет превышать отдачу тепла в окружающую среду.
Примером теплового самовозгорания может служить самовозгорание летучих эфирных масел в жаркую погоду. Всем известная легенда о неопалимой купине, или Моисеевом кусте, имеет вполне научное объяснение: учёные полагают, что это был кустарник диптам, выделяющий эфирные масла, которые загораются под действием солнечных лучей. В безветренную погоду вокруг куста увеличивается концентрация летучих эфирных масел, выделяемых растением, которые воспламеняются по достижении определенной температуры. Уравнение химической реакции самовоспламенения эфира:
Тепловым самовоспламенением также объясняется появление кладбищенских огоньков. При разложении органических остатков выделяется бесцветный, ядовитый газ фосфин (РН3), имеющий свойство самовозгораться на воздухе, т.е. при наличии кислорода. Если этот газ выходит из земли, с разлагающимися в ней органическими остатками, происходит самовоспламенение, образуются небольшие вспышки, которыми раньше церковники пугали суеверных людей. Такое явление можно наблюдать только в теплое время года, так как температура самовоспламенения фосфина = 38°C. Уравнение химической реакции самовоспламенения фосфина:
Самовозгорание может происходить и под воздействием жизнедеятельности микроорганизмов в массе вещества (материала, смеси).
Склонностью к микробиологическому самовозгоранию обладают горючие материалы, особенно увлажненные, служащие питательной средой для микроорганизмов, жизнедеятельность которых связана с выделением теплоты (торф, древесные опилки). При этом температура самонагревания не превышает обычных значений температуры окружающей среды и может быть отрицательной.
Поэтому большинство пожаров и взрывов происходит при хранении сельскохозяйственных продуктов (силос, увлажненное сено) в элеваторах. Наиболее часто используемый способ избежать самонагревания и самовоспламенения сена (и подобных материалов) сводится к тому, чтобы при складировании этих материалов не происходило их увлажнение.
Существует различие между процессами возгорания и самовозгорания: для того чтобы возникло возгорание, необходимо внести в горючую систему тепловой импульс, имеющий температуру, превышающую температуру самовоспламенения вещества.
военную (сигнальные ракетницы, дымовые шашки)
специализированную (киносъемочные спецэффекты, гражданские сигнальные средства)
В ходе процесса горения образуются продукты сгорания. Они могут быть жидкими, твёрдыми и газообразными. Их состав зависит от состава горящего вещества и от условий его горения. Органические и неорганические горючие вещества состоят, главным образом, из углерода, кислорода, водорода, серы, фосфора и азота. Из них углерод, водород, сера и фосфор способны окисляться при температуре горения и образовывать продукты горения: СО, CO2, SO2, P2O5. Азот при температуре горения не окисляется и выделяется в свободном состоянии, а кислород расходуется на окисление горючих элементов вещества. Все указанные продукты сгорания (за исключение угарного газа СО) гореть в дальнейшем не способны.
При неполном сгорании органических веществ в условиях низких температур и недостатка воздуха образуются более разнообразные продукты – оксид углерода(II), спирты, альдегиды, кислоты и другие сложные химические соединения. Эти продукты образуют едкий и ядовитый дым. Кроме того, продукты неполного горения сами способны гореть и образовывать с воздухом взрывчатые смеси. Такие взрывы бывают при тушении пожаров в подвалах, сушилках и в закрытых помещениях с большим количеством горючего материала.
Огонь
Содержание
Общее [ ]
Огонь — в узком смысле, совокупность раскалённых газов и плазмы, выделяющихся в результате:
Огонь является основной фазой процесса горения и имеет свойство к самораспространению по затронутым им другим горючим материалам. Хотя среди процессов горения химических веществ бывают и исключения, когда вещество сгорает без пламени. Собственная температура огня зависит от источника, вызвавшего реакцию воспламенения, от материалов, участвующих в реакции горения, и давления воздуха. Собственный цвет зависит от горящего материала и чистоты топлива (например, огонь от костра или свечи, в котором присутствует значительная доля углекислого газа, горит оранжевым цветом, относительно чистый от углерода — красным, самый чистый — голубым).
Для возникновения и существования огня требуются три компонента: топливо, которое горит, окислитель, который позволяет протекать этому процессу и температура. В качестве топлива могут выступать многие вещества (см. ниже). В роли окислителя чаще всего выступает кислород но могут выступать и другие элементы, — например хлор или фтор. Любопытно, что вода горит в атмосфере фтора бледно-фиолетовым пламенем, при этом вода является топливом, а в результате горения выделяется кислород. Иными словами без доступа окислителя тело не может загореться. Если же телу передать путём нагрева энергию, которая превзойдёт энергию межмолекулярных связей, оно распадётся на горючие составляющие. Например, при нагревании без доступа воздуха дерева, происходит его разделение сначала на древесный уголь и смолу, а затем на горючие газы – углеводороды. Третий компонент существования огня — температура, которая определяется свойствами окислителей и топлива. Например, кусочек угля в сжиженном кислороде при сверхнизкой температуре не горит, а интенсивно тлеет, но в атмосфере газообразного кислорода напротив сгорает быстро, с яркой вспышкой. Таким образом, при отсутствии любого из трёх факторов возникновение огня невозможно.
Цвет огня [ ]
Химические вещества сгорают, окрашивая огонь отдельными своими атомами или ионами, которые высвобождаются под воздействием высокой температуры.
Разнообразие цвета пламени (в скобках указано сгораемое вещество):
Интересные факты [ ]
1. Горячая вода тушит огонь гораздо быстрее, чем холодная. [ ]
Как бы ни странно это звучало, но такое необычное явление можно легко объяснить: для того, чтобы потушить костер, в зону горения не должен поступать кислород. Для этой цели люди используют воду. На самом деле огонь тушит не вода, а пар. Если остудить горящий предмет, то особого значения это не будет иметь. Вот и получается, что горячая вода затушит пламя быстрее, чем холодная. При тушении холодной водой, капли просто «проходят» сквозь огонь. Они дают слишком мало пара, потому что просто не успевают нагреваться до температуры кипени. Естественно, что не вся вода пролетает мимо. То количество, которое достигает горящего предмета, испаряется и дает определенное количество пара. Горячей же воде нет необходимости нагреваться и поэтому пара будет на много больше. Это и способствует быстрому тушению огня.
2. Огонь является результатом химической реакции. [ ]
Протекание данной реакции сопровождается выделением не только тепла, но и света. Такую химическую реакцию вызвать можно не одним способом. Самым быстрым является способ с использованием топлива. Процесс горения возникает, когда топливо смешивается с кислородом. Естественно, ничего не выйдет, если потливо не достигнет определенной температуры, а для достижения этой цели используется тепло. Не стоит забывать о том, что каждое топливо нуждается в определенной температуре, при которой оно может возгореться. Приведем пример: чтобы сжечь целое дерево одной спички будет явно недостаточно, так как кислород способен вступить в реакцию с малой его частью.
3. В пламени свечи находятся алмазы. [ ]
На всем протяжении времени горения свечи, каждую секунду возникает примерно 1,5 миллиона наночастиц алмазов. Однако, они мгновенно сгорают, превращаясь не во что иное, как в углекислый газ. Остается только надеяться, что в будущем разработают метод добычи алмазов из пламени свечи. Современная же техника пока на это не способна.
Что такое огонь, и почему он жжёт
Недавно я разжигал на пляже огонь и понял, что я ничего не знаю про огонь и про то, как он работает. К примеру – что определяет его цвет? Поэтому я изучил этот вопрос, и вот что я узнал.
Огонь
Огонь – устойчивая цепная реакция, включающая горение, которое представляет собой экзотермическую реакцию, в которой окислитель, обычно кислород, окисляет горючее, обычно углерод, в результате чего возникают продукты сгорания, такие как диоксид углерода, вода, тепло и свет. Типичный пример – горение метана:
Тепло, возникающее при горении, может использоваться для питания самого горения, и в случае, когда этого достаточно и дополнительной энергии для поддержания горения не требуется, возникает огонь. Чтобы остановить огонь, можно удалить горючее (отключить горелку на плите), окислитель (накрыть огонь специальным материалом), тепло (сбрызнуть огонь водой) или саму реакцию.
Горение, в некотором смысле, противоположно фотосинтезу, эндотермической реакции, в которую вступают свет, вода и диоксид углерода, в результате чего возникает углерод.
Есть искушение предположить, что при сжигании дерева используются углерод, находящийся в целлюлозе. Однако, судя по всему, происходит нечто более сложное.
Если подвергнуть дерево воздействию тепла, оно подвергается пиролизу (в отличие от горения, не требующему кислорода), преобразующий её в более горючие вещества, такие, как газы, и именно эти вещества загораются при пожарах.
Если дерево горит достаточно долго, пламя исчезнет, но тление продолжится, и в частности дерево продолжит светиться. Тление – это неполное горение, в результате которого, в отличие от полного горения, возникает монооксид углерода.
Пламя
Пламя – видимая часть огня. С горением возникает сажа (часть которой является продуктом неполного горения, а часть – пиролиза), которая разогревается и производит тепловое излучение. Это один из механизмов, придающих огню цвет. Также при помощи этого механизма огонь разогревает своё окружение.
Тепловое излучение производится из-за движения заряженных частиц: всё вещество положительной температуры состоит из движущихся заряженных частиц, поэтому оно излучает тепло. Более распространённый, но менее точный термин – излучение абсолютно чёрного тела. Это описание относится к объекту, поглощающему всё входящее излучение. Тепловое излучение часто аппроксимируют излучением АЧТ, возможно, помноженным на константу, поскольку у него есть полезное свойство – оно зависит только от температуры. Излучение АЧТ происходит по всем частотам, и при повышении температуры повышается излучение на высоких частотах. Пиковая частота пропорциональна температуре по закону смещения Вина.
Повседневные объекты постоянно излучают тепло, большая часть которого находится в инфракрасном диапазоне. Его длина волны больше, чем у видимого света, поэтому без специальных камер его не увидеть. Огонь достаточно ярок для того, чтобы выдавать видимый свет, хотя и инфракрасного излучения у него хватает.
Другой механизм возникновения цвета у огня – спектр излучения сжигаемого объекта. В отличие от излучения АЧТ, спектр излучения имеет дискретные частоты. Это происходит благодаря тому, что электроны порождают фотоны на определённых частотах, переходя из высокоэнергетического в низкоэнергетическое состояние. Эти частоты можно использовать для определения присутствующих в пробе элементов. Схожая идея (использующая спектр поглощения) используется для определения состава звёзд. Спектр излучения также отвечает за цвет фейерверков и цветного огня.
Форма пламени на Земле зависит от гравитации. Когда огонь разогревает окружающий воздух, происходит конвекция: горячий воздух, содержащий, помимо прочего, горячую золу, поднимается, а холодный (содержащий кислород), опускается, поддерживая огонь и придавая пламени его форму. При низкой гравитации, к примеру, на космической станции, этого не происходит. Огонь питается диффузией кислорода, поэтому горит медленнее и в виде сферы (поскольку горение происходит только там, где огонь соприкасается с содержащим кислород воздухом. Внутри сферы кислорода не остаётся).
Излучение абсолютно чёрного тела
Излучение АЧТ описывает формула Планка, относящаяся к квантовой механике. Исторически она была одной из первых применений квантовой механики. Её можно вывести из квантовой статистической механики следующем образом.
Мы подсчитываем распределение частот в фотонном газе при температуре T. То, что оно совпадает с распределением частот фотонов, испускаемых абсолютно чёрным телом той же температуры, следует из закона излучения Кирхгофа. Идея в том, что АЧТ можно привести в температурное равновесие с фотонным газом (поскольку у них одинаковая температура). Фотонный газ поглощается ЧТ, также испускающим фотоны, так что для равновесия необходимо, чтобы для каждой частоты, на которой ЧТ испускает излучение, оно и поглощало бы его с той же скоростью, что определяется распределением частот в газе.
В статистической механике вероятность нахождения системы в микросостоянии s, если оно находится в тепловом равновесии при температуре T, пропорциональна
где Es — энергия состояния s, а β = 1 / kBT, или термодинамическая бета (Т – температура, kB — постоянная Больцмана). Это распределение Больцмана. Одно из объяснений этого дано в блогпосте Теренса Тао. Это значит, что вероятность равна
где Z(β) – нормализующая константа
называющаяся статистической суммой. Отметим, что вероятности не меняются, если Es изменить на ± константу (что в результате умножает статистическую сумму на константу). Отличаются только энергии разных состояний.
Стандартное наблюдение указывает, что статистическая сумма с точностью до постоянного множителя содержит ту же информацию, что и распределение Больцмана, поэтому всё, что можно посчитать на основе распределения Больцмана, можно посчитать и из статистической суммы. К примеру, моменты случайной величины для энергии описываются
k > = (1/Z) * ∑s E k s * e — β Es = ( (-1) k / Z ) * ∂ k / ∂ β k * Z
и, вплоть до решения задачи моментов, это описывает распределение Больцмана. В частности, средняя энергия будет равна
Распределение Больцмана можно использовать как определение температуры. Оно говорит, что в некотором смысле, β – более фундаментальная величина, так как она может быть нулевой (что означает равную вероятность всех микросостояний; это соответствует «бесконечной температуре») или отрицательной (в этом случае более вероятны микросостояния с высокими энергиями; это соответствует «отрицательной абсолютной температуре»).
Для описания состояния фотонного газа нужно знать что-то по поводу квантового поведения фотонов. При стандартном квантовании электромагнитного поля поле можно рассматривать как набор квантовых гармонических осцилляций, каждая из которых осциллирует с разными угловыми частотами ω. Энергии собственных состояний гармонического осциллятора обозначаются неотрицательным целым n ∈ ℤ ≥ 0, которое можно интерпретировать, как количество фотонов частоты ω. Энергии собственных состояний (с точностью до константы):
где ℏ — это редуцированная постоянная Планка. То, что нам нужно отслеживать только количество фотонов, следует из того, что фотоны относятся к бозонам. Соответственно, для постоянной ω нормализующая константа будет
Отступление: неправильный классический ответ
Предположение что n, или, эквивалентно, энергия En = n ℏ ω, должно быть целым, известно, как гипотеза Планка, и исторически это, возможно, было первым квантованием (в применении к квантовой механике) в физике. Без этого предположения, с использованием классических гармонических осцилляторов, сумма выше превращается в интеграл (где n пропорционально квадрату амплитуды), и мы получаем «классическую» нормализующую константу:
Z кл ω (β) = ∫[0; ∞] e — n β ℏ ω dn = 1 / βℏω
Две этих нормализующих константы выдают очень разные предсказания, хотя квантовая приближается к классической, когда βℏω → 0. В частности, средняя энергия всех фотонов частоты ω, подсчитанная через квантовую нормализующую константу, получается
А средняя энергия, подсчитанная через классическую нормализующую константу, будет
кл ω = — d/dβ * log(1/βℏω) = 1/ β = kBT
Квантовый ответ приближается к классическому при ℏω → 0 (на малых частотах), а классический ответ соответствует теореме о равнораспределении в классической статистической механике, но совершенно расходится с опытами. Она предсказывает, что средняя энергия излучения АЧТ на частоте ω будет константой, независимой от ω, и поскольку излучение может происходить на частотах любой высоты, получается, что АЧТ излучает бесконечное количество энергии на любой частоте, что, конечно же, не так. Это и есть т.н. «ультрафиолетовая катастрофа».
В свою очередь, квантовая нормализующая константа предсказывает, что на низких частотах (относительно температуры) классический ответ приблизительно верен, но на высоких средняя энергия экспоненциально падает, при этом падение получается большим при меньших температурах. Это происходит потому, что на высоких частотах и низких температурах квантовый гармонический осциллятор большую часть времени проводит в основном состоянии, и не переходит так легко на следующий уровень, что вероятность чего экспоненциально ниже. Физики говорят, что большая часть этой степени свободы (свободы осциллятора колебаться на определённой частоте) «замораживается».
Плотность состояний и формула Планка
Теперь, зная, что происходит на определённой частоте ω, необходимо просуммировать по всем возможным частотам. Эта часть вычислений классическая и никаких квантовых поправок делать не надо.
Мы используем стандартное упрощение, что фотонный газ заключён в объём со стороной длиной в L с периодическими граничными условиями (то есть, реально это будет плоский тор T = ℝ 3 / L ℤ 3 ). Возможные частоты классифицируются по решениям уравнения электромагнитных волн для стоячих волн в объёме с указанными граничными условиями, которые, в свою очередь, соответствуют, с точностью до множителя, собственным значениям лапласиану Δ. Точнее, если Δ υ = λ υ, где υ(x) – гладкая функция T → ℝ, тогда соответствующее решение уравнения электромагнитной волны для стоячей волны будет
и поэтому, учитывая, что λ обычно отрицательная, и значит, √λ обычно мнимый, соответствующая частота будет равна
Такая частота встречается dim Vλ раз, где Vλ — λ-собственное значение лапласиана.
Упрощаем мы условия при помощи объёма с периодическими граничными условиями потому, что в этом случае очень просто записать все собственные функции лапласиана. Если использовать для простоты комплексные числа, то они определяются, как
Соответствующей частотой будет
и соответствующей энергией (одного фотона этой частоты)
Здесь мы аппроксимируем вероятностное распределение по возможным частотам ωk, которые, строго говоря, дискретны, непрерывным вероятностным распределением, и подсчитываем соответствующую плотность состояний g(ω). Идея в том, что g(ω) dω должна соответствовать количеству доступных состояний с частотами в диапазоне от ω до ω + dω. Затем мы проинтегрируем плотность состояний и получим окончательную нормализующую константу.
Почему эта аппроксимация разумна? Полную нормализующую константу можно описать следующим образом. Для каждого волнового числа k ∈ 2 π / L * ℤ 3 существует число nk ∈ ℤ≥0, описывающее количество фотонов с таким волновым числом. Общее количество фотонов n = ∑ nk конечно. Каждый фотон добавляет к энергии ℏ ωk = ℏ c |k|, из чего следует, что
по всем волновым числам k, следовательно, его логарифм записывается, как сумма
и эту сумму мы хотим аппроксимировать интегралом. Оказывается, что для разумных температур и больших объёмов подынтегральное выражение меняется очень медленно с изменением k, поэтому такая аппроксимация будет весьма близкой. Она перестаёт работать только при сверхнизких температурах, где возникает конденсат Бозе-Эйнштейна.
Остаётся вычислить объём региона фазового пространства для всех волновых векторов k с частотами ωk = c |k| в диапазоне от ω до ω + dω. Это сферическая оболочка толщиной dω/c и радиусом ω/c, поэтому её объём
Поэтому плотность состояний для фотона
g(ω) dω = V ω 2 / 2 π 2 c 3 dω
На самом деле эта формула в два раза занижена: мы забыли учесть поляризацию фотонов (или, что эквивалентно, спин фотона), которая удваивает количество состояний для данного волнового числа. Правильная плотность:
g(ω) dω = V ω 2 / π 2 c 3 dω
То, что плотность состояний линейна в объёме V работает не только в плоском торе. Это свойство собственных значений лапласиана по закону Вейла. Это значит, что логарифм нормализующей константы
log Z = V / π 2 c 3 ∫[0; ∞] ω 2 log 1 / ( 1 — e — βℏω ) dω
Производная по β даёт среднюю энергию фотонного газа
= — ∂/∂β log Z = V / π 2 c 3 ∫[0; ∞] ℏω 3 / ( e βℏω — 1 ) dω
Но для нас важно подынтегральное выражение, дающее «плотность энергий»
E(ω) dω = Vℏ / π 2 c 3 * ω 3 / ( e βℏω — 1 ) dω
описывающее количество энергии фотонного газа, происходящее от фотонов с частотами из диапазона от ω до ω + dω. В итоге получилась форма формулы Планка, хотя с ней нужно немного поиграть, чтобы превратить в формулу, относящуюся к АЧТ, а не к фотонным газам (нужно поделить на V, чтобы получить плотность в единице объёма, и проделать ещё кое-что, чтобы получить меру излучения).
У формулы Планка есть два ограничения. В случае, когда βℏω → 0, знаменатель стремится к βℏω, и мы получаем
E(ω) dω ≈ V / π 2 c 3 * ω 2 /β dω = V kB T ω 2 / π 2 c 3 dω
Это вариант закона Рэлея — Джинса, классического предсказания по излучению АЧТ. Он примерно выполняется на низких частотах, но на высоких расходится с реальностью.
E(ω) dω ≈ V ℏ / π 2 c 3 * ω 3 / e βℏω dω
Это вариант приближения Вина. Он примерно выполняется на высоких частотах.
Оба этих ограничения исторически возникли раньше самой формулы Планка.
Закон смещения Вина
Такого вида формулы Планка достаточно, чтобы узнать, на какой частоте энергия E(ω) максимальна при температуре T (и, следовательно, какого примерно цвета будет АЧТ при температуре Т). Мы берём производную по ω и находим, что необходимо решить следующее:
d/dω ω 3 / (e βℏω — 1) = 0
или, что то же самое (беря логарифмическую производную)
3/ω = βℏe βℏω / (e βℏω — 1)
Пусть ζ = βℏω, тогда перепишем уравнение
С такой формой уравнения легко показать существование уникального положительного решения ζ = 2,821…, поэтому, учитывая, что ζ = βℏω и максимальная частота
Это закон смещения Вина для частот. Перепишем с использованием длин волн l = 2πc/ ωmax
2πc/ ωmax = 2πcℏ / ζ kB T = b/T
что примерно равно 4,965. Это даёт нам максимальную длину волны
Это закон смещения Вина для длин волн.
У горящего дерева температура равна примерно 1000 К, и если мы подставим это значение, то получим длину волны
Для сравнения, длины волн видимого света находятся в диапазоне от 750 нм для красного до 380 нм для фиолетового. Оба подсчёта говорят о том, что большая часть излучения от дерева происходит в инфракрасном диапазоне, это излучение греет, но не светит.
А вот температура поверхности солнца составляет порядка 5800 К, и подставив её в уравнения, получим
что говорит о том, что Солнце излучает много света во всём видимом диапазоне (и потому кажется белым). В некотором смысле этот аргумент работает задом наперёд: возможно, видимый спектр в ходе эволюции стал таким, поскольку на определённых частотах Солнце излучает больше всего света.
А теперь более серьёзное вычисление. Температура ядерного взрыва достигает 10 7 К, что сравнимо с температурой внутри Солнца. Подставим эти данные и получим
Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов