какие факторы обуславливают выбор генератора для конкретного автомобиля
Какие факторы обуславливают выбор генератора для конкретного автомобиля
1. Как лучше подобрать генератор по мощности (току) под конкретное бортовое оборудование (мощная аудиоустановка, компьютерная система, светотехника)?
2. Какова связь между емкостью АКБ и необходимой токовой отдачей генератора?
3. Как проверить составляющие элементы генератора и определить неисправный элемент ?
4. Как проанализировать энергетический баланс на автомобиле ?
— габариты и подсветка номеров, приборов и салона 6х5вт+5х2вт= 40вт
— фары+противотуманки сзади и спереди 2х65вт+2х45вт+2х21вт= 250вт
— вентилятор отопителя на максимальном режиме ток до 18 ампер или 200вт.
— вентилятор радиатора кратковременно (2-3 минуты) примерно 250 вт.
— обогрев заднего стекла порядка 150 вт.
— бензонасос и система управления двигателя порядка 70-100 вт.
— магнитола в среднем режиме громкости 100 вт.
14 вольт Х 50 ампер = 700 ватт при КПД=65% (для усилителя это близко к идеалу)
будем иметь полезной мощности около 400 ватт. Конечно, слушать музыку при таком уровне громкости опасно для слуха, но объяснять это бесполезно. Каждый должен наступить на персональные грабли сам! Это оценивают позже, когда на медкомиссии не в состоянии услышать хоть что-то из того, что шепчет «ушник» проверяя слух.
На радиорынке или в магазине радиодеталей они стОят 3-5 рублей, можно использовать импортные 1N54**, где **может быть от 01 и до 12, что характеризует обратное напряжение в сотнях вольт, нам годятся любые, можно отечественные КД226* где *- буква, тоже годятся с любой буквой. Белый поясок на корпусе это анод или если смотреть по схеме это «палка», а вывод без пояска – «стрелка» или катод. При замене не путать полярность!
Рассчитать энергетический баланс бортовой сети автомобиля несложно, практически мы это сделали еще в первом разделе.
Итак, мы имеем все паспортные мощности или рабочие токи потребителей, и исходные данные бортовой сети автомобиля 14 вольт напряжение сети, 55-75 А-часов емкость АКБ, и 80 Ампер паспортный ток генератора. Вот, исходя из этих исходных данных и мощности, потребляемой всеми дополнительными устройствами установленными на автомобиле, можно прикинуть, насколько хватит запасённой в АКБ электроэнергии, и справится ли генератор с пополнением энергии для обеспечения нормальной эксплуатации. Мощность генератора составляет 14в Х 80а=1120 вт. Вот столько мы и можем себе позволить, ну, в крайнем случае, 1200-1300 ватт, но в этом случае АКБ утром может подвести. Хорошо иметь представление, насколько нагружен генератор в экономичном режиме (максимально ограничиваем потребление) и при работе без ограничений.
Бензонасос и система управления двигателя = 80-120 ватт;
Вентилятор отопителя 1-2-3 = 20-40-70 ватт;
Габариты плюс фары 120(200) ватт;
Противотуманные фары+ задние 90+40 ватт;
Обогрев заднего стекла 150-200 ватт;
Стеклоочиститель + омыватель 30-80 ватт;
Подогрев сидений 50-70Х1(2) ватт;
Вентилятор радиатора 150-200 ватт;
Магнитола обычная от 50 до 150 ватт;
Усилитель аудио, мощность по паспорту ;
Аккумулятор после запуска двигателя до50-70а (700-1000ватт), и менее 3-5а (40-70ватт) в стационарном режиме.
Итого набирается от 1 50 ватт и до 2400 ватт (без усилителя)
Статья написана Шамилем Саубановым (aka denkisan на форуме).
Что нужно знать про автогенераторы? И зачем
Даём короткий ликбез по устройству и работе генератора в машине. Пригодится любителям тюнига, экспедиций, тому, кто хочет знать, как устроен его собственный автомобиль.
1. Зачем нужен генератор в автомобиле и как он устроен?
Генератор снабжает электричеством автомобиль во время работы двигателя и попутно заряжает аккумулятор. Коленвал через ремень вращает вал генератора, и все системы автомобиля запитываются непосредственно от генератора.
Устройство современного автомобильного генератора. Источник: Simo Nieminen / Wikimedia
Уже более полувека в автомобилях применяются только генераторы переменного тока, так как они дешевле, надёжней и компактней, чем использовавшиеся до 1960-х годов генераторы постоянного тока. При этом для питания систем автомобиля требуется постоянный ток. Для превращения переменного тока в постоянный каждый генератор имеет диодный мост.
Генерируемое напряжение напрямую зависит от скорости вращения вала генератора — чем быстрее, тем выше напряжение. Автомобиль должен получать стабильное напряжение на уровне 14 вольт. Для поддержки этого уровня в генераторах установлен регулятор, который на малых оборотах поднимает выходное напряжение, а на высоких, наоборот, пропускает в сеть только необходимые 14 В.
Итак, генератор вырабатывает электричество, диодный мост превращает переменный ток в постоянный, а регулятор поддерживает напряжение на нужном уровне.
Регулятор Hella. Графитовые стержни, расположенные снизу, — это и есть щётки генератора. Источник: AlexxandrS / DRIVE2
2. Как узнать, что генератор требует замены или ремонта?
На неисправность генератора во время работы двигателя указывают лёгкие и тяжёлые симптомы.
К лёгким относится горящая лампа ошибки АКБ и снижение яркости галогенных фар и приборной панели при низких оборотах двигателя (на холостом ходу) — стоит вам остановиться на светофоре или тронуться, как фары и приборка начнут мерцать. При таком поведении чаще всего проблема оказывается в щётках генератора.
Тяжёлый симптом — гирлянда горящих ламп, сигнализирующих об ошибках на приборной панели. Если автомобиль сообщает, что в нём сломалось вообще всё, и непонятно, как вы ещё едете, это не значит, что пора брать кредит на ремонт половины машины. Куда более вероятно, что скачки напряжения в бортовой сети привели к появлению ошибок в бортовом компьютере.
Если во время езды на приборной панели всплывают все возможные ошибки, значит, генератор не справляется с отдачей требуемого напряжения и тока. Источник: Маша Глуховская / YouTube
Если автомобиль вообще не заводится, а неприятные щелчки втягивающего реле под капотом намекают на севший аккумулятор, это ещё не значит, что сломался именно генератор, допустив разрядку батареи. Вполне возможно, что аккумулятор выработал свой ресурс и отправился в страну вечной охоты, а генератору ещё жить и жить.
3. Это генератор плохо работает или к сети подключено слишком много потребителей?
Если у вас обычный легковой автомобиль в штатном оснащении, на котором вы передвигаетесь по маршруту дом — работа — магазин, то вам едва ли придётся задумываться о замене работающего генератора: он подбирается автопроизводителем исходя из уровня энергопотребления каждой конкретной комплектации, его мощности должно хватать для стабильного питания всех систем и подзарядки аккумулятора. Также предусмотрен небольшой запас выходного тока для подключения нетребовательной электроники, вроде телефона или сумки-холодильника.
Но бывают случаи, когда мощности штатного (и совершенно исправного) генератора не хватает для питания всех потребителей в автомобиле. Если вы вдруг решите поставить в багажник огромный сабвуфер, обвешать салон динамиками и установить мощный усилитель, то это будет повод задуматься о генераторе хотя бы на 30-40 А мощнее штатного.
Хотите поставить лобовое стекло с обогревом при том, что изначально обогрева не было? Практически наверняка придется менять генератор — на стадии сборки машины на заводе в неё поставили генератор, не готовый к таким нагрузкам.
Если же вы своими руками собираете экспедиционный автомобиль с двумя лебедками, дополнительным светом, рацией, инвертором на 220 В, видеорегистратором, радар-детектором, навигатором и USB-зарядками, то без нового генератора повышенной мощности не обойтись. Некоторые умельцы даже устанавливают два генератора одновременно — один для запитки требовательной бортовой сети, второй для подзарядки аккумулятора.
Каждый любитель мощного автозвука задумывается о втором генераторе. И в этом случае зачастую без самодельных креплений (на фото) не обойтись. Источник: fanngorn / DRIVE2
Так что если вы стали замечать симптомы нехватки электроэнергии, описанные в ответе на вопрос 2, хотя в автомобиле из дополнительной электроники только зарядка для смартфона — генератор явно неисправен.
А если вы поставили лампы поярче, динамики помощнее, а заодно провели электроподогрев сидений, то севший наутро аккумулятор практически наверняка укажет, что штатного генератора не хватает; переходите к вопросу 8.
4. Как проверить самому, исправен ли генератор?
Базовую диагностику можно провести, вооружившись мультиметром — недорогой, но крайне полезной в хозяйстве вещью.
Если у вас есть подозрения, что напряжение с генератора недостаточно для зарядки аккумулятора, то переведите мультиметр в режим замера напряжения при постоянном токе (DC) и коснитесь клемм проводов у аккумулятора. При работающем на холостом ходу двигателе мультиметр должен показать порядка 13,8–14,8 В. Если на клеммах аккумулятора будет меньше 13 В, это непорядок.
Простейший способ проверки генератора на работающем авто — судя по показаниям мультиметра, всё в порядке. Источник: RusLikRK / DRIVE2
Чтобы удостовериться, что дело именно в генераторе, а не в проводке, тем же мультиметром надо замерить напряжение на выходах генератора. Для этого найдите на генераторе контакт с маркировкой «30» («B+») — с него ток поступает на аккумулятор, — и проверьте напряжение между ним и кузовом автомобиля. На мультиметре должны быть те же 13,8–14,8 В.
Если у вас найдется ещё и амперметр, то можно проверить силу выдаваемого генератором тока в зависимости от нагрузки. Для этого замерьте ток на выводе «30» («B+») на холостом ходу, включив дальний свет, обогрев сидений и стекол, кондиционер, а затем поддайте газу. Рабочий генератор должен выдавать одинаковый ток вне зависимости от оборотов двигателя. Если ток скачет, значит, генератор требует внимания.
5. Что ломается в генераторах?
В генераторах бывают и механические поломки, и выход из строя электронных компонентов — последние ломаются чаще, но и чинятся проще.
Самым популярным дефектом была и остается некорректная работа регулятора, сказывающаяся на выходном напряжении генератора (оно становится недостаточным для питания авто и зарядки аккумулятора). Причина при этом будет заключаться в порче графитовых щеток и токопроводящих колец на центральном валу ротора: с годами щетки и кольца стираются, нарушается контакт, а выходное напряжение начинает плавать. Но такая поломка вряд ли грозит генератору раньше, чем через 10 лет.
На фото сильнейший износ токопроводящих колец, на которых графитовые щетки оставили глубокие канавки. Источник: delnvrs87 / DRIVE2
Иногда выгорает диодный мост. Обычно это происходит при долгой эксплуатации полуживого аккумулятора, который потребляет слишком высокий ток зарядки. Также диоды мгновенно выходят из строя при неправильном подключении проводов к полюсам аккумулятора.
Механические повреждения — очень редкий случай, они могут произойти при ДТП. Скорее генератор может просто закоротить, если на него попадёт масло или вода.
6. Можно ли ехать со сломанным генератором?
Если сломался именно генератор, а не порвался приводной ремень, то можно, но недолго — 50-150 км. Когда генератор выходит из строя, электроснабжение машины не прекращается — потребители просто переключатся с генератора на аккумулятор. Насколько хватит последнего, зависит от изношенности батареи и количества работающих потребителей.
Допустим, генератор перестал выдавать ток и вы мгновенно узнали об этом. Значит, у вас в запасе полностью заряженный аккумулятор на 55–75 А·ч. Если у вас не совсем ретро-автомобиль, то электричество нужно для работы топливного насоса, инжектора, зажигания, систем безопасности (ABS/ESP), приборной панели. При движении в темноте или под дождем потребуются фары или хотя бы габаритные огни и стеклоочистители. Добавим такие излишества в экстренной ситуации, как кондиционер, вентиляцию, обогрев стекла и сидений, круиз-контроль и музыку.
Если расходовать заряд аккумулятора максимально экономно, то при движении по трассе без пробок можно рассчитывать на 150 км пути. Когда без дополнительных потребителей не обойтись, да и аккумулятору уже лет 5-6, в запасе у вас будет порядка 50 км. Чаще всего этого достаточно, чтобы доехать до дома или ближайшей автомастерской.
А что же с приводным ремнем, упомянутым выше? Обрыв ремня также прекратит передачу крутящего момента на генератор, но это будет меньшая из проблем: в некоторых машинах от приводного ремня работает не только генератор, но и помпа системы охлаждения двигателя, так что обрыв приведет к быстрому перегреву мотора со всеми вытекающими последствиями. Поэтому при подозрении на поломку генератора в первую очередь надо проверить ремень и лишь потом сам генератор.
7. Можно ли самостоятельно починить генератор?
Да, если вы понимаете, как он устроен. В принципе, автомобильный генератор — это относительно простая и понятная деталь, которую трудно сломать по незнанию. Но сперва рекомендуем почитать соответствующие посты на DRIVE2 и посмотреть видео на YouTube.
Так как в генераторах чаще всего из строя выходит регулятор, который легко можно докупить и заменить своими руками, то самостоятельный ремонт генератора не доставит особых проблем. Из инструментов достаточно будет гаечных ключей или головок к шуруповерту.
А вот более сложный ремонт без опыта лучше не проводить — пока на генератор действует гарантия, то лучше воспользоваться ею. У производителей качественных комплектующих гарантия весьма велика. К примеру, у Hella на генераторы и стартёры она составляет честные три года.
Драйвовчанин w00dencase написал отличный подробный отчёт о самостоятельной замене в генераторе подшипников, щёток и колец. Источник: w00dencase / DRIVE2
Но, как говорится, есть нюанс. Некоторые автопроизводители, чаще всего премиальные марки, делают генераторы неремонтопригодными, с фирменными регуляторами, заменить которые можно только таким же фирменными и часто очень дорогими деталями. Если вас не устраивает цена на новый оригинальный генератор, которая может доходить до 70-100 тысяч рублей, попробуйте подобрать альтернативу от известного производителя. Например, от Hella — мы разрабатываем и производим генераторы, регуляторы и стартеры.
8. Как подобрать генератор помощнее?
Перед тем, как искать замену старому генератору, нужно точно узнать, модель с каким током у вас установлена сейчас. Простой способ узнать это: уточнить через поисковую систему, какой генератор ставится на ваш автомобиль с учётом двигателя.
Надёжный способ — заглянуть под капот и найти на генераторе наклейку с указанием мощности в амперах. Иногда до неё не так-то просто добраться, потребуется включить фонарик в телефоне или сделать несколько фотографий.
Чтобы понять, какая мощность необходима для дополнительной электроники в автомобиле, сложите мощность потребителей (если она указана в ваттах, разделите их на 12 В), прибавьте ее и запас в 20-30 А к параметрам установленного генератора.
В продаже встречаются генераторы даже на 250 А, но для экспедиционных автомобилей может потребоваться ещё больший ток. В таком случае стоит подумать об установке сразу двух генераторов.
Если вы хотите поставить генератор раза в два мощнее предыдущего, придётся подумать и о замене проводки, идущей непосредственно к генератору, — старые провода с малым сечением могут перегреться, изоляция расплавится, и случится неприятное короткое замыкание с массой авто, или провод просто сгорит.
Выходной ток — не единственный параметр, на который нужно обращать внимание при покупке генератора. Чтобы не заморачиваться с поиском модели с подходящей шириной шкива под ремень и тем более не менять шкив самому, лучше сразу обратиться к каталогу запчастей, совместимых конкретно с вашим автомобилем.
В нашем каталоге более 1100 моделей для 24 000 различных модификаций автомобилей, то есть для 80% существующего в мире автопарка. Кстати, у нас есть приложение-каталог для Android и iOS.
В онлайн-каталоге можно подобрать подходящую модель для Kia, Hyundai, Ford, Volkswagen, Lada и подавляющего большинства других эксплуатируемых в России марок. За совместимость генератора с вашим автомобилем можно не беспокоиться: если каталог говорит, что для вашей модели конкретного года выпуска с конкретным объемом двигателя подходит определенный генератор Hella, значит, так оно и есть. Машина старше 10 лет? Не вопрос — для авто в возрасте Hella продолжает выпускать генераторы, ведь новой машине новый генератор обычно не нужен.
Нужен генератор на, скажем, 20-летний Land Cruiser? В мобильном приложении-каталоге Hella выберите в настройках Россию (чтобы видеть доступный ассортимент), далее марку и точную модель автомобиля. Для удобства поиска выберите тип продукта: Alternator — так по-английски называется генератор — и вы получите номер подходящего устройства, по которому его (и другие запчасти) можно потом найти в продаже. Источник: Hella
9. Если поставить генератор(ы) мощнее штатного, упадет ли мощность двигателя?
Совсем немного. Генератор переводит механическую энергию двигателя в электрическую энергию, забирая часть его мощности. Типовой КПД автогенераторов на высоких оборотах составляет 50-60%. Посчитать долю потребления генератора очень просто, для этого берем его ток, умножаем на выходное напряжение, а затем получившуюся мощность в ваттах переводим в лошадиные силы и делим на 0,6 (КПД генератора).
Например, вы захотели поставить серьёзный генератор на 150 А со стандартным для легковых автомобилей напряжением 14 В. 150 × 14 = 2100 Вт, или 2,1 кВт. В одном киловатте около 1,35 лошадиные силы. 2,1 × 1,35 = 2,8 л. с. Учитываем КПД генератора: 2,8 / 0,6 = 4,6 л.с. Генератор на 150 А заберет от двигателя максимум 5 л. с. — если у вас не атмосферная микролитражка, жить можно. Причём эти 5 л. с. генератор на 150 А будет забирать не постоянно, а только если бортовая сеть автомобиля будет потреблять все 150 А.
10. А в чем разница между дорогим и дешевым генераторами с одинаковой силой тока?
Конечно, в качестве. Серьёзные компании могут применять в обмотке провода с квадратным сечением, что позволяет уменьшить габариты генератора. Кольца и щётки у них более долговечны, валы идеально отцентрованы. Качественные диоды снабжены большими радиаторами для отвода тепла. Если низкокачественный генератор может напомнить о себе уже через 50 тыс. км, то хороший брендовый продукт пройдет 200-300 тыс. км без обслуживания. Затем потребуется очень недорогой ремонт щеток и колец, и генератор продолжит работу.
Генератор Hella. Источник: Hella
Бывают ли поддельные генераторы? Возможно, бывают, но даже на DRIVE2 постов с однозначно выявленными подделками нет — есть только редкие подозрения на подделки. Дело в том, что афтемаркет генераторов слишком мал, чтобы подпольные конторы вкладывались в производство контрафакта. Многие автовладельцы при поломке этого элемента просто обращаются в сервис и не заморачиваются поиском новых генераторов в магазинах. Кроме того, у генераторов высокая себестоимость относительно конечной цены — сказывается большое количество меди. Производителям подделок гораздо выгоднее штамповать детали для ТО и элементы подвески, спрос на которые стабильно велик, чем пытаться продавать генераторы. Проще говоря, подделок под известные бренды нет, есть просто очень дешевые и некачественные генераторы с малым сроком службы.
Есть ещё вопросы? Задавайте в комментариях!
Автомобильные генераторы
2.2 АВТОМОБИЛЬНЫЕ ГЕНЕРАТОРЫ
Долгое время основным источником электрической энергии на автомобилях являлись генераторы постоянного тока, которые обеспечивали требования эксплуатации автомобилей выпуска до 60-х годов по максимальной мощности, характеристикам и сроку службы. Начало 60-х годов в отечественном автомобилестроении характеризовалось значительным увеличением срока службы автомобилей, снижением эксплуатационных затрат на обслуживание и ремонт, повышением требований к безопасности дорожного движения и комфорту пассажиров. В связи с этим выявилась необходимость значительного увеличения мощности генератора, срока его службы, улучшения характеристик и снижения эксплуатационных затрат. Одновременно существенно повысились требования к максимальной частоте вращения и габаритным размерам генератора исходя из условий его компоновки в ограниченном подкапотном пространстве автомобиля.
Удовлетворение указанным требованиям путем совершенствования конструкции и технологии производства генераторов постоянного тока, учитывая низкую надежность работы в эксплуатации щеточно-коллекторного узла и малый срок его службы, а также большие габариты и массу генератора, практически оказалось неосуществимо. С помощью научного поиска и исследований было определено новое направление в развитии автомобильных генераторов. Ими явились генераторы переменного тока.
Название «генератор переменного тока» несколько условно и касается в основном особенностей внутренней его конструкции, так как этот генератор имеет встроенные полупроводниковые выпрямители и питает потребители постоянным (выпрямленным) током.
В генераторах постоянного тока таким выпрямителем является щеточно-коллекторный узел, выпрямляющий переменный ток, полученный в обмотках якоря. Развитие полупроводниковой техники позволило применить в генераторах переменного тока более совершенный выпрямитель на полупроводниковых вентилях (диодах). При этом генератор получил качества, которые обеспечили ему широкое распространение в автомобилестроении.
Основными технико-экономическими преимуществами генераторов переменного тока перед генераторами постоянного тока являются: уменьшение в 1,8. 2,5 раза массы генератора при той же мощности и примерно в 3 раза расхода меди; большая максимальная мощность при равных габаритах; меньшее значение начальных частот вращения и обеспечение более высокой степени заряженности аккумуляторных батарей; значительное упрощение схемы и конструкции регулирующего устройства вследствие исключения из него элемента ограничения тока и реле обратного тока; уменьшение стоимости эксплуатационных затрат в связи с большей надежностью работы и повышенным сроком службы.
Первые автомобильные генераторы переменного тока были спроектированы для работы с отдельными селеновыми выпрямителями и вибрационными регуляторами напряжения. Селеновые выпрямители имели значительные размеры и их приходилось размещать отдельно от генератора в местах, где обеспечивалось хорошее охлаждение. Для соединения селенового выпрямителя с генератором требовалась дополнительная проводка.
Кроме того, селеновые выпрямители недостаточно теплостойки и допускают максимальную рабочую температуру не выше + 80 °С. Поэтому в дальнейшем селеновые выпрямители были заменены выпрямителями, состоящими из кремниевых диодов, которые более теплостойки и имеют значительно меньшие размеры, что позволяет размещать их внутри генератора.
На смену вибрационным регуляторам напряжения пришли сначала контактно-транзисторные, а затем бесконтактные на дискретных элементах и бесконтактные интегральные регуляторы. Габариты интегральных регуляторов позволяют встраивать их в генератор, который со встроенными регулятором и выпрямительным блоком называется генераторной установкой.
Для автомобильных генераторов надежность и срок службы определяются в основном тремя факторами: качеством электрической изоляции; качеством подшипниковых узлов; надежностью щеточно-контактных устройств.
Первые два фактора зависят от уровня развития смежных производств. Третий фактор может быть исключен посредством разработки бесконтактных генераторов, имеющих более высокую надежность и, следовательно, больший ресурс, чем контактные. Это обстоятельство стимулировало создание автомобильных бесконтактных генераторов переменного тока с электромагнитным возбуждением — индукторных генераторов и генераторов с укороченными полюсами.
Индукторные генераторы нашли широкое применение на тракторах и сельхозмашинах благодаря простоте конструкции, надежности при работе в тяжелых условиях эксплуатации (пыль, грязь, влага, вибрации) и невысокой стоимости.
Применение на автомобилях существующих конструкций индукторных генераторов сдерживается из-за их основных недостатков:
невысоких удельных показателей;
повышенного уровня пульсации выпрямленного напряжения;
повышенного магнитного шума.
Дальнейшее совершенствование конструкции и устранение вышеперечисленных недостатков позволят применять индукторные генераторы на автомобилях.
Производительность бесщеточных генераторов с укороченными полюсами только начинается, а первыми моделями этого семейства являются генераторы 45.3701 и 49.3701, которые планируется устанавливать на автомобили семейства УАЗ.
ПРИНЦИП ДЕЙСТВИЯ ГЕНЕРАТОРОВ ПЕРЕМЕННОГО ТОКА
Упрощенная схема устройства автомобильного генератора переменного тока с клювообразным ротором представлена на рис. 1.2.
Генератор имеет следующие основные конструктивные элементы: неподвижный статор 10, набранный из пластин электротехнической стали; обмотку статора 11, вращающийся ротор с клювообразными полюсами 3 и расположенную между ними втулку 9; обмотку возбуждения 2, выводы которой припаяны к двум изолированным от вала и друг от друга медным контактным кольцам 7, крышку 12 со стороны привода и крышку 4 со стороны контактных колец, выполненные из алюминиевого сплава, в которых установлены шарикоподшипники 14 и 5 с двусторонним резиновым уплотнителем и одноразовой закладкой смазки на весь срок службы. Крышки имеют вентиляционные отверстия и крепежные лапы для крепления генератора на двигателе.
В крышке со стороны контактных колец установлен пластмассовый щеткодержатель 8 с двумя прямоугольными медно-графитовыми щетками б и выпрямительный блок /. При помощи крыльчатки 15 создается притяжная вентиляция для охлаждения генератора. Привод генератора осуществляется при помощи шкива 13.
Принцип действия генератора заключается в следующем. При включении замка зажигания на обмотку возбуждения подается напряжение аккумуляторной батареи, которое вызывает появление тока возбуждения. Ток возбуждения, проходя по обмотке возбуждения, создает магнитный поток, рабочая часть которого распределяется по клювообразным полюсам одной полярности. Выходя из полюсов, магнитный поток пересекает воздушный зазор, проходит по зубцам и спинке статора, еще раз пересекает воздушный зазор, входит в клювообразные полюсы другой полярности и замыкается через втулку и вал.
При вращении ротора под каждым зубцом статора проходит попеременно то положительный, то отрицательный полюс, т. е. магнитный поток, пересекающий обмотку статора, изменяется по величине и направлению (рис. 1.3).
При этом в обмотках фазы будет индуцироваться переменная по величине и направлению ЭДС, действующее значение которой
— число витков обмотки одной фазы;
где р — число пар полюсов; п — частота вращения.
Значение обмоточного коэффициента kоб зависит от числа пазов статора, приходящихся на полюс и фазу:
где z — число пазов; m — число фаз.
Для отечественных генераторов характерны следующие параметры:
В фазах обмотки статора синхронного генератора индуцируется ЭДС, описываемая зависимостью (1.1), которую можно переписать в более простом виде:
где С — постоянный коэффициент; С = 4,44
Характер изменения ЭДС в проводниках обмотки статора зависит от кривой распределения магнитной индукции в зазоре, которая определяется формой полюса. Форму полюса делают такой, чтобы форма ЭДС приближалась к синусоиде.
В автомобильных генераторах наибольшее применение нашли трехфазные мостовые двухполупериодные схемы выпрямления. В этих схемах наиболее благоприятное соотношение между, выпрямленной мощностью P и мощностью генератора Р (теоретически Р = 1,045 ). Трехфазная мостовая схема выпрямления обеспечивает относительно небольшие пульсации выпрямленного напряжения, что является одним из важных требований к автомобильным генераторам в связи с широким применением электроники на автомобиле.
Выпрямитель для трехфазной системы содержит шесть силовых полупроводниковых диодов, три из которых: VD1, VD3 и VD5 соединены с выводом «+» генератора, а другие три: VD2, VD4 и VD6 с выводом «—» («массой»‘). При необходимости форсирования мощности генератора применяется дополнительное плечо выпрямителя на диодах VD7. VD8, показанное на рис.1, пунктиром. Такая схема выпрямителя может иметь место только при соединении обмоток статора в «звезду», т. к. дополнительное плечо запитывается от «нулевой» точки «звезды».
У значительного количества типов генераторов зарубежных фирм обмотка возбуждения подключается к собственному выпрямителю, собранному на диодах VD9—VD 11.Такое подключение обмотки возбуждения препятствует протеканию через нее тока разряда аккумуляторной батареи при неработающем двигателе автомобиля. Полупроводниковые диоды находятся в открытом состоянии и не оказывают существенного сопротивления прохождению тока при приложении к ним напряжения в прямом направлении и практически не пропускают ток при обратном напряжении.
Работает мостовая трехфазная схема выпрямления следующим образом. Предположим, что обмотки статора генератора соединены по схеме «звезда» (рис. 1.4, а).
В каждый данный момент времени работает тот диод первой группы, у которого анодный вывод в это время имеет наибольший положительный потенциал относительно нейтральной точки N генератора, а вместе с ним — диод второй группы, у которого катодный вывод имеет наибольший по абсолютному значению отрицательный потенциал относительно этой же точки. Частота пульсации выпрямленного напряжения при такой схеме выпрямления равна удвоенному числу фаз генератора, т. е. шесть пульсации за период (рис. 1.4, б).
Выпрямленное напряжение, как это показано на рис.1, носит пульсирующий характер. Эти пульсации можно использовать для диагностики выпрямителя. Если пульсации идентичны — выпрямитель работает нормально, если же картинка на экране осциллографа имеет нарушение симметрии — возможен отказ диода. Проверку эту следует производить при отключенной аккумуляторной батарее. Следует обратить внимание на то, что под термином «выпрямительный диод», не всегда скрывается привычная конструкция, имеющая корпус, выводы и г. д. иногда это просто полупроводниковый кремниевый переход, загерметизированный на теплоотводе.
Применение в регуляторе напряжения электроники и особенно, микроэлектроники, т. е. применение полевых транзисторов или выполнение всей схемы регулятора напряжения на монокристалле кремния, потребовало введения в генераторную установку элементов защиты ее от всплесков высокого напряжения, возникающих, например, при внезапном отключении аккумуляторной батареи, сбросе нагрузки. Такая защита обеспечивается тем, что диоды силового моста заменены стабилитронами. Отличие стабилитрона от выпрямительного диода состоит в том, что при воздействии на него напряжения в обратном направлении он не пропускает ток лишь до определенной величины этого напряжения, называемого напряжением стабилизации. Обычно в силовых стабилитронах напряжение стабилизации составляет 25. 30 В. При достижении этого напряжения стабилитроны «пробиваются «, т. е. начинают пропускать ток в обратном направлении, причем в определенных пределах изменения силы этого тока напряжение на стабилитроне, а. следовательно, ч на выводе «+ » генератора остается неизменным, не достигающем опасных для электронных узлов значении. Свойство стабилитрона поддерживать на своих выводах постоянство напряжения после «пробоя» используется и в регуляторах напряжения.
Для соединения фазных обмоток по схеме «звезда» справедливы следующие соотношения:
где — соответственно линейное и фазное напряжение;
— соответственно линейная и фазная сила тока.
К выпрямителю подается линейное напряжение генератора. Выпрямленное напряжение пульсирует с частотой в 6 раз большей частоты переменного напряжения генератора, т. е.
Среднее значение выпрямленного напряжения (период пульсации Т/6)
где Т— период времени; — угловая частота.
Следовательно, пульсация выпрямленного напряжения
Например, при среднем значении выпрямленного напряжения 14 В пульсация равна 1,95 В. При этом максимальное значение выпрямленного напряжения 14,65 В, а минимальное 12,7 В.
Ток при подключении к выпрямителю активной нагрузки
где — сопротивление нагрузки.
Форма выпрямленного тока имеет такой же вид, как и выпрямленного напряжения, т. е. выпрямленный ток будет пульсирующим с амплитудой
Среднее значение выпрямленного тока
Действующее значение фазного тока
При рассмотрении соотношений напряжении и токов генератора переменного тока со встроенным выпрямителем следует учитывать, что диоды выпрямителя не являются идеальными ключами и что форма кривой напряжения отлична от синусоиды. Поэтому в реальных условиях значения выпрямленного тока и напряжения будут отличаться от теоретических.
ХАРАКТЕРИСТИКИ ГЕНЕРАТОРОВ ПЕРЕМЕННОГО ТОКА
Внешняя характеристика, т. е. зависимость напряжения генератора от тока const, может определяться при самовозбуждении и независимом возбуждении. Аналитическое выражение зависимости напряжения и напряжения от тока для фазных величин имеет следующий вид:
где — полное сопротивление генератора.
Снижение напряжения при увеличении нагрузки (рис. 1.5) происходит из-за падения напряжения в активном и индуктивном сопротивлениях обмоток статора, размагничивающего действия реакции якоря, уменьшающей магнитный поток в воздушном зазоре, из-за падения напряжения в цепи выпрямителя, а в случае самовозбуждения прибавляется падение напряжения на обмотке возбуждения. Из семейства внешних характеристик определяется максимальный ток, который обеспечивается при заданном или регулируемом значении напряжения.
Скоростная регулировочная характеристика (п) (рис. 1.6, а) обычно определяется при нескольких значениях тока нагрузки. Минимальное значение тока возбуждения определяется при токе нагрузки генератора, равном нулю, и максимальной частоте вращения. Скоростные регулировочные характеристики позволяют определить диапазон изменения тока возбуждения с изменением нагрузки при постоянном напряжении.
Токоскоростная характеристика (п) (рис. 1.6, б) имеет важное значение при разработке и выборе генератора.
Все современные автомобильные генераторы обладают свойством самоограничения максимального тока. Это связано с тем, что с увеличением частоты вращения ротора генератора, а следовательно, с увеличением частоты индуцированного в обмотке статора переменного тока увеличивается индуктивное сопротивление обмотки статора генератора, пропорциональное квадрату числа витков в фазе. Вследствие этого с увеличением частоты вращения ток генератора увеличивается медленнее, асимптотически стремясь к некоторому предельному значению. При замыкании внешней цепи на сопротивление нагрузки индуцированная в обмотке статора электродвижущая сила вызывает ток
где — соответственно активное и индуктивное сопротивление обмоток статора.
Выразив индуктивное сопротивление статора через частоту и индуктивность, а затем через частоту вращения и индуктивность:
где L — индуктивность статора; — постоянный коэффициент;
и учитывая зависимость (1.2), получим следующее выражение для тока генератора:
При малой частоте вращения индуктивная составляющая сопротивления ( ) мала по сравнению с активной составляющей и ею можно пренебречь. При этом ток будет возрастать пропорционально частоте вращения (начальная часть характеристики на рис. 1.6, б):
С увеличением частоты вращения индуктивная составляющая возрастает и становится значительно больше активной составляющей, следовательно, последней можно пренебречь. При этом ток будет постоянным, не зависящим от частоты вращения, а определяемым параметрами обмоток генератора и магнитным потоком:
БЕСКОНТАКТНЫЕ ГЕНЕРАТОРЫ С ЭЛЕКТРОМАГНИТНЫМ ВОЗБУЖДЕНИЕМ
К бесконтактным генераторам с электромагнитным возбуждением относятся индукторные генераторы и генераторы с укороченными клювами. Упрощенная схема устройства индукторного генератора представлена на рис. 1.7.
Работает генератор следующим образом. Обмотка возбуждения, по которой протекает постоянный ток, создает в магнитной системе поток (показан пунктиром), который при вращении ротора остается постоянным по величине и направлению. Этот поток замыкается, проходя через воздушный зазор между втулкой 2 и валом 3, ротор 5, зубцы которого выполнены в виде звездочки, воздушный зазор между ротором и статором, магнитопровод статора б и крышку 4.
Изменение магнитного потока в якоре при вращении ротора происходит за счет изменения магнитного сопротивления воздушного зазора между зубцами статора и ротора. Магнитный поток Ф у индукторных генераторов пульсирующий (рис. 1.8). Магнитный поток в воздушном зазоре периодически изменяется от когда оси зубцов ротора и статора совпадают, до когда оси зубцов ротора и статора смещены на угол 180 электрических градусов. Таким образом, магнитный поток имеет среднюю постоянную
и переменную составляющую с амплитудой
Если принять изменение переменной составляющей магнитного потока в зубце по синусоидальному закону
то ЭДС холостого хода, наводимая в обмотке якоря, определится выражением
где — число витков в катушке; z — число последовательно включенных катушек фазы якоря.
Действующее значение ЭДС холостого хода
Зубец и впадина ротора (индуктора) генератора образуют пару полюсов, поэтому частота тока якоря в индукторе генератора
, где z — число зубцов ротора.
В генераторах с укороченными полюсами бесконтактность достигается за счет неподвижного крепления обмотки возбуждения 4 (рис. 1.9) с помощью немагнитной обоймы 1. Полюсы 2 клювообразной формы имеют длину меньше половины длины активной части ротора. В процессе вращения ротора магнитный поток возбуждения пересекает витки обмотки статора 3, индуцируя в них ЭДС. Эти генераторы просты по конструкции, технологичны. Роторы имеют малое рассеяние. К недостаткам можно отнести несколько большую, чем у контактных генераторов, массу при той же мощности. Также следует отметить трудность крепления обмотки возбуждения и обеспечения жесткости и механической прочности ее крепления.
КОНСТРУКТИВНОЕ ИСПОЛНЕНИЕ ГЕНЕРАТОРНЫХ УСТАНОВОК
По своему конструктивному исполнению генераторные установки можно разделить на две группы — генераторы традиционной конструкции с вентилятором у приводного шкива и генераторы так называемой компактной конструкции с двумя вентиляторами во внутренней полости генератора. Обычно «компактные» генераторы оснащаются приводом с повышенным передаточным отношением через поликлиновый ремень и поэтому по принятой у некоторых фирм терминологии, называются высокоскоростными генераторами. При этом внутри этих групп можно выделить генераторы, у которых щеточный узел расположен во внутренней полости генератора между полюсной системой ротора и задней крышкой и генераторы, где контактные кольца и щетки расположены вне внутренней полости. В этом случае генератор имеет кожух, под которым располагается щеточный узел, выпрямитель и, как правило, регулятор напряжения.
Любой генератор содержит статор с обмоткой, зажатый между двумя крышками — передней, со стороны привода, и задней, со стороны контактных колец. Крышки, отлитые из алюминиевых сплавов, имеют вентиляционные окна, через которые воздух продувается вентилятором сквозь генератор.
Статор генератора набирается из стальных листов толщиной 0,8. 1 мм, но чаще выполняется навивкой «на ребро». Такое исполнение обеспечивает меньше отходов при обработке и высокую технологичность. При выполнении пакета статора навивкой ярмо статора над пазами обычно имеет выступы, по которым при навивке фиксируется положение слоев друг относительно друга. Эти выступы улучшают охлаждение статора за счет более развитой его наружной поверхности. Необходимость экономии металла привела и к созданию конструкции пакета статора, набранного из отдельных подковообразных сегментов. Скрепление между собой отдельных листов пакета статора в монолитную конструкцию осуществляется сваркой или заклепками. Практически все генераторы автомобилей массовых выпусков имеют 36 пазов, в которых располагается обмотка статора. Пазы изолированы пленочной изоляцией или напылением эпоксидного компаунда. В пазах располагается обмотка статора, выполняемая по схемам в виде петлевой распределенной или волновой сосредоточенной, волновой распределенной обмоток.
Эффективность работы генератора зависит от места его установки и типа привода. Необходимо обеспечить легкую установку и съем генератора, свободный доступ к коллектору и щечкам генератора постоянного тока или контактным кольцам и щеткам вентильного генератора, удаленность от нагреваемых частей двигателя, возможность дополнительного охлаждения.
Обычно генератор устанавливают на передней части двигателя таким образом, чтобы шкив генератора выступил вперед блока цилиндров. При такой установке обеспечивается дополнительный обдув генератора от вентилятора двигателя.
Привод генераторов на автомобиле и тракторе осуществляется от основного двигателя через ременную, цепную или шестеренчатую передачу. Наибольшее распространение для автотракторных генераторов получила ременная передача.
Ременная передача отличается эластичностью, бесшумностью в работе и простотой конструкции. Однако она обладает и рядом недостатков: большие размеры передачи (шкивы, ремень); значительный износ ремня; необходимость контроля и периодического натяжения ремня.
Цепная передача не обладает эластичностью и бесшумностью, однако она практически не изнашивается и не требует регулировки.
Шестеренчатая передача лишена указанных недостатков ременной передачи, но она более сложна, так как требует обеспечения точного расстояния между осями шестерни двигателя и ведомой шестерни генератора и не обладает эластичностью.
Если применяют ременную передачу, то крепление генератора к двигателю производят обычно на кронштейне.
Применяют два варианта схем ременного привода:
клиновидный ремень охватывает ведущий шкив, расположенный на коленчатом валу двигателя, шкив вентилятора и шкив генератора (привод на три шкива);
генератор приводится во вращение индивидуальным приводом.
Неисправности генераторов возникают в основном при нарушении правил их эксплуатации, например отключении аккумуляторной батареи при работающем двигателе, замыкании клемм генератора на корпус при проверке “на искру”, неправильном натяжении приводного ремня.
Основные неисправности генераторов: плохой контакт между щетками и контактными кольцами; обрыв обмотки возбуждения; замыкание обмотки возбуждения на корпус ротора; междувитковое замыкание в катушке обмотки возбуждения; обрыв одной фазы в цепи обмотки статора; замыкание обмотки статора на сердечник; междувитковое замыкание в катушках обмотки статора; пробой диодов выпрямителя; повышенный шум при работе.