какие факторы влияют на чувствительность и инерционность термометра
Большая Энциклопедия Нефти и Газа
Совершенно очевидно, что при повышении чувствительности скважинного термометра и его разрешающей способности возможности термометрических исследований скважины расширятся. В настоящее время имеются скважин-ныс термометры-дебитомеры, основанные на принципе охлаждения нагретой электротоком спирали, омываемой потоком жидкости. [16]
Совершенно очевидно, что при повышении чувствительности скважинного термометра и его разрешающей способности возможности термометрических исследований скважины расширятся. В настоящее время имеются скважин-ные термометры-дебитомеры, основанные на принципе охлаждения нагретой электротоком спирали, омываемой потоком жидкости. [17]
Термометр имеет капилляр с узким каналом и длинный резервуар; шкала термометра нанесена на внешней поверхности капилляра; диаметр резервуара составляет 8 лш. Дальнейшее увеличение объема ртути ( следовательно, повышение чувствительности термометра ) за счет увеличения: диаметра резервуара нецелесообразно, так как при этом значительно возрастает инертность термометра. Длина резервуара может быть различной в зависимости от размеров калориметра, для которого термометр предназначен. [18]
Термометры ПТС являются серьезными конкурентами для платиновых термометров сопротивления. Чувствительность их удается довести до 0 0005 С, исгользуя простую мостовую схему, в то время как предел чувствительности лзгинового термометра даже с мостом специального типа составляет 0 003 С. [20]
Термометр сопротивления представляет собой тонкую металлическую проволоку, которая намотана на диэлектрический каркас и заключена в защитную арматуру. Тонкая металлическая проволока является чувствительным элементом. Чувствительность термометра сопротивления зависит от температурного коэффициента сопротивления проволоки. [21]
Тепловое расширение жидкости дало возможность строить жидкостные термометры, первыми получившие распространение и наиболее широко применяемые в настоящее время. Специфическими трудностями при использовании стеклянно-жидкостных термометров является необходимость введения поправки на выступающий столбик, чувствительность термометров к давлению и к изменению параметров стекла во времени. [24]
Термометры сопротивления находят большое и все возрастающее применение в современной калориметрии. Это объясняется их высокой чувствительностью, большой стабильностью показаний, а также небольшими габаритами, позволяющими размещать их даже в калориметрах малых размеров. В зависимости от этих четырех факторов чувствительность термометров сопротивления может варьировать в очень широких пределах. [26]
Мы уже говорили о том, что точность в расчетах нужна вполне определенная. Например, для расчета прочности стальных конструкций достаточно знать первые три цифры из числа в кг / мм2, характеризующего сопротивление стали при деформации. А какова должна быть точность, прибора для научных исследований. Если в начале века стремились создать приборы для измерения температуры, могущие определять температуру тела с точностью до 6 знаков после запятой, то теперь стремятся к 14 знакам после запятой. Такая чувствительность термометров позволяла устанавливать различные изменения в организме человека, в структурах тканей и клеток тела, что очень важно для ранней диагностики болезней. [29]
Тепловая инерция датчиков температуры
Тепловая инерционность – свойство любого контактного датчика температуры. В статье рассмотрен ряд вопросов: что такое тепловая инерция, из-за чего она возникает, как влияет на процесс измерений, всегда ли нужны датчики с низкой инерционностью. На примере кабельных термопар ОВЕН продемонстрированы решения, с помощью которых тепловую инерцию датчика можно снизить.
Что такое тепловая инерция?
Широкое применение при измерении температуры получили контактные методы, когда датчики температуры находятся в непосредственном контакте с контролируемыми средами. В реальном мире стационарных тепловых потоков не существует, и на практике приходится сталкиваться с нестационарными потоками. У всех датчиков существует запаздывание выходного сигнала относительно изменения температуры измеряемой среды. Этот эффект называется «тепловой инерцией». Тепловая инерция возникает из-за заметного изменения теплового потока и температуры в разных точках потока жидкости и газа в течение времени. Все датчики температуры реагируют на колебания температуры в пространстве, только одни это делают быстрее, другие медленнее [1].
От чего зависит тепловая инерция?
Температуры различных материалов при одинаковых условиях нагревания и охлаждения изменяются с различной скоростью. Скорость изменения температуры характеризуется теплоемкостью вещества, а она в свою очередь зависит от его удельной теплоемкости и плотности. Тепловую инерцию любого материала можно найти, используя формулу: , где
k – теплопроводность;
p – плотность материала:
c – удельная теплоемкость материала.
На рис. 1 представлены графики изменения тепловой инерции для меди и платины в зависимости от измеряемой температуры.
Рис. 1. Тепловая инерция меди и платины в зависимости от измеряемой температуры
Проволочные датчики температуры обладают некоторыми неоспоримыми преимуществами. Они нечувствительны к механическим нагрузкам, колебаниям и ударам, имеют высокое сопротивление ударной нагрузке и давлению. Это объясняется конструкцией самого датчика – платиновая проволочная спираль свободно двигается внутри керамического корпуса, заполненного алюминиевым порошком, и фиксируется только на его концах. Проволочные датчики позволяют использовать сразу два измерительных элемента – две платиновые спирали в одном керамическом корпусе для удобства эксплуатации и более широких функциональных возможностей. Проволочные терморезисторы будут правильным выбором для процессов, требующих высокой температурной стабильности, например в химической промышленности и энергетике, а также в связке с лабораторными измерительными приборами [2].
Что касается сравнения показателей тепловой инерции этих двух видов чувствительных элементов, то информации крайне мало, а экспериментальные данные фактически отсутствуют. Мы планируем провести исследования на этот счет и ответить на вопрос: у какого терморезистора, тонкопленочного или проволочного, меньше инерция?
Как конструкция датчика влияет на его инерционность?
Тепловая инерция зависит также от конструктивного исполнения датчика температуры. В частности, защитная арматура всегда увеличивает тепловую инерцию датчика (рис. 2). Причем чем толще стенка арматуры, тем больше инерция. Например, при измерении высокотемпературных и агрессивных сред, а также расплавов солей и металлов необходимо использовать термоэлектрические преобразователи (термопары) в защитных толстостенных чехлах (с толщиной стенки вплоть до 20 мм).
Рис. 2. Термоэлектрический термометр
Для снижения тепловой инерции термометров применяют засыпку между чувствительным элементом (измерительным узлом) и арматурой. В качестве засыпки служат кварцевый песок и мелкодисперсные порошки: периклаз (MgO) и электрокорунд (Al2O3). Такое решение позволяет уменьшить тепловую инерцию датчика на 50 %.
Для обеспечения эффективного теплового контакта термометра сопротивления и трубопровода (уменьшения влияния тепловой инерции) рекомендуется применять термопасту и укрывать датчик теплоизоляционным материалом. Конструкция термосопротивлений уже часто включает в себя термопасту, которую наносит в месте контакта ЧЭ и внутренней поверхности арматуры сам производитель. Эксплуатация термопасты допускается в среднем при температурах от –50 до 200 °C.
Следует отметить, что тепловая инерция зависит также от исполнения рабочего спая. Различают изолированный и неизолированный рабочий спай (рис. 3). Покажем это на примере кабельных термопар ОВЕН с диаметром погружной части 4,5 мм.
Рис. 3. Термоэлектрический преобразователь с изолированным и неизолированным спаем
Датчик, у которого спай не изолирован от оболочки КТМС, имеет тепловую инерцию 1 секунду, а у датчика с изолированным спаем инерция 2 секунды. Соответственно, датчик с наименьшей тепловой инерцией – датчик с неизолированным рабочим спаем.
На что влияет тепловая инерция?
Тепловая инерционность характеризуется постоянной времени. Знание значений постоянных времени термопар и возможных их отклонений необходимо для правильного подбора датчика. Если возможные отклонения постоянной времени для выбранного типа термопар превышают допустимый предел, то постоянную времени с необходимой степенью точности следует определять для каждой конкретной термопары [3]. Чем она больше, тем больше времени требуется датчику для достижения температуры контролируемой среды.
Важнейшей характеристикой любого измерительного прибора является его чувствительность. Увеличение чувствительности позволяет измерить температуру с большей точностью. Однако существует предел увеличения чувствительности, связанный с тепловой инерцией термометра. По причине тепловой инерции все термометры обладают так называемой инерционной погрешностью. В тех случаях, когда эта погрешность превышает требуемую точность измерений, дальнейшее повышение точности становится лишенным смысла.
Следует учесть, что тепловая инерция влияет не только на скорость процесса, но и на погрешность измерений соответственно. Тепловая инерция датчика, обусловленная сравнительно медленным нагревом термочувствительного элемента, приводит к запаздыванию показаний прибора, то есть при изменении измеряемой температуры до нового установившегося значения tи показание термометра tп постепенно достигает этого значения (рис. 4).
Рис. 4. Временные характеристики переходного процесса
Также на рис. 4 представлен ряд показателей времени переходного процесса: τп (время от начала реагирования, в течение которого показание прибора достигнет 63 % изменения измеряемой величины), время переходного процесса Т (время, в течение которого показание прибора достигнет 95 % изменения измеряемой величины), полное время установления показаний Тп (время, в течение которого показание прибора достигнет 100 % изменения измеряемой величины).
Быстрые колебания температуры в контролируемой среде и минимальное реагирование датчика на эти изменения могут существенно снизить качество регулирования и привести к поломке всей системы.
Всегда ли оправданно брать датчики температуры с малой тепловой инерцией? В рассмотренном выше случае это является прямой необходимостью. Но существует и обратная задача, когда не требуется контролировать точное значение температуры в пульсирующем процессе, а нужно просто поддерживать какое-то среднее значение температуры. В таком случае правильно будет выбрать датчик с большим коэффициентом тепловой инерции, который позволит сгладить переходный процесс, следовательно, система не будет реагировать на резкие колебания температуры. Данное свойство проиллюстрировано на рис. 5.
Рис. 5. Переходные процессы с пульсацией температуры при различных постоянных времени датчиков
Более того, для большинства термических процессов рабочий ресурс термопары и ее метрологическая стабильность значительно более важны, чем время срабатывания на плавное изменение температуры [4].
1. Сорокин Д. И., Джусов О. П. Динамические характеристики термопар. М: Обнинск, 1973. С. 2.
2. Проволочные датчики температуры Heraeus // Сенсорика: [сайт]. URL: http://www.sensorica.ru/news/news113.shtml (дата обращения: 21.04.2020).
3. Сорокин Д. И., Джусов О. П. Динамические характеристики термопар. М: Обнинск, 1973. С. 3.
4. Улановский А. А. Метрологическая стабильность термоэлектрических преобразователей (термопар) для измерения высоких температур. М: Обнинск. С. 8.
Опубликовано в журнале ИСУП № 2(86)_2020
Лабораторная работа № 2 по дисциплине “Методы и средства гидрометеорологических измерений”. Исследование тепловой инерции термометров
Министерство образования Российской Федерации
ЛАБОРАТОРНАЯ РАБОТА № 2
ИССЛЕДОВАНИЕ ТЕПЛОВОЙ ИНЕРЦИИ ТЕРМОМЕТРОВ
Лабораторная работа № 2. Исследование тепловой инерции термометров. По дисциплине “Методы и средства гидрометеорологических измерении”. – С.-Петербург.: РГГМУ, 2013, 17 с.
Лабораторная работа составлена на основе типовой программы дисциплины, читаемой студентам метеорологического факультета.
Работа содержит теоретические сведения, описание и порядок работы с используемыми приборами и перечень операций, выполняемых студентами. В приложении приводится метод наименьших квадратов для расчета коэффициента инерции термометра.
Издание дополнено в 2013 году для размещения в сети Интернет.
Ó Российский государственный гидрометеорологический университет (РГГМУ), 2013.
Основные уравнения, характеризующие тепловую инерцию термометра, приведены в книге [1], а также в курсе лекций по данной дисциплине. При подготовке к работе студенты должны изучить раздел 2.1 книги [1] и содержание лекции №1 [2].
Предположим, что термометр, имеющий температуру Т0, внесен в среду, имеющую температуру Θ. При постоянной температуре среды термометр в дальнейшем будет показывать температуру, изменяющуюся о закону:
Коэффициент λ зависит как от конструкции термометра, так и от свойств среды, в которой проводится измерение. Эта зависимость выражается формулой:
В свою очередь, коэффициент конвективного теплообмена зависит от свойств среды:
Таким образом, коэффициент инерции обратно пропорционален корню квадратному из произведения скорости потока на плотность среды.
Следовательно, в более плотной среде, например, при измерении температуры воды, коэффициент инерции уменьшается.
Если известна начальная разность температур T0 — Θ, то для оценки коэффициента инерции термометра достаточно определить время τ*, в течение которого эта разность уменьшится в n раз. В самом деле, из уравнения (1) следует:
Удобно взять n целым числом (n =2; 3 и т. п.). Это число n следует выбрать так, чтобы время τ* можно было бы легко определить по секундомеру (10-20 секунд).
Задачей данной работы является определение коэффициента тепловой инерции нескольких стеклянных термометров при различных характеристиках окружающей среды и двух термометров сопротивления. В последнем случае работа выполняется с помощью двухкоординатного самописца, на котором записывается изменение температуры термометра во времени.
Для выполнения работы необходимы: исследуемые термометры, нагреватель для термометров, сосуд с водой комнатной температуры, секундомер, аэродинамическая труба, двухкоординатный самописец с блоком линейной временной развертки по оси абсцисс.
Затем постройте график зависимости Т(τ). Нанесите на график температуру окружающего воздуха. Определите с помощью графика коэффициент инерции термометра, пользуясь данным выше определением. Нанесите на ось абсцисс графика значение коэффициента тепловой инерции. Примерный вид такого графика показан на рис.1.
2. Повторите тот же опыт с тем же термометром, но теперь определите время, в течение которого разность температур между термометром и средой уменьшается в 2 раза. Для этого заранее отметьте и запишите температуру воздух в комнате θ, температуру, с которой предполагается начать отсчет T0 и температуру Tx, которую будет иметь термометр в тот момент, когда разность температур уменьшится в 2 раза.
Вычислите λ по уравнению (4) и сравните с результатами, полученными в п.1. Повторите опыт для 2-3 стеклянных термометров по указанию преподавателя.
ВНИМАНИЕ! При подготовке опыта установите определенное напряжение и заранее определите по графику скорость ветра! Во время проведения опыта изменять скорость потока нельзя!
Как и раньше, запишите температуру воздуха, температуру, с которой предполагается начать отсчет и температуру t‘ термометра в момент изменения разности в n раз. При большой скорости ветра температура меняется быстро, поэтому целесообразно выбрать значение n = 3 или n = 4.
При обработке результатов составьте таблицу λ(V) и постройте графическую зависимость.
4. Определите коэффициент инерции того же термометра, поместив его в воду. Для этого приготовьте второй сосуд, в котором должна находиться вода комнатной температуры. Нагрейте термометр в сосуде с теплой водой до желаемой точки, затем быстро перенесите его в холодную воду и определите время, в течение которого разность температур между термометром и средой (водой!) уменьшится в n = 4 раза. Разумеется, это значение температуры необходимо рассчитать заранее, так же как описано в п.2. Температура термометра в воде изменяется очень быстро, поэтому значение n целесообразно взять большим, чтобы измеряемое время составило хотя бы несколько секунд.
Сравните результаты экспериментов п. пОбъясните различие в полученных величинах λ.
5. Определите коэффициент инерции резисторного термометра. Для этой цели используется электронный термометр с выводом данных на компьютер.
Порядок выполнения этой части работы следующий.
5.1. Включите компьютер. Включите тумблером электронный блок резисторного термометра, должна загореться лампочка.
5.2 При загрузки автоматически запускается программа работы с термометром (рис). Если этого не произошло, запустите иконку “Исследование инерции термометра”, которая находится на рабочем столе.
5.3 Не нагревая резисторного термометра запишите температуру окружающей среды по его показаниям. Проведите опыт без обдува датчика.
5.4 Опустите датчик в термостат с теплой водой, имеющей температуруС. И наблюдайте изменение показаний термометра.
5.5 Когда показания перестанут сильно изменяться вытащите датчик из термостата, протрите его сухой тряпкой и установите во втулку аэродинамической трубы. Затем нажмите кнопку “Начать измерения”. На графике будет отражаться изменение температуры. Измерения будут автоматически производится в течении 150 секунд. По окончании которых появится табличка с изменением температуры термометра от времени. Перепишите её в рабочую тетрадь. Примечание : Данные в таблице изменяются только по окончании очередного измерения, поэтому данные можно переписывать в процессе подготовки и проведения следующих измерений. Если по какой либо причине нужно прервать измерения без получения результатов можно нажать кнопку “Прервать измерения”.
5.6 Повторите опыт (п. п. 5в движущемся воздухе при 4-5 значениях скорости ветра, устанавливаемой перед проведением опыта с помощью ЛАТРа и измеряемой по графику (см. п.3). Таким образом, у Вас будет несколько кривых, характеризующих изменение температуры датчика при различных скоростях аспирации.
5.7. Определите коэффициент инерции датчика в каждом из опытов, пользуясь кривыми t(τ). Для этого определите время, в течение которого разность температур уменьшается в n раз (в данном случае допускается взять как n = 2, так и любое другое число), а затем рассчитайте коэффициент инерции λ по формуле (4).
1. По имеющимся у Вас данным п.1, постройте график зависимости t(τ) для ртутного термометра (аналогично графику рис.1) и определите его коэффициент инерции λ, как время, в течение которого разность температур между термометром и средой уменьшается в е раз.
2. По тем же данным рассчитайте коэффициент инерции термометра по методу наименьших квадратов, изложенному в приложении. Рассчитайте средний квадрат ошибки определения λ.
3. Сравните результаты вычислений со значением λ, полученным по методике п.2 раздела «Выполнение работы». Совпадают ли они? Находится ли разность между ними в пределах вычисленной ошибки?
4. Составьте таблицу λ(V) и постройте график, пользуясь результатами п.3 раздела «Выполнение работы».
5. Определите значение коэффициента инерции ртутного термометра в воде по результатам, полученным в п. 4 раздела «Выполнение работы». Сравните его значение со значением коэффициента инерции в воздухе. Объясните разницу. Определите, выполняется ли формула (3), для чего узнайте по справочным таблицам значение плотности воды и воздуха.
6. По графикам, полученным при выполнении п. п., определите значение λ для каждого опыта и постройте график λ(V) для резисторного датчика температуры. Укажите также значение коэффициента инерции датчика в воде. Объясните ход кривой λ(V) и различие в значениях коэффициента инерции датчика в воздухе и в воде.
ТРЕБОВАНИЯ К ОТЧЕТУ
Отчет должен содержать:
1. Краткое изложение сведений из теории.
3. Рабочие формулы для вычисления коэффициента инерции и среднего квадрата ошибки для всех случаев. Формулы должны быть написаны как в буквенном выражении, так и с применением конкретных величин, полученных в работе.
4. Вычисленные значения всех коэффициентов инерции и среднего квадрата ошибки.
5. Графическую зависимость λ(V) для ртутного и резисторного термометров.
6. Результаты сравнения зависимости λ(V) с теоретической зависимостью (формула 3).
7. Анализ и обсуждение результатов.
Использование метода наименьших квадратов для расчета
коэффициента тепловой инерции термометра
Термометры
Схема прообраза термометра была следующей: это был сосуд с трубкой, содержащей воздух, отделенный от атмосферы столбиком воды; он изменял свои показания и от изменения температуры, и от изменения атмосферного давления. В 18 веке воздушный термометр был усовершенствован. Современную форму термометру придал ученый Фаренгейт, который описал свой способ изготовления термометра в 1723 г. Первоначально свои трубки он наполнял спиртом и лишь в конце исследований перешел к ртути. Окончательно постоянные точки тающего льда и кипящей воды установил шведский физик Цельсий в 1742 г. Сохранившиеся экземпляры термометров Фаренгейта и Цельсия отличаются тщательностью исполнения.
Существует огромное количество видов термометров – электронные термометры, цифровые, термометры сопротивления, биметаллические термометры, инфракрасные термометры (ик термометры), дистанционные термометры, электроконтактные термометры. И, конечно же, наиболее популярные – спиртовые и ртутные термометры. Помимо непосредственно термометров в продаже широко представлены оправы к термометрам, манометрические термометры (термоманометры), портативные пирометры, гигрометры термометры, термометры барометры, тонометры термометры, термопары и другое оборудование.
Вопрос, где купить термометр, сейчас практически не стоит. На рынке представлен широчайший спектр термометров различного назначения, в том числе и бытовых: уличные термометры для любых окон (и деревянных, и пластиковых), комнатные термометры для дома и офиса, термометры для бань и саун. Можно купить термометры для воды, для чая, даже для вина и пива, для аквариума, специальные термометры для почвы, для инкубаторов, фасадные и автомобильные термометры. Существуют термометры для холодильников, морозильных камер и погребов. Словом, найдётся всё! От вида термометра существенно зависит его цена. Диапазон цен также широк, как и ассортимент видов термометров. Установка термометра, как правило, технологически не сложна. Но не забывайте, что надёжное и долговечное крепление термометра гарантирует только выполненная по всем правилам установка, не стоит этим пренебрегать. Помните также, что термометр – прибор инерционный, и время установления его показаний составляет 10-20 минут, в зависимости от требуемой точности. Поэтому не следует ждать, что термометр изменит свои показания сразу, как только вы его вынете из упаковки или установите.
Манометрические термометры. Приборы для измерения температуры, действие которого основано на измерении давления какого-либо вещества (жидкости или газа) при изменении температуры. Шкала манометра градуируется непосредственно в единицах температуры. Измерительная система состоит из погружаемого элемента, капиллярного провода и трубчатой пружины в корпусе. Данные элементы соединены в единое устройство, которое под давлением заполнено инертным газом. Изменение температуры влечёт изменение объема или внутреннего давления в погружаемом устройстве. Давление деформирует измерительную пружину, отклонение которой передается с помощью стрелочного механизма на стрелку. Колебания температуры окружающей среды могут не приниматься во внимание, так как для компенсации между стрелочным механизмом и измерительной пружиной встроен биметаллический элемент. В зависимости от применяемого рабочего вещества различают следующие манометрические термометры: – газовые (азот); – конденсационные (метилхлорид, спирт, диэтиловый эфир); – жидкостные (метилксилол, силиконовые жидкости, металлы с низкой точкой плавления); – ртутные со специальными наполнителями.
Термометры сопротивления. Действие термометров сопротивления основано на свойстве тел изменять электрическое сопротивление при изменении температуры. В металлических термометрах сопротивление с возрастанием температуры увеличивается практически линейно. В полупроводниковых термометрах сопротивления оно наоборот, уменьшается.
Полупроводниковые термометры сопротивления (термисторы) для измерений в промышленности применяют редко, хотя их чувствительность гораздо выше, чем проволочных термометров сопротивления. Это объясняется тем, что градуированные характеристики термисторов значительно отличаются друг от друга, что затрудняет их взаимозаменяемость.
Термометры сопротивления представляют собой первичные преобразователи с удобным для дистанционной передачи сигналом – электрическим сопротивлением, для измерения такого сигнала обычно применяют автоматические уравновешенные мосты. При необходимости выходной сигнал термометра сопротивления может быть преобразован в унифицированный сигнал. Для этого в измерительную цепь включают промежуточный преобразователь. В этом случае измерительным будет прибор для измерения постоянного тока.
Термоэлектрические термометры (термопары). Принцип действия термоэлектрических термометров основан на свойстве двух разнородных проводников создавать термоэлектродвижущую силу при нагревании места их соединения – спая. Проводники в этом случае называются термоэлектродами, а все устройство – термопарой. Величина термоэлектродвижущей силы термопары зависит от материала термоэлектродов и разности температур горячего спая и холодных спаев. Поэтому при измерении температуры горячего спая температуру холодных спаев стабилизируют или вводят поправку на ее изменение.
В промышленных условиях стабилизация температуры холодных спаев термопары затруднительна, поэтому обычно пользуются вторым способом – автоматически вводят поправку на температуру холодных спаев. Для этого применяют неуравновешенный мост, включаемый последовательно с термопарой. В одно плечо такого моста включен медный резистор, расположенный около холодных спаев. При изменении температуры холодных спаев термопары изменяется сопротивление резистора и выходное напряжение неуравновешенного моста. Мост подбирают таким образом, чтобы изменение напряжения было равно по величине и противоположно по знаку, изменению термоэлектродвижущей силы термопары вследствие колебаний температуры холодных спаев.
Термопары являются первичными преобразователями температуры в термоэлектродвижущую силу – сигнал, удобный для дистанционной передачи. Поэтому в измерительную цепь за термопарой может быть сразу включен измерительный прибор для измерения термоэлектродвижущей силы термопары. Обычно применяют автоматические потенциометры.
Если термоэлектродвижущую силу термопары преобразуют в унифицированный сигнал промежуточным преобразователем, то компенсация температуры холодных спаев производится неуравновешенным мостом, который входит в состав преобразователя.
Медный резистор размещают в потенциометре или промежуточном преобразователе. Следовательно, там же должны находиться и холодные спаи термопары. В этом случае длина термопары должна быть равна расстоянию от места измерения температуры до места установки прибора. Такое условие практически невыполнимо, так как термоэлектроды термопар (жесткая проволока) неудобны для монтажа. Поэтому для соединения термопары с прибором применяют специальные соединительные провода, подобные по термоэлектрическим свойствам термоэлектродам термопар. Такие провода называются компенсационными. С их помощью холодные спаи термопары переносятся к измерительному прибору или преобразователю.
В промышленности применяют различные термопары, термоэлектроды которых изготовлены как из чистых металлов (платина), так и из сплавов хрома и никеля (хромель), меди и никеля (копель), алюминия и никеля (алюмель), платины и родия (платинородий), вольфрама и рения (вольфрамрений). Материалы термоэлектродов определяют предельное значение измеряемой температуры. Наиболее распространенные термоэлектродные пары образуют стандартные термопары: хромель-копель (предельная температура 600°С), хромель-алюмель (предельная температура 1000°С), платинородий-платина (предельная температура 1600°С) и вольфрамрений с 5% рения- вольфрамрений с 20% рения (предельная температура 2200°С). Промышленные термопары отличаются высокой стабильностью характеристик, что позволяет заменять их без какой-либо переналадки остальных элементов измерительной цепи.
Термопары, как и термометры сопротивления, устанавливают в защитных чехлах, на которых указан тип термопары. Для высокотемпературных термопар применяют защитные чехлы из теплостойких материалов: фарфора, оксида алюминия, карбида кремния и т.п.
Изготавливаются данные приборы по техническим условиям предприятия. В общем случае электроконтактные термометры конструктивно подразделяются на 2 вида:
– термометры с переменной (устанавливаемой) температурой контактирования, термометры с постоянной (заданной) температурой контактирования (так называемые термоконтакторы);
– электроконтактные термометры с переменным контактом изготавливаются с вложенной шкалой. Шкальная пластина из стекла молочного цвета с нанесенными на нее делениями шкалы и оцифровкой позволяет проводить визуальный контроль температурных режимов в установках.
Термоконтакторы изготавливаются из массивной капиллярной трубки, имеют один или два рабочих контакта, т.е. одну или две фиксированные температуры контактирования. Применяются при погружении в измеряемую среду до соединительного (нижнего) контакта.
Термометры имеют магнитное устройство, с помощью которого рабочая точка контактирования изменяется в диапазоне всего интервала температур.
Электроконтактные термометры и термоконтакторы работают в цепях постоянного и переменного тока в безыскровом режиме. Допускаемая электрическая нагрузка на контактах этих приборов не более 1 Вт при напряжении до 220 В и силе тока 0,04 А. Для включения в электроцепь термоконтакторы снабжены припаянными гибкими проводниками. Термометры подключаются к цепи с помощью контактов под съемной крышкой.
Электронные термометры. Если нужно контролировать температуру, скажем, в подвале дома, на чердаке или в любом подсобном помещении, обычный ртутный или спиртовой термометр вряд ли подойдет. Довольно неудобно периодически выходить из комнаты, чтобы взглянуть на его шкалу.
Более пригоден в подобных, случаях электронный термометр, позволяющий измерять температуру дистанционно – на расстояниях в сотни метров. Причем в контролируемом помещении будет располагаться лишь миниатюрный термочувствительный датчик, а в комнате на видном месте – стрелочный индикатор, по шкале которого и отсчитывают температуру. Соединительная линия между датчиком и устройством индикации может быть выполнена либо экранированным проводом, либо двухпроводным электрическим шнуром. Конечно, электронный термометр – не новинка современной электроники. Но в большинстве случаев термочувствительным элементом в ранних версиях таких термометров был терморезистор, обладающий нелинейной зависимостью сопротивления от температуры окружающей среды. А это менее удобно, поскольку стрелочный индикатор нужно было снабжать специальной нелинейной шкалой, получаемой во время, градуировки прибора с помощью образцового термометра.
Сейчас в электронных термометрах в качестве термочувствительного элемента применяется кремниевый диод, зависимость прямого напряжения (т.е. падения напряжения на диоде при протекании через него прямого тока – от анода к катоду) которого линейна в широком диапазоне изменения температуры окружающей среды. В этом варианте отпадает необходимость в специальной градуировке шкалы стрелочного индикатора.
Принцип действия электронного термометра можно понять, вспомнив известную мостовую схему измерения, образованную четырьмя резисторами, с включенным в одну диагональ стрелочным индикатором и поданным на другую диагональ питающим напряжением. При изменении сопротивления одного из резисторов, через стрелочный индикатор начинает протекать ток.
Цифровые термометры. Цифровые, как и любые другие термометры, – это приборы, предназначенные для измерения температуры. Достоинством цифровых термометров является то, что они обладают малыми размерами, широким диапазоном измеряемой температуры в зависимости от используемых внешних датчиков температуры. Внешние датчики температуры могут быть как термопары различных типов, так и термометры сопротивления, иметь различные формы и области применения. Например, имеются внешние датчики температуры для газообразных, жидких и твёрдых тел. Термометры цифровые представляют собой высокоточные, высокоскоростные приборы. В основе цифрового термометра лежит аналого-цифровой преобразователь, работающий по принципу модуляции. Параметры термометра в смысле погрешности измерений всецело определяются датчиками. Цифровые термометры могут применяться в бытовых целях и для контроля технологических процессов в строительстве, в том числе дорожном, а также в строительной индустрии, сельском хозяйстве, деревообрабатывающей, пищевой и других отраслях промышленности. Цифровые термометры обладают памятью измерений и могут обеспечивать несколько режимов наблюдения.
Спиртовые термометры. Термометр спиртовой относится к термометрам расширения и является подвидом жидкостного термометра. Принцип действия термометра спиртового основан на изменении объема жидкостей и твердых тел при измерении температуры. Таким образом, в данном термометре используется способность жидкости, заключенной в стеклянную колбочку, к расширению и сжатию. Обычно стеклянная капиллярная трубочка заканчивается шаровидным расширением, которое служит резервуаром для жидкости. Чувствительность такого термометра находится в обратной зависимости от площади поперечного сечения капилляра и в прямой – от объема резервуара и от разности коэффициентов расширения данной жидкости и стекла. Поэтому чувствительные термометры имеют большие резервуары и тонкие трубки, а используемые в них жидкости с увеличением температуры расширяются значительно быстрее, чем стекло. Этиловый спирт применяют в термометрах, предназначенных для измерения низких температур. Точность проверенного стандартного стеклянного спиртового термометра ±0,05°С. Главная причина погрешности связана с постепенными необратимыми изменениями упругих свойств стекла. Они приводят к уменьшению объема стекла и повышению точки отсчета. Кроме того, ошибки могут возникать в результате неправильного считывания показаний или из-за размещения термометра в месте, где температура не соответствует истинной температуре воздуха. Дополнительные ошибки могут возникать из-за сил сцепления между спиртом и стеклянными стенками трубки, поэтому при быстром понижении температуры часть жидкости удерживается на стенках. Кроме того, спирт на свету уменьшает свой объем.
Биметаллические термометры. Их строение основано на различии теплового расширения веществ, из которых изготовлены пластины применяемых чувствительных элементов. Биметаллические термометры используются для измерения температуры в жидких и газообразных средах, в том числе на морских и речных судах, атомных электростанциях.
В общем случае, биметаллический термометр состоит из двух тонких лент металла, например медной и железной, которые при нагревании расширяются неодинаково. Плоские поверхности лент плотно прилегают одна к другой. Такая биметаллическая система скручена в спираль, один из концов этой спирали жестко закрепляется. При нагревании или охлаждении спирали ленты, изготовленные из разных металлов, расширяются или сжимаются по-разному. Следовательно, спираль или раскручивается, или туже скручивается. По указателю, который прикреплен к свободному концу спирали, можно судить о величине изменений. Примером биметаллического термометра может служить комнатный термометр с круглым циферблатом.
Кварцевые термометры. Кварцевые термометры основаны на температурной зависимости резонансной частоты пьезокварца. Датчик кварцевого термометра представляет собой кристаллический резонатор, выполненный в виде тонкого диска или линзы, помещенный в герметизирующий кожух, заполненный для лучшей теплопроводности гелием при давлении около 0,1 мм.рт.ст. (диаметр кожуха составляет 7-10 мм). В центральной части линзы или диска нанесены золотые электроды возбуждения, а держатели (выводы)располагаются на периферии.
Точность и воспроизводимость показаний определяются главным образом изменением частоты и добротностью резонатора, понижающейся при эксплуатации вследствие развития микротрещин от периодического нагрева и охлаждения.
Измеряемая схема кварцевого термометра состоит из датчика, включенного в цепь положительной обратной связи усилителя, и частотомера. Существенным недостатком кварцевых термометров является их инерционность, составляющая несколько секунд, и нестабильность работы при температурах выше 100°С из-за возрастающей невоспроизводимости.