какие ферменты расщепляют крахмал

Когда желудку и кишечнику не хватает ферментов

Основным инструментом пищеварения являются ферменты, именно они выполняют всю основную работу. Логично, что при их недостатке процесс пищеварения нарушается, и организм начинает нам сообщать о проблемах, сигнализируя различными симптомами. Такие привычные всем симптомы как изжога, тяжесть в животе, боль, метеоризм, диарея или запор – являются прямым указанием на проблемы с пищеварением.

Ферменты поджелудочной железы – виды и функции

Пора узнать, что представляют собой ферменты, и как они влияют на пищеварение. Ферменты поджелудочной железы – это белковые комплексы или катализаторы, основной задачей которых является расщепление питательных веществ на простые, легкоусвояемые соединения. Таким образом, организм легко усваивает все необходимые элементы и витамины.

Какие ферменты вырабатывает поджелудочная железа и какие у них функции?

Особо интересно то, что организм может регулировать выработку тех или иных ферментов в зависимости от характера потребляемой пищи. То есть, если вы потребляете много хлебобулочных изделий, то упор в выработке будет сделан на амилазе, если потребляется жирная пища, то поджелудочная железа отправит в кишечник больше липазы.

Кажется, что работа полностью налажена, и сбоев быть не может. Но сбои случаются и достаточно часто: слишком тонкий механизм работы, который легко нарушить. Даже большой приём пищи с преобладанием жиров может сломать систему, и поджелудочная железа не сможет обеспечить нужное количество ферментов.

Появление проблем с пищеварением

Мы выяснили, что проблемы с пищеварением могут возникать из-за недостатка ферментов. Существует два основных механизма, при которых организму не хватает ферментов поджелудочной железы. В первом варианте проблема с выработкой ферментов кроется в самой поджелудочной железе, т.е. сам орган функционирует неправильно.

какие ферменты расщепляют крахмал. Смотреть фото какие ферменты расщепляют крахмал. Смотреть картинку какие ферменты расщепляют крахмал. Картинка про какие ферменты расщепляют крахмал. Фото какие ферменты расщепляют крахмал

Во втором варианте нарушаются условия, при которых ферменты могут правильно работать. Подобное возможно в результате изменения кислотности среды кишечника, например, при воспалении или при изменении стандартной температуры окружения (36-37° С). Воспалительный процесс в кишечнике может возникать при различных состояниях: кишечные инфекции, аллергические реакции (пищевая аллергия, атопический дерматит).

Основные признаки нехватки ферментов поджелудочной железы

Выявить недостаток ферментов достаточно просто. Ключевыми симптомами являются тяжесть после еды, чувство распирания в животе и дискомфорт в животе. Нередко эти симптомы сопровождаются вздутием, урчанием, метеоризмом, диареей. Чаще всего такие симптомы могут возникать в рядовых ситуациях: при употреблении тяжелой, жирной пищи или при переедании, когда удержаться от множества вкусных блюд попросту не удалось. В этом случае не стоит бояться неполадок с поджелудочной железой или других заболеваний ЖКТ. Поджелудочная железа просто не справляется с большим объемом работы, и ей может потребоваться помощь.

Если нехватка ферментов и проблемы с пищеварением сохраняются длительное время, то это не остается незаметным для организма. Симптомы могут усугубляться и носить уже не эпизодический, а регулярный характер. Постоянная диарея дает старт авитаминозу, могут развиваться: белково-энергетическая недостаточность и обезвоживание во всем организме. Может наблюдаться значительное снижение массы тела. Помимо этого при тяжелых стадиях могут наблюдаться следующие симптомы недостатка ферментов поджелудочной железы 8 :

Поддержание пищеварения и лечение ферментной недостаточности

При проблемах с пищеварением могут помочь ферментные препараты (чаще они называются препаратами для улучшения пищеварения), основная задача которых компенсировать нехватку собственных ферментов в организме. Не зря такая терапия называется «ферментозаместительная». Критически важно, чтобы ферментный препарат максимально точно «имитировал» физиологический процесс.

На сегодняшний момент существуют различные препараты для улучшения пищеварения. Как же ориентироваться в многообразии средств и сделать правильный выбор?

Эффективный ферментный препарат должен соответствовать следующим критериям 5,6 :

Источник

Ферменты, расщепляющие крахмал

Гидролитическое расщепление крахмала (амилолиз) при затирании катализируют амилозы солода. Кроме них солод содержит несколько ферментов из групп амилоглюкозидаз и трансфераз, которые атакуют некоторые продукту расщепления крахмала, однако по количественному соотношению они имеют при затирании только второстепенное значение.

При затирании природным субстратом является крахмал, содержащийся в солоде. Так же как любой природный крахмал, он не является единым химическим веществом, а смесью, содержащей в зависимости от происхождения от 20 до 25% амилозы и 75-80% амилопектина.

Молекула амилозы образует длинные, неразветвленные, спирально свернутые цепочки, состоящие из молекул α-глюкозы, взаимно связанных глюкозидными связями в положении α-1,4. Количество глюкозных молекул различно и колеблется от 60 до 600. Амилоза растворима в воде и окрашивается йодным раствором в синий цвет. По Мейеру, амилоза под действием β-амилазы солода полностью гидролизуется до мальтозы.

Декстринирующая α-амилаза.Она является типичным компонентом солода. α-Амилаза активизируется при солодоращении, однако в ячмене Кнеен обнаружил ее только в 1944 г. Она катализирует расщепление α-1,4 глюкозидных связей. Молекулы обоих компонентов крахмала, т. е. амилозы и амилопектина, при этом неравномерно разрываются внутри, только конечные связи не гидролизуются. Происходит разжижение и декстринизация проявляющаяся в быстром снижении вязкости раствора (разжижение затора). Разжижение крахмального клейстера является одной из функций солодовой α-амилазы. Представление об участии другого разжижающего фермента (амилофосфатазы) в настоящее время не считается обоснованным. Характерно, что α-амилаза вызывает исключительно быстрое снижение вязкости крахмального клейстера, восстанавливающая способность которого при этом возрастает очень медленно. Синяя йодная реакция крахмального клейстера (т. е. раствора амилопектина) под действием α-амилазы быстро изменяется через красную, бурую да ахроической точки, а именно при низкой восстанавливающей способности.

В естественных средах, т. е. в солодовых экстрактах и заторах, α-амилаза имеет температурный оптимум 70°С, инактивируется при 80°С. Оптимальная зона pH равна от 5 до 6 с четким максимумом на pH-кривой. Она стабильна в диапазоне pH от 5 до 9. α-Амилаза очень чувствительна к повышенной кислотности (является кислотонеустойчивой), инактивируется окислением да pH 3 при 0°С или до pH 4,2-4,3 при 20°С.

Осахаривающая β-амилаза.Она содержится в ячмене и ее объем при соложении (проращивании) сильно возрастает. β-Амилаза обладает высокой способностью катализировать расщепление крахмала до мальтозы. Она не разжижает нерастворимый нативный крахмал и даже крахмальный клейстер.

Из неразветвленных цепочек амилазы β-амилаза отщепляет вторичные α-1,4 глюкозидные связи, а именно от невосстанавливающихся (неальдегидных) концов цепей. Мальтоза постепенно отщепляет от отдельных цепочек по одной молекуле. Расщепление амилопектина происходит также, однако фермент атакует разветвленную молекулу амилопектина одновременно в нескольких пространственных цепочках, а именно в местах разветвления, где находятся связи α-1,6, перед которыми расщепление прекращается.

Вязкость крахмального клейстера под действием α-амилазы снижается медленно, в то время как восстанавливающая способность возрастает равномерно, йодная окраска переходит из синей очень медленно в фиолетовую, а потом в красную, однако ахронческой точки вообще не достигает.

Общее действие α- и β-амилазы. Амилаза (диастаза), содержащаяся в солоде обычных типов и в специальном диастатическом солоде, является природной смесью α- и β-амилазы, в которой β-амилаза количественно преобладает над α-амилазой.

При одновременном действии обеих амилаз гидролиз крахмала намного глубже, чем при самостоятельном действии одного из названных ферментов, и мальтозы при этом получается 75-80%.

Осахаривание амилозы и конечных групп амилопектина β-амилаза начинает с конца цепочек, в то время как α-амилаза атакует молекулы субстрата внутри цепочек.

Низшие и высшие декстрины образуются наряду с мальтозой под действием α-амилазы на амилозу и амилопектин. Высшие декстрины образуются также под действием β-амилазы на амилопектин. Декстрины являются разновидностью эритрогранулозы и α-амилаза разрывает их вплоть до α-1,6 связей, так что образуются новые центры для действия β-амилазы. Тем самым α-амилаза повышает активность β-амилазы. Кроме того, α-амилаза атакует декстрины типа гексозы, образующиеся под действием β-амилазы на амилозу.

Разницу температурного оптимума α- и β-амилазы на практике используют для регулировки взаимодействия обоих ферментов тем, что подбором правильной температуры поддерживают деятельность одного фермента в ущерб другому.

Трансглюкозидазы, скорее негидролизующиеся ферменты, однако механизм катализированных ими реакций подобен механизму гидролаз. В солоде содержатся трансглюкозидазы, фосфорилирующие или фосфорилазы, и нефосфорилирующие, например циклодекстриназа, амиломальтаза и др. Все эти ферменты катализируют перенос сахарных радикалов. Их технологическое значение второстепенное.

Источник

Параграф 30. Переваривание углеводов

Автор текста – Анисимова Елена Сергеевна.
Авторские права защищены. Продавать текст нельзя.
Курсив не зубрить.

Замечания можно присылать по почте: exam_bch@mail.ru
https://vk.com/bch_5

ПАРАГРАФ № 30. См. также п. 28, 29, 31, 8.
«Функции углеводов.
Углеводы в питании.
Переваривание углеводов.
Унификация моносахаридов.»

Нужно знать формулы глюкозы, фруктозы, галактозы, сахарозы, лактозы, мальтозы, ДОАФ, ГА и их фосфатов (1- и т.д.).

30. 1. ФУНКЦИИ. См. п. 32, 38 и 39.
1. ЭНЕРГЕТИЧЕСКАЯ функция – ГЛЮКОЗА необходима для выработки АТФ в эритроцитах и головном мозге, поэтому ее концентрация в крови должна поддерживаться на уровне не менее 3 ммоль/л, а снижение концентрации глюкозы приводит к слабости, затуманенности сознания, создает риск обморока и смерти. Глюкоза поступает в кровь из печени, в которую поступает при переваривании углеводов пищи, образуется при распаде гликогена или при синтезе из аминокислот (см. ГНГ).

2. ПЕНТОЗЫ (рибоза и дезоксирибоза) входят в состав РНК и ДНК. Образуются пентозы из глюкозы в пентозофосфатном пути. п.35 и 72.

3. Разные моносахариды входят в состав олигосахаридов и полисахаридов. Олигосахариды соединены с липидами, образуя гликолипиды, или с белками, образуя гликопротеины; гликопротеины и гликопротеины входят в состав мембран, углеводный компонент находится на внешней поверхности мембраны, участвует в узнавании (то есть выполняет РЕЦЕПТОРНУЮ ФУНКЦИЮ). Гликопротеины есть в крови. Полисахариды входят в состав соединительной ткани (хрящей и т.д.), выполняя опорно-защитную функцию. Мономеры олиго- и полисахаридов образуются из глюкозы.

4. Из глюкозы образуются метаболиты ЦТК, из которых синтезируются заменимые аминокислоты для белков и липиды (жирные кислоты, холестерин, кетоновые тела).

30. 2. Углеводы в питании:
потребность, оценка значения крахмала, сахарозы, пищевых волокон. См. 28.

В мёде и фруктах содержатся моносахариды ГЛЮКОЗА И ФРУКТОЗА, которые могут сразу всасываться.

В обычных сладостях содержится САХАРОЗА – дисахарид, состоящий из остатков глюкозы и фруктозы, соединенных 1,2-гликозидной связью, которая расщепляется в тонком кишечнике ферментом сахаразой, что приводит к образованию моносахаридов глюкозы и фруктозы.

В молоке (но не в кисло-молочных продуктах) содержится «молочный сахар» – дисахарид ЛАКТОЗА, состоящий из остатков галактозы и глюкозы, соединенных ;-1,4-гликозидной связью, расщепляемой ферментом лактаза, что приводит к образованию моносахаридов галактоза и глюкозы. Лактоза является единственным углеводом в питании грудных детей.
Моносахариды и дисахариды имеют сладкий вкус и относятся к «простым» углеводам. Из-за их быстрого переваривания их употребление приводит к быстрому повышению концентрации глюкозы в крови, поэтому они быстро нормализуют самочувствие, если оно нарушено низкой концентрацией глюкозы в крови, но поэтому же нежелательно употреблять простые углеводы в больших количествах (это привело бы к резкому повышению концентрации глюкозы в крови, способствовало бы превращению глюкозы в жир). Рекомендуют употреблять не более 30г простых углеводов в сутки, распределяя это количество на несколько приемов.

КРАХМАЛ – основной углевод картофеля, злаков и изделий из них (каш, макарон, хлеба, булочек, тортов и т.д.). В сутки рекомендуют употреблять 300г крахмала (конечно, не в чистом виде, а в составе названных продуктов). Крахмал переваривается медленнее, чем простые (сладкие) углеводы, поэтому употребление продуктов с крахмалом приводит к более медленному и плавному повышению концентрации глюкозы в крови.

Значение ПИЩЕВЫХ ВОЛОКОН. (Клетчатки).
Это нерасщепляемые ферментами человека полисахариды клеточных стенок растений и грибов (отсюда второе название волокон – клетчатка). Примеры волокон – целлюлоза, пектин. Пищевые источники клетчатки – оболочки злаков (отруби), мюсли, хлеб из муки грубого помола, каши, морская капуста, овощи, фрукты и ягоды, соки с мякотью и т.д. Поскольку пищевые волокна не расщепляются, то они не являются источниками калорий, но наличие клетчатки в пище необходимо для профилактики ряда заболеваний – атеросклероза и ИБС, ожирения, геморроя, дисбактериоза – см. таблицу.

(Таблица свойства клетчатки)

30.3. Переваривание и всасывание углеводов. Дисахаридозы.

30. 3. 1. Всасывание.
Всасываться могут моносахариды. Дисахариды и полисахариды должны сначала расщепиться до моносахаридов.
Моносахариды (глюкоза и фруктоза мёда и фруктов) всасываются в тонком кишечнике в ЭНТЕРОЦИТЫ, транспортируясь через мембраны энтероцитов внутрь с помощью белков-ТРАНСПОРТЕРОВ.
При патологии кишечника (энтериты и т.д. – см. СНПВ в п.62) всасывание моносахаридов замедляется (снижение всасывания называется мальабсорбцией), что ведет
1 – к снижению поступления моносахаридов в организм (что снижает гликемию) и
2 – к поступлению моносахаридов в толстый кишечник, в котором моносахариды подвергаются действию микрофлоры, что приводит
1 – к размножению патогенных микроорганизмов (дисбактериозу),
2 – к диарее (моносахариды превращаются микрофлорой в осмотически активные вещества, то есть в вещества, вызывающие приток воды в полость кишечника).

Сначала концентрация глюкозы в полости кишечника больше, чем в энтероцитах, а затем – меньше, поэтому транспорт глюкозы в энтероциты (всасывание) происходит сначала по градиенту концентраций глюкозы, а затем – ПРОТИВ ГРАДИЕНТА.
Для транспорта против градиента нужна энергия;
источником энергии для транспорта глюкозы против ее градиента является транспорт ионов натрия по градиенту ионов натрия тоже внутрь энтероцитов – п.25.
Транспорт глюкозы и ионов натрия осуществляется одним и тем же белком-транспортером. Способ всасывания глюкозы тем же белком, что и натрий и в том же направлении называется СИМПОРТОМ глюкозы и натрия.
Форма энергии, которая используется при транспорте глюкозы в энтероциты против градиента, называется электро-химическим потенциалом ионов натрия. Источником ионов натрия в полости кишечника является поваренная соль пищи и транспорт ионов натрия натрий-калиевой АТФ-азой (поэтому всасывание глюкозы, переваривание углеводов требует затрат энергии и поэтому неподсоленную пищу трудно есть).
Из энтероцитов глюкоза поступает в КРОВЕНОСНЫЕ капилляры, с током крови поступает в ПЕЧЕНЬ. Если при этом гликемия низкая, то глюкоза поступает в кровь, что приводит к нормализации и повышению гликемии. Если гликемия нормальная, то поступившая из кишечника глюкоза используется для синтеза гликогена (около 150г в печени). Если гликогена в печени достаточно, то глюкоза превращается в жир (поэтому лишние углеводы пищи способствуют ожирению). Также глюкозы используется печенью для синтеза пентоз, глюкуроната и гликопротеинов.

30. 3. 2. РАСЩЕПЛЕНИЕ ДИСАХАРИДОВ
лактозы, сахарозы и мальтозы до моносахаридов осуществляется в тонком кишечнике путем гидролиза ферментами лактАЗОЙ, сахаразой и мальтазой, которые называются дисахаридазами, находятся на поверхности энтероцитов (пристеночное пищеварение) и вырабатываются энтероцитами.
Поэтому патология тонкого кишечника может быть причиной дефицита дисахаридаз (пример вторичной энзимопатии) – см. дисахаридозы.

ЛАКТАЗА расщепляет (путем гидролиза) ;-1,4-гликозидную связь лактозы между остатками галактозы и глюкозы, образуя галактозу и глюкозу.
САХАРАЗА расщепляет 1,2-гликозидную связь сахарозы между остатками глюкозы и фруктозы, образуя глюкозу и фруктозу.
МАЛЬТАЗА расщепляет ;-1,4-гликозидную связь мальтозы между двумя остатками глюкоз, образуя 2 молекулы глюкозы.

Если активность дисахаридаз снижается, это ведет к замедлению расщепления дисахаридов в тонком кишечнике, поступлению части дисахаридов в толстый кишечник, возникновению диареи и дисбактериоза.
Причиной снижения активности дисахаридаз могут быть патология тонкого кишечника (пример вторичной энзимопатии)
и мутации генов, кодирующих дисахаридазы (примеры первичных энзимопатий).

Низкая активность дисахаридаз проявляется в виде диареи при поступлении в организм их субстратов. –
Низкая активность лактазы проявляется после первого же кормления новорожденного молоком; нужно исключить из питания молоко и продукты, приготовленные с использованием цельного молока; при этом кисло-молочные продукты можно употреблять (в них нет лактозы).
Низкая активность сахаразы проявляется после поступления в организм сладкой пищи или напитков. Нужно исключить из питания сахар и продукты, содержащие сахарозу (варенье, печение, конфеты и т.д.)
Низкая активность мальтазы проявляется при поступлении в организм продуктов, содержащих крахмал (крахмал является основным источником мальтозы после своего расщепления).
Нарушения обмена дисахаридов называются ДИСАХАРИДОЗАМИ.
Галактоза и фруктоза в печени превращаются в глюкозу – см. унификацию моносахаридов.

30. 3. 3. РАСЩЕПЛЕНИЕ КРАХМАЛА.
Крахмал – это полимер, состоящий из остатков глюкозы, связанных ;-1,4-гликозидными связями в длинных линейных участках (по тысяче остатков).
;-1,4-гликозидные связи крахмала расщепляются ферментом ;-амилаза, которые расщепляет связь между вторым и третьим концевыми остатками глюкозы, отщепляя молекулы мальтозы (но не глюкозы).
Амилаза.
Фермент ;-амилаза есть и работает в ротовой полости и в 12-перстной кишке (ДПК). В ротовую полость амилаза поступает в составе слюны из слюнных желез, а в ДПК – в составе панкреатического сока из поджелудочной железы (ПЖЖ).

При повреждении слюнных желез (например, при паротите) или при повреждении ПЖЖ (например, при панкреатите) амилаза поступает из поврежденных клеток в кровь, поэтому повышенная активность амилазы в крови – признак паротита или панкреатита;
но при паротите повышена активность только амилазы только в крови,
а при панкреатите в крови повышена активность ещё и липазы, а активность амилазы повышена еще и в моче (диастаза).
(Эти ведения используются пори постановке диагноза).

Расщепление крахмала начинается в ротовой полости под действием амилазы слюны, но так как люди обычно почти сразу глотают непрожёванную пищу, то продолжается расщепление крахмала во рту недолго.
В желудке расщепление крахмала почти прекращается, так как при рН желудка (около 2) амилаза не работает (разве что внутри непрожёванного пищевого комка, пока туда не попадет кислота)
В ДПК расщепление крахмала продолжается под действием панкреатической амилазы и заканчивается образованием мальтозы из крахмала. О расщеплении мальтозы до глюкозы см. выше.
;-амилаза означает, что амилаза расщепляет ;-гликозидные связи. ;-гликозидные связи целлюлозы не расщепляются ферментами человека, а если бы расщеплялись бы, то бумага, целлюлоза, трава были бы такой же пищей, как и хлеб. Целлюлоза расщепляется ферментами микроорганизмов, в том числе живущими в рубце коров (отдел желудка).

30. 4. УНИФИКАЦИЯ МОНОСАХАРИДОВ.

Это превращение галактозы и фруктозы в глюкозу.
Происходит в ПЕЧЕНИ. Галактоза и фруктоза поступают в печень с током крови из кишечника, в котором галактоза образуется при расщеплении лактозы, а фруктоза – при расщеплении сахарозы (или поступает в чистом виде при употреблении фруктов и мёда).

30. 4. 1. Унификация фруктозы.
1-я реакция в унификации фруктозы
– присоединение фосфата (фосфорилирование) по 1-му положению, в результате чего фруктоза превращается во фруктозо-1-фосфат. Источником фосфата является (как обычно) АТФ, превращающийся в АДФ. Фермент реакции называется фруктокиназой (как и все ферменты, катализирующие перенос фосфата от АТФ). Реакцию считают реакцией активации фруктозы.

2-я реакция
– расщепление фруктозы на две «половинки», две триозы – диокси/ацетонфосфат и глицериновый альдегид.
Фермент называется альдолазой фруктозо-1-фосфата (похожий фермент работает в гликолизе п.32).

3-я реакция
– фосфорилирование глицеринового альдегида, в результате которой образуется фосфоглицериновый альдегид. Фермент реакции называется киназой глицеринового альдегида, а источником фосфата является АТФ (как и в первой реакции).
Остальные реакции, как в глюконеогенезе – 4) ФГА и ДОАФ вступают в реакцию, превращаясь во фруктозо-1,6-бисфосфат, 5) от Ф-1,6-бисФ отщепляется фосфат, образуя Ф-6-Ф, 6) Ф-6-Ф изомеризуется в Г-6-Ф, 7) от Г-6-Ф отщепляется фосфат, образуя глюкозу.

30. 4. 2. Унификация галактозы.
Первая реакция такая же, как в унификации фруктозы – галактоза + АТФ = галакто-1-фосфат + АДФ. Фермент – галактокиназа.

2-я реакция – галактозо-1-фосфат превращается в УДФ-галактозу, вступая в реакцию с УТФ или УДФ-глюкозой.

3-я реакция – УТФ-галактоза превращается в УДФ-глюкозу под действием фермента эпимераза (эпимеризация – это превращение вещества в его эпимер, разновидность изомеризации).

4-я реакция – УДФ-глюкоза используется для синтеза гликогена – см. № 31.

30. 5. ЭНЗИМОПАТИИ в унификации. (Учить только педиатрам.)

Энзимопатии (п.8) – это патологии, обусловленные сниженной или повышенной активностью ферментов. Частный случай протеинопатий.
Если причиной неправильной активности фермента является мутация кодирующего его гена, то энзимопатия называется первичной, а если другой причиной, то – вторичной. Другими причинами могут быть патология органа, вырабатывающего фермент, или дефицит витамина или минерала, который нужен для работы фермента (в этом случае активность фермента снижена).
Неправильная активность ферментов потому приводит к патологии, что возникают избыточные или недостаточные количества субстратов и продуктов ферментов.

30. 5. 1. ПОСЛЕДСТВИЯ нарушения унификации моносахаридов.

Если снижена активность ФРУКТОКИНАЗЫ, то катализируемая ею реакция идет медленно, фруктоза накапливается и выводится в почками с мочой, приводя к фруктозурии (присутствию фруктозы в моче).
Это не опасно, только лишает лишает организм возможности получить калории (АТФ) за счет фруктозы.

Низкая активность фруктозо-1-фосфот\АЛЬДОЛАЗЫ приводит к тому, что фрактозо-1-фосфат не превращается в ГА и ДОАФ и накапливается, что ведет к повреждению печени и почек.
Поэтому в этой ситуации для предотвращения повреждения печени и почек желательно отказаться от поступления в организм фруктозы – от мёда, фруктов и сахарозы.

Если снижена активность ГАЛАКТОКИНАЗЫ, то галактоза накапливается и повреждает ХРУСТАЛИК, приводя к развитию КАТАРАКТЫ и слепоте. Спасти зрение можно, не употребляя молоко.

Если снижена активность фермента превращающего галакто-1-фосфата в УДФ-галактозу, то накапливаются и галактоза, и УДФ-галактоза, что ведет к повреждению хрусталика, головного мозга и печени.
Избежать этих последствий можно, исключив из пищи источник галактозы, то есть молоко, а также продукты на молоке (каши, печенье и т.д.). Это та ситуация, когда молоко матери вредно для ребенка (наряду с дефицитом лактАзы и фенилкетонурией).

30. 5. 2. ПРИЧИНЫ нарушений унификации.
Причиной низкой активности ферментов унификации могут быть мутации генов, кодирующих ферменты унификации (см. первичные энзимопатии) и патология печени (вторичные энзимопатии).
Спасти от последствий нарушения унификации можно неупотреблением молока и фруктозы, сахара.

Источник

Какие ферменты расщепляют крахмал

какие ферменты расщепляют крахмал. Смотреть фото какие ферменты расщепляют крахмал. Смотреть картинку какие ферменты расщепляют крахмал. Картинка про какие ферменты расщепляют крахмал. Фото какие ферменты расщепляют крахмалкакие ферменты расщепляют крахмал. Смотреть фото какие ферменты расщепляют крахмал. Смотреть картинку какие ферменты расщепляют крахмал. Картинка про какие ферменты расщепляют крахмал. Фото какие ферменты расщепляют крахмалкакие ферменты расщепляют крахмал. Смотреть фото какие ферменты расщепляют крахмал. Смотреть картинку какие ферменты расщепляют крахмал. Картинка про какие ферменты расщепляют крахмал. Фото какие ферменты расщепляют крахмалкакие ферменты расщепляют крахмал. Смотреть фото какие ферменты расщепляют крахмал. Смотреть картинку какие ферменты расщепляют крахмал. Картинка про какие ферменты расщепляют крахмал. Фото какие ферменты расщепляют крахмалкакие ферменты расщепляют крахмал. Смотреть фото какие ферменты расщепляют крахмал. Смотреть картинку какие ферменты расщепляют крахмал. Картинка про какие ферменты расщепляют крахмал. Фото какие ферменты расщепляют крахмал

Ферменты солода и их субстраты

Ферменты, расщепляющие крахмал

Гидролитическое расщепление крахмала (амилолиз) при затирании катализируют амилозы солода. Кроме них солод содержит несколько ферментов из групп амилоглюкозидаз и трансфераз, которые атакуют некоторые продукты расщепления крахмала; однако по количественному соотношению они имеют при затирании только второстепенное значение.

При затирании природным субстратом является крахмал, содержащийся в солоде. Так же как любой природный крахмал, он не является единым химическим веществом, а смесью, содержащей в зависимости от происхождения от 20 до 25% амилозы и 75-80% амилопектина.

Молекула амилозы образует длинные, неразветвленные, спиральносвернутые цепочки, состоящие из молекул α-глюкозы, взаимно связанных глюкозидными связями в положении α-1,4. Количество глюкозных молекул различно и колеблется от 60 до 600. Амилоза растворима в воде и окрашивается йодным раствором в синий цвет. По Мейеру [1], амилоза под действием β-амилазы солода полностью гидролизуется до мальтозы.

* ( Обозначения α и β относятся к оптической форме образующегося сахара (α-мальтоза или β-мальтоза).)

Декстринирующая α-амилаза. Она является типичным компонентом солода. α-Амилаза активизируется при солодоращении, однако в ячмене Кнеен обнаружил ее только в 1944 г. [3]. Она катализирует расщепление α-1,4 глюкозидных связей. Молекулы обоих компонентов крахмала, т. е. амилозы и амилопектина, при этом неравномерно разрываются внутри; только конечные связи, не гидролизуются. Происходит разжижение и декстринизация проявляющаяся в быстром снижении вязкости раствора (разжижение затора). Разжижение крахмального клейстера является одной из функций солодовой α-амилазы. Представление об участии другого разжижающего фермента (амилофосфатазы) в настоящее время не считается обоснованным. Характерно, что α-амилаза вызывает исключительно быстрое снижение вязкости крахмального клейстера, восстанавливающая способность которого при этом возрастает очень медленно. Синяя йодная реакция крахмального клейстера (т. е. раствора амилопектина) под действием α-амилазы быстро изменяется через красную, бурую да ахроической точки, а именно при низкой восстанавливающей способности.

В естественных средах, т. е. в солодовых экстрактах и заторах, аα-амилаза имеет температурный оптимум 70°С; инактивируется при 80°С. Оптимальная зона pH равна от 5 до 6 с четким максимумом на рН-кривой. Она стабильна в диапазоне pH от S до 9. аα-Амилаза очень чувствительна к повышенной кислотности (является кислотонеустойчивой); инактивируется окислением да pH 3 при 0°С или до pH 4,2-4,3 при 20°С.

Осахаривающая β-амилаза. Она содержится в ячмене и ее объем при соложении (проращивании) сильно возрастает. β-Амилаза обладает высокой способностью катализировать расщепление крахмала до мальтозы. Она не разжижает нерастворимый нативный крахмал и даже крахмальный клейстер.

Из неразветвленных цепочек амилазы β-амилаза отщепляет вторичные α-1,4 глюкозидные связи, а именно от невосстанавливающихся (неальдегидных) концов цепей. Мальтоза постепенно отщепляет от отдельных цепочек по одной молекуле. Расщепление амилопектина происходит также, однако фермент атакует разветвленную молекулу амилопектина одновременно в нескольких пространственных цепочках, а именно в местах разветвления, где находятся связи α-1,6, перед которыми расщепление прекращается.

Вязкость крахмального клейстера под действием α-амилазы снижается медленно, в то время как восстанавливающая способность возрастает равномерно. Йодная окраска переходит из синей очень медленно в фиолетовую, а потом в красную, однако ахроической точки вообще не достигает.

Общее действие α- и β-амилазы. Амилаза (диастаза), содержащаяся в солоде обычных типов и в специальном диастатическом солоде, является природной смесью α- и β-амилазы, в которой β-амилаза количественно преобладает над α-амилазой.

При одновременном действии обеих амилаз гидролиз крахмала намного глубже, чем при самостоятельном действии одного из названных ферментов, и мальтозы при этом получается 75-80%.

Осахаривание амилозы и конечных групп амилопектина β-амилаза начинает с конца цепочек, в то время как α-амилаза атакует молекулы субстрата внутри цепочек.

Низшие и высшие декстрины образуются наряду с мальтозой под действием α-амилазы на амилозу и амилопектин. Высшие декстрины образуются также под действием β-амилазы на амилопектин. Декстрины являются разновидностью эритрогранулозы и α-амилаза разрывает их вплоть до α-1,6 связей, так что образуются новые центры для действия β-амилазы. Тем самым α-амилаза повышает активность β-амилазы. Кроме того, α-амилаза атакует декстрины типа гексозы, образующиеся под действием β-амилазы на амилозу.

Разницу температурного оптимума α- и β-амилазы на практике используют для регулировки взаимодействия обоих ферментов тем, что подбором правильной температуры поддерживают деятельность одного фермента в ущерб другому.

Трансглюкозидазы, скорее негидролизующиеся ферменты, однако механизм катализированных ими реакций подобен механизму гидролаз. В солоде содержатся трансглюкозидазы, фосфорилирующие или фосфорилазы, и нефосфорилирующие, например циклодекстриназа, амиломальтаза и др. Все эти ферменты катализируют перенос сахарных радикалов. Их технологическое значение второстепенное.

Ферменты, расщепляющие белковые вещества

Расщепление белков (протеолиз) катализируют при затира-нии ферменты из группы пептидаз или протеаз (пептид гидролаз, ЕК 34), гидролизующие пептидные связи = СО = NH =. Они делятся на эндопептидазы, или протеиназы (пептид пептидогидролазы, ЕК 3.44) и экзопептидазы или пептидазы (дипептид гидролазы, ЕК 3.4.3).

В заторах субстратами являются остатки белкового вещества ячменя, т. е. лейкозина, эдестина, гордеина и глютелина, частично измененного при соложении (например, коагулированного при сушке) и продукты их расщепления, т. е. альбумозы, пептоны и полипептиды.

Некоторые белковые вещества образуют открытые цепи связанных пептидными связями аминокислот со свободными концевыми аминными группами = NH2 И карбоксильными группами = СООН. Кроме них в молекуле белков могут находиться аминогруппы диаминокарбоновых кислот и карбоксильные группы дикарбоновых кислот. До тех пор пока некоторые белки имеют пептидные цепи, замкнутые в кольца, они не имеют конечных аминных и карбоксильных групп.

Ячмень и солод содержат один фермент из группы эндопептидаз (протеиназ) и не менее двух эксопептидаз (пептидаз). Их гидролизующее действие взаимно дополняется.

Эндопептидаза (протеиназа). Как настоящая протеиназа, ячменная и солодовая эндопептидаза гидролизует внутренние пептидные связи протеинов. Макромолекулы белков при этом расщепляются на меньшие частицы, т. е. полипептиды с меньшей молекулярной массой. Точно так же, как остальные протеиназы, ячменная и солодовая протеиназа действуют активнее на измененные белки, например денатурированные, чем на белки нативные.

По своим свойствам ячменная и солодовая протеиназы относятся к ферментам типа папаина, очень распространенным в растениях. Их оптимальная температура находится между 50-60°С, оптимум pH колеблется от 4,6 до 4,9 в зависимости от субстрата. Протеиназа относительно стабильна при высоких температурах и тем самым отличается от пептидаз. Наиболее стабильна она в изоэлектрической области, т. е. при pH от 4,4 до 4,6. По Кольбаху, активность фермента в водной среде снижается уже спустя 1 ч при 30°С; при 70°С через 1 ч он полностью разрушается.

Гидролиз, катализированный солодовой протеиназой, протекает постепенно. Между белками и полипептидами было выделено несколько промежуточных продуктов, из которых важнейшими являются пептоны, называемые также протеозы, альбумозы и т. д. Это высшие продукты расщепления коллоидного характера, которые имеют типичные свойства белков. Они осаждаются в кислой среде танином, однако при биуретовой реакции (т. е. реакции с сернокислой медью в щелочном растворе белка) окрашиваются в розовый цвет вместо фиолетового. При кипячении пептоны не коагулируют. Растворы имеют активную поверхность, они вязки и при встряхивании легко образуют пену.

Последнюю степень расщепления белков, катализированных солодовой протеиназой, представляют полипептиды. Они только отчасти являются высокомолекулярными веществами с коллоидными свойствами. Нормально полипептиды образуют молекулярные растворы, легко диффундирующие. Как правило, они не реагируют как белки и не осаждаются танином. Полипептиды являются субстратом пептидаз, которые дополняют действие протеиназы.

Экзопептидазы (пептидазы). Комплекс пептидаз представлен в солоде двумя ферментами, однако допускается наличие и других.

Пептидазы катализируют отщепление терминальных остатков аминокислот от пептидов, причем сначала образуются дипептиды и, наконец, аминокислоты. Пептидазы характеризуются субстратной специфичностью. Среди них имеются и дипептидазы, гидролизующие только дипептиды, и полипептидазы, гидролизующие высшие пептиды, содержащие в молекуле не менее трех аминокислот. В группе пептидаз различаются аминополипептидазы, активность которых обусловливает присутствие свободной аминогруппы, и карбоксипептидазы, требующие присутствия свободной карбоксильной группы.

Все солодовые пептидазы имеют оптимальный pH в слабощелочной области между pH 7 и 8 и оптимальную температуру около 40°С. При pH 6, при котором протекает протеолиз в прорастающем ячмене, активность пептидаз ярко выражена, в то время как при pH 4,5-5,0 (оптимум протеиназ) пептидазы инактивируются. В водных растворах активность пептидаз снижается уже при 50°С, при 60°С пептидазы быстро инактивируются.

Ферменты, расщепляющие сложные эфиры фосфорной кислоты

При затирании большое значение придается ферментам катализирующим гидролиз сложных эфиров фосфорной кислоты.

Отщепление фосфорной кислоты технически очень важно из-за ее непосредственного влияния на кислотность и буферную систему пивоваренных полупродуктов и пива.

Природным субстратом солодовых фосфоэстераз являются сложные эфиры фосфорной кислоты, из которых в солоде преобладает фитин. Это смесь кзльцисвых и магниевых солей фитиновой кислоты, которая является гексафосфорным сложным эфиром инозита. В фосфатидах фосфор связан как сложный эфир с глицерином, в то время как нуклеотиды содержат фосфорный эфир рибозы, связанный с пиримидиновым или пуриновым основанием.

Важнейшей солодовой фосфоэстеразой является фитаза (мезоинозитгексафосфатфосфогидролаза, ЕК 3.1.3.8). Она очень активна. От фитина фитаза постепенно отщепляет фосфорную кислоту. При этом образуются различные фосфорные сложные эфиры инозита, которые в конце концов дают инозит и неорганический фосфат. Наряду с фитазой были описаны также сахарофосфорилаза, нуклеотидпирофосфатаза, глицерофосфатаза и пи- рофосфатаза.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *