какие фигуры называются плоскими

Плоские геометрические фигуры: свойства и основные формулы

какие фигуры называются плоскими. Смотреть фото какие фигуры называются плоскими. Смотреть картинку какие фигуры называются плоскими. Картинка про какие фигуры называются плоскими. Фото какие фигуры называются плоскимиВ статье описываются геометрические фигуры: определение, основные свойства и формулы.

Плоские геометрические фигуры:

Четырехугольник (общее для всех четырехугольников)
Квадрат
Прямоугольник
Параллелограмм
Трапеция
Треугольник
Окружность

Геометрические фигуры — это любое сочетание точек, линий и поверхностей. Геометрические фигуры разделяются на плоские и объемные.

Плоские геометрические фигуры — это фигуры, все точки которых лежат на одной плоскости. Объемные геометрические фигуры — это фигуры, не все точки которых лежат на одной плоскости.

Четырёхугольник

Четырёхугольник — это геометрическая фигура (многоугольник), состоящая из четырёх точек (вершин) и четырёх отрезков (сторон), которые последовательно соединяют вершины. При этом никакие три точки не лежат на одной прямой.

Основные свойства:

В четырёхугольник можно вписать окружность, если суммы его противолежащих сторон равны. Центр вписанной в четырёхугольник окружности является точкой пересечения биссектрис всех четырёх углов этого четырёхугольника.

Четырёхугольник можно описать окружностью, если сумма его противолежащих углов равна 180°.Центр описанной около четырёхугольника окружности является точкой пересечения всех четырёх серединных перпендикуляров сторон этого четырёхугольника.

Квадрат

Квадрат — правильный четырёхугольник, то есть четырёхугольник, у которого все углы равны и все стороны равны.

Основные формулы:

Периметр: P=4a, где P-периметр, a-сторона
Площадь: S=a 2 или S=d 2 /2
Сторона и диагональ связаны соотношениями: a=d/√2, d=a√2
Радиус описанной окружности: R=d или R=a/√(2)
Радиус вписанной окружности: r=a/2

какие фигуры называются плоскими. Смотреть фото какие фигуры называются плоскими. Смотреть картинку какие фигуры называются плоскими. Картинка про какие фигуры называются плоскими. Фото какие фигуры называются плоскимигде a-сторона, d-диагональ, P-периметр, S-площадь
*Корень квадратный вычисляется из всего, что стоит в скобках после знака √, например, √(2) – корень квадратный из 2.

Свойства:

Прямоугольник

Прямоугольник — четырехугольник, у которого все углы прямые.

Основные формулы:

Периметр: P=(a+b)*2
Площадь по сторонам: S = a*b
Площадь по диагонали и углу между ними: S = d²* sin γ. / 2
Стороны и диагональ связаны соотношением: d=√(a 2 +b 2 )/2 (теорема Пифагора)
Радиус описанной окружности: R= √(a 2 +b 2 )/2 (теорема Пифагора)

какие фигуры называются плоскими. Смотреть фото какие фигуры называются плоскими. Смотреть картинку какие фигуры называются плоскими. Картинка про какие фигуры называются плоскими. Фото какие фигуры называются плоскимигде a, b — длины сторон прямоугольника, d-диагональ, P-периметр, S-площадь
γ угол между диагоналями
*Корень квадратный вычисляется из всего, что стоит в скобках после знака √, например, √(a 2 +b 2 ) – корень квадратный из (a 2 +b 2 ).

Свойства:

Параллелограмм

Параллелограмм — четырёхугольник, у которого противоположные стороны попарно параллельны, то есть лежат на параллельных прямых.

Определения:

Высота параллелограмма — это перпендикуляр, проведённый из вершины параллелограмма к противоположной стороне.

Основные формулы:

Стороны и диагональ связаны соотношением: (d1) 2 +(d2) 2 =(a 2 +b 2 )*2
Периметр: P=(a+b)*2
Площадь по стороне и высоте: S = a*h
S (Площадь) по двум сторонам и углу между ними: S=a*b*sin α
S (Площадь) по двум диагоналям и углу между ними: S=(d1*d2)/2*sin γ

какие фигуры называются плоскими. Смотреть фото какие фигуры называются плоскими. Смотреть картинку какие фигуры называются плоскими. Картинка про какие фигуры называются плоскими. Фото какие фигуры называются плоскимигде a, b — длины сторон, d1, d2 –диагонали, P-периметр, S-площадь,
h-высота, проведенная к противоположной стороне
α — угол между сторонами параллелограмма,
γ — угол между диагоналями параллелограмма (острый).

Свойства:

Ромб

Ромб — это параллелограмм, у которого все стороны равны.

Основные формулы:

Периметр: P=4*a
Площадь по стороне и высоте: S=a*h
Площадь по диагоналям: S = (d1*d2)/2
Радиус окружности, вписанной в ромб: r=h/2 или r =(d1*d2)/4a
Площадь по стороне и радиусу вписанной окружности: S=2*a*r
Площадь по стороне и углу: S = a 2 · sin α

Свойства:

Трапеция

Трапеция — четырёхугольник, у которого только две противолежащие стороны параллельны.

Определения:

Основные формулы:

Периметр: P=a+b+c+d
Площадь определить: S=h*(a+b)/2
Стороны и диагональ равнобокой трапеции: d² = ab+c²
Радиус вписанной окружности: r = h/2

Свойства:

В трапецию можно вписать окружность, если сумма её основ равна сумме боковых сторон (a+b=c+d). Центром вписанной в трапецию окружности является точка пересечения биссектрис внутренних углов трапеции.

Треугольник

Треугольник – это геометрическая фигура, которая состоит из трёх точек, не лежащих на одной прямой (вершин треугольника) и трёх отрезков с концами в этих точках (сторон треугольника).

Определения:

Основные формулы:

Периметр: P=a+b+c
Площадь по стороне и высоте: S=(a*h)/2
Площадь: по сторонам и углу между ними: S=(a*b)/2* sin γ
по трем сторонам и радиусу описанной окружности: S=(a*b*c)/4R
по трем сторонам и радиусу вписанной окружности: S=(a+b+c)/2*r
Площадь прямоугольного треугольника: S=(a*b)/2
Стороны прямоугольного треугольника: c 2 =a 2 +b 2 (Теорема Пифагора)

Свойства:

Окружность

Окружность — замкнутая плоская кривая, все точки которой одинаково удалены от данной точки (центра окружности), которая лежит в той же плоскости, что и кривая.

Определения:

Основные формулы:

Длина окружности: L = 2πR
Площадь круга: S = π*r 2 или S = π*d 2 /4

какие фигуры называются плоскими. Смотреть фото какие фигуры называются плоскими. Смотреть картинку какие фигуры называются плоскими. Картинка про какие фигуры называются плоскими. Фото какие фигуры называются плоскимигде π = 3,14 (3,1415926535) – величина постоянная,
где r-радиус, d –диаметр, L – длина окружности, S-площадь.

Источник

§ 1. Пространственные фигуры

1. Какие геометрические фигуры называются плоскими; пространственными?

Плоскими называются фигуры, точки которых принадлежат одной плоскости. Пространственными называются фигуры, точки которых принадлежат нескольким плоскостям.

2. Какое тело называют многогранником?

Многогранником называют тело, ограниченное плоскими многоугольниками.

3. Что называют гранями многогранника; рёбрами многогранника; вершинами многогранника?

Гранями многогранника называют плоскости, ограниченные сторонами многоугольников, из которых состоит многогранник.

Вершинами многогранника называют вершины многоугольников, из которых состоит многогранник.

Рёбрами многогранника называют стороны многоугольников, из которых состоит многогранник.

4. Какой многогранник называется призмой?

Призмой называется многогранник, две грани которого — равные n-угольники, а остальные n граней — параллелограммы.

5. Что называют основаниями призмы; боковыми гранями призмы; боковыми рёбрами призмы?

Основаниями призмы называют равные грани-многоугольники этой призмы.

Боковыми гранями призмы называют параллелограммы, из которых состоит призма.

Боковыми рёбрами призмы называют рёбра боковых граней, не принадлежащие основаниям.

6. Какая призма называется прямой призмой; наклонной призмой?

Прямой называется призма, боковые грани которой являются прямоугольниками.

Наклонной называется призма, боковые рёбра которой не перпендикулярны рёбрам основания призмы.

7. Какая призма называется правильной призмой?

Правильной называется прямая призма, основания которой являются правильными многоугольниками.

8. Какая призма называется параллелепипедом; прямым параллелепипедом?

Параллелепипедом называется призма, основаниями которой являются параллелограммы.

Прямым параллелепипедом называется параллелепипед, боковые грани которого являются прямоугольниками.

9. Какой прямой параллелепипед называется прямоугольным параллелепипедом?

Прямоугольным параллелепипедом называется прямой параллелепипед, основания которого являются прямоугольниками.

10. Какие рёбра прямоугольного параллелепипеда называются его измерениями?

Измерениями прямоугольного параллелепипеда называются рёбра, которые сходятся в одной вершине.

11. Какой многогранник называется пирамидой?

Пирамидой называется многогранник, одна грань которого — многоугольник, а остальные — треугольники с общей вершиной.

12. Что называют основанием пирамиды; боковыми гранями пирамиды; вершиной пирамиды?

Основанием пирамиды называют её многоугольную грань.

Боковыми гранями пирамиды называют её треугольные грани.

Вершиной пирамиды называют общую вершину её боковых граней.

13. Какая пирамида называется правильной пирамидой?

Правильной называется пирамида, основание которой — правильный многоугольник, а отрезок, соединяющий её вершину с центром основания, перпендикулярен любой прямой, проведённой в плоскости основания через этот центр.

14. Какой отрезок называется апофемой правильной пирамиды?

Апофемой правильной пирамиды называют высоту боковой грани пирамиды, опущенную из вершины пирамиды.

15. Сформулируйте свойство боковых рёбер правильной пирамиды; боковых граней правильной пирамиды; апофем правильной пирамиды.

16. Чему равна площадь боковой поверхности правильной пирамиды?

Площадь боковой поверхности правильной пирамиды равна произведению полупериметра её основания и апофемы.

17. Какое тело называется цилиндром?

Цилиндром называется тело, которое получено вращением прямоугольника вокруг одной из его сторон.

18. Какое тело называется конусом?

Конусом называется тело, которое получено вращением прямоугольного треугольника вокруг одного из его катетов.

19. Какое тело называется шаром?

Шаром называется тело, которое получено вращением круга вокруг своего диаметра.

20. Верно ли, что:

а) количество вершин любой призмы — число чётное.

Верно. Если дана призма с n-угольником в основании, то количество вершин равно n + n = 2n. А 2n делится на 2.

б) количество рёбер любой призмы — число, кратное трём?

Верно. Если дана призма с n-угольником в основании, то количество ребер будет равно сумме n ребер нижнего основания, n ребер верхнего основания и n боковых ребер. Таким образом, количество ребёр равно n + n + n = 3n. А 3n делится на 3.

21. Найдите количество диагоналей семиугольной призмы.

Из одной вершины можно провести n – 3 диагоналей. Количество диагоналей будет равно n × (n – 3) = 7 × (7 – 3) = 28.

22. Существует ли пирамида, которая имеет 11 рёбер? Обоснуйте свой ответ.

Такой пирамиды не существует, поскольку пирамида всегда имеет чётное количество рёбер, т.к. количество рёбер n-угольной пирамиды равно 2n, а 2n делится на 2.

Источник

Какие фигуры называются плоскими

Введение

Геометрия – одна из важнейших компонент математического образования, необходимая для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, а также для эстетического воспитания. Изучение геометрии вносит вклад в развитие логического мышления, формирование навыков доказательства.

В курсе геометрии 7 класса систематизируются знания о простейших геометрических фигурах и их свойствах; вводится понятие равенства фигур; вырабатывается умение доказывать равенство треугольников с помощью изученных признаков; вводится класс задач на построение с помощью циркуля и линейки; вводится одно из важнейших понятий – понятие о параллельных прямых; рассматриваются новые интересные и важные свойства треугольников; рассматривается одна из важнейших теорем в геометрии – теорема о сумме углов треугольника, которая позволяет дать классификацию треугольников по углам (остроугольный, прямоугольный, тупоугольный).

На протяжении занятий, особенно при переходе от одной части занятия к другой, смене деятельности встает вопрос о поддержании интереса к занятиям. Таким образом, актуальным становится вопрос о применении на занятиях по геометрии задач, в которых есть условие проблемной ситуации и элементы творчества [1]. Таким образом, целью данного исследования является систематизация заданий геометрического содержания с элементами творчества и проблемных ситуаций.

Объект исследования: Задачи по геометрии с элементами творчества, занимательности и проблемных ситуаций.

Задачи исследования: Проанализировать существующие задачи по геометрии, направленные на развитие логики, воображения и творческого мышления. Показать, как занимательными приемами можно развить интерес к предмету.

Теоретическая и практическая значимость исследования состоит в том, что собранный материал может быть использован в процессе дополнительных занятий по геометрии, а именно на олимпиадах и конкурсах по геометрии.

Объем и структура исследования:

Исследование состоит из введения, двух глав, заключения, библиографического списка, содержит 14 страниц основного машинописного текста, 1 таблицу, 10 рисунков.

Глава 1. ПЛОСКИЕ ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ. ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

1.1. Основные геометрические фигуры в архитектуре зданий и сооружений

В окружающем нас мире существует множество материальных предметов разных форм и размеров: жилые дома, детали машин, книги, украшения, игрушки и т. д.

В геометрии вместо слова предмет говорят геометрическая фигура, при этом разделяя геометрические фигуры на плоские и пространственные. В данной работе будет рассмотрен один из интереснейших разделов геометрии – планиметрия, в которой рассматриваются только плоские фигуры. Планиметрия (от лат. planum — «плоскость», др.-греч. μετρεω — «измеряю») — раздел евклидовой геометрии, изучающий двумерные (одноплоскостные) фигуры, то есть фигуры, которые можно расположить в пределах одной плоскости. Плоской геометрической фигурой называется такая, все точки которой лежат на одной плоскости. Представление о такой фигуре даёт любой рисунок, сделанный на листе бумаги.

Но прежде, чем рассматривать плоские фигуры, необходимо познакомиться с простыми, но очень важными фигурами, без которых плоские фигуры просто не могут существовать.

Самой простой геометрической фигурой является точка. Это одна из главных фигур геометрии. Она очень маленькая, но ее всегда используют для построения различных форм на плоскости. Точка – это основная фигура для абсолютно всех построений, даже самой высокой сложности. С точки зрения математики точка — это абстрактный пространственный объект, не обладающий такими характеристиками, как площадь, объем, но при этом остающийся фундаментальным понятием в геометрии.

Прямая— одно из фундаментальных понятий геометрии.При систематическом изложении геометрии прямая линия обычно принимается за одно из исходных понятий, которое лишь косвенным образом определяется аксиомами геометрии (евклидовой). Если основой построения геометрии служит понятие расстояния между двумя точками пространства, то прямую линию можно определить, как линию, путь вдоль которой равен расстоянию между двумя точками.

Прямые в пространстве могут занимать различные положения, рассмотрим некоторые из них и приведем примеры, встречающиеся в архитектурном облике зданий и сооружений (табл. 1):

Параллельные прямые

Свойства параллельных прямых

Примеры в архитектуре зданий и сооружений

Если прямые параллельны, то их одноименные проекции параллельны:

Ессентуки, здание грязелечебницы (фото автора)

Пересекающиеся прямые

Свойства пересекающихся прямых

Примеры в архитектуре зданий и сооружений

Пересекающиеся прямые имеют общую точку, то есть точки пересечения их одноименных проекций лежат на общей линии связи:

Здания «горы» на Тайване

Скрещивающиеся прямые

Свойства скрещивающихся прямых

Примеры в архитектуре зданий и сооружений

Прямые, не лежащие в одной плоскости и не параллельные между собой, являются скрещивающимися.

, ноне является общей линией связи.

Если пересекающиеся и параллельные прямые лежат в одной плоскости, то скрещивающиеся прямые лежат в двух параллельных плоскостях.

Вилла Мадама под Римом

1.2. Плоские геометрические фигуры. Свойства и определения

Наблюдая за формами растений и животных, гор и извилинами рек, за особенностями ландшафта и далекими планетами, человек заимствовал у природы ее правильные формы, размеры и свойства. Материальные потребности побуждали человека строить жилища, изготавливать орудия труда и охоты, лепить из глины посуду и прочее. Все это постепенно способствовало тому, что человек пришел к осознанию основных геометрических понятий.

Четырехугольники:

Параллелограмм (др.-греч. παραλληλόγραμμον от παράλληλος — параллельный и γραμμή — черта, линия) — это четырёхугольник, у которого противоположные стороны попарно параллельны, то есть лежат на параллельных прямых.

Признаки параллелограмма:

Четырёхугольник является параллелограммом, если выполняется одно из следующих условий: 1. Если в четырёхугольнике противоположные стороны попарно равны, то четырёхугольник – параллелограмм. 2. Если в четырёхугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырёхугольник – параллелограмм. 3. Если в четырёхугольнике две стороны равны и параллельны, то этот четырёхугольник – параллелограмм.

Параллелограмм, у которого все углы прямые, называется прямоугольником.

Параллелограмм, у которого все стороны равны, называется ромбом.

Трапеция— это четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны. Так же, трапецией называется четырехугольник, у которого одна пара противоположных сторон параллельна, и стороны не равны между собой.

Треугольник — это простейшая геометрическая фигура, образованная тремя отрезками, которые соединяют три точки, не лежащие на одной прямой. Указанные три точки называются вершинами треугольника, а отрезки — сторонами треугольника. Именно в силу своей простоты треугольник явился основой многих измерений. Землемеры при своих вычислениях площадей земельных участков и астрономы при нахождении расстояний до планет и звезд используют свойства треугольников. Так возникла наука тригонометрия — наука об измерении треугольников, о выражении сторон через его углы. Через площадь треугольника выражается площадь любого многоугольника: достаточно разбить этот многоугольник на треугольники, вычислить их площади и сложить результаты. Правда, верную формулу для площади треугольника удалось найти не сразу.

Особенно активно свойства треугольника исследовались в XV-XVI веках. Вот одна из красивейших теорем того времени, принадлежащая Леонарду Эйлеру:

«Середины сторон треугольника, основания его высот и середины отрезков высот от вершины до точки их пересечения, лежат, на одной окружности». Эта окружность получила название «окружности девяти точек». Ее центр оказался в середине отрезка, соединяющего точку пересечения высот с центром описанной окружности.

Рис. 1.Окружность девяти точек

Огромное количество работ по геометрии треугольника, проведенное в XY-XIX веках, создало впечатление, что о треугольнике уже известно все.

Тем удивительнее было открытие, сделанное американским математиком Франком Морли. Он доказал, что если в треугольнике провести через вершины лучи, делящие углы на три равные части, то точки пересечения смежных трисектрис углов являются вершинами равностороннего треугольника (1899).

Рис. 2.Открытие Франка Морли

Многоуго́льник — это геометрическая фигура, обычно определяемая как замкнутая ломаная.

Круг — геометрическое место точек плоскости, расстояние от которых до заданной точки, называемой центром круга, не превышает заданного неотрицательного числа, называемого радиусом этого круга. Если радиус равен нулю, то круг вырождается в точку.

Существует большое количество геометрических фигур, все они отличаются параметрами и свойствами, порой удивляя своими формами.

Чтобы лучше запомнить и отличать плоские фигуры по свойствам и признакам, я придумал геометрическую сказку, которую хотел бы представит вашему вниманию в следующем параграфе.

Глава 2. ЗАДАЧИ-ГОЛОВОЛОМКИ ИЗ ПЛОСКИХ ГЕОМЕТРИЧЕСКИХ ФИГУР

2.1.Головоломки на построение сложной фигуры из набора плоских геометрических элементов.

Изучив плоские фигуры, я задумался, а существуют какие-нибудь интересные задачи с плоскими фигурами, которые можно использовать в качестве заданий-игр или заданий-головоломок. И первой задачей, которую я нашел, была головоломка «Танграм».

Для начала необходимо начертить квадрат 10 х10 и разделить его на семь частей: пять треугольников 1-5, квадрат 6 и параллелограмм 7. Суть головоломки состоит в том, чтобы, используя все семь частей, сложить фигурки, показанные на рис.3.

Рис.3. Элементы игры «Танграм» и геометрические фигуры

Рис.4. Задания «Танграм»

Особенно интересно составлять из плоских фигур «образные» многоугольники, зная лишь очертания предметов (рис.4). Несколько таких заданий-очертаний я придумал сам и показал эти задания своим одноклассникам, которые с удовольствием принялись разгадывать задания и составили много интересных фигур-многогранников, похожих на очертания предметов окружающего нас мира.

Для развития воображения можно использовать и такие формы занимательных головоломок, как задачи на разрезание и воспроизведение заданных фигур.

Пример 2. Задачи на разрезание (паркетирование) могут показаться, на первый взгляд, весьма многообразными. Однако в большинстве в них используется всего лишь несколько основных типов разрезаний (как правило, те, с помощью которых из одного параллелограмма можно получить другой).

Рассмотрим некоторые приёмы разрезаний. При этом разрезанные фигуры будем называть многоугольниками.

Рис. 5. Приёмы разрезаний

На рис.5 представлены геометрические фигуры, из которых можно собрать различные орнаментальные композиции и составить орнамент своими руками.

Пример 3. Еще одна интересная задача, которую можно самостоятельно придумать и обмениваться с другими учениками, при этом кто больше соберет разрезанные фигуры, тот объявляется победителем. Задач такого типа может быть достаточно много. Для кодирования можно взять все существующие геометрические фигуры, которые разрезаются на три или четыре части[1].

Рис.6.Примеры задач на разрезание:

2.2.Равновеликие и равносоставленные фигуры

Рассмотрим еще один интересный прием на разрезание плоских фигур, где основными «героями» разрезаний будут многоугольники. При вычислении площадей многоугольников используется простой прием, называемый методом разбиения.

На рисунке 6 показано как разбить многоугольники на одинаковое число соответственно равных частей (равные части отмечены одинаковыми цифрами). Эти два многоугольника являются равносоставленными[2].

Рис.6. Равносоставленные многоугольники

Вообще многоугольники называются равносоставленными, если, определенным образом разрезав многоугольник F на конечное число частей, можно, располагая эти части иначе, составить из них многоугольник Н.

Отсюда вытекает следующая теорема: равносоставленные многоугольники имеют одинаковую площадь, поэтому они будут считаться равновеликими.

На примере равносоставленных многоугольников можно рассмотреть и такое интересное разрезание, как преобразование «греческого креста» в квадрат (рис.7).

Рис.7. Преобразование «греческого креста»

В случае мозаики (паркета), составленной из греческих крестов, параллелограмм периодов представляет собой квадрат. Мы можем решить задачу, накладывая мозаику, составленную из квадратов, на мозаику, образованную с помощью крестов, так, чтобы при этом конгруэнтные точки одной мозаики совпали с конгруэнтными точками другой (рис.8).

Рис.8. Паркет, собранный из греческого креста

Еще один пример равносоставленных фигур можно рассмотреть на примере параллелограмма. Например, параллелограмм равносоставлен с прямоугольником (рис.9).

Зная формулу площади прямоугольника, находим, что площадь параллелограмма равна произведению длин его стороны и соответствующей высоты.

Рис.9. Равносоставленные параллелограмм и прямоугольник

Этот пример иллюстрирует метод разбиения, состоящий в том, что для вычисления площади многоугольника пытаются разбить его на конечное число частей таким образом, чтобы из этих частей можно было составить более простой многоугольник, площадь которого нам уже известна.

Еще одну интересную задачу на равносотавленный треугольник и параллелограмм, можно использовапть для вычисления площадей многоугольников, способ этот был известен еще Евклиду, который жил более 2000 лет назад.

Рис.10. Равносоставленные треугольник и параллелограмм

Например, треугольник равносоставлен с параллелограммом, имеющим то же основание и вдвое меньшую высоту. Из этого положения легко выводится формула площади треугольника.

Отметим, что для приведенной выше теоремы справедлива и обратная теорема: если два многоугольника равновелики, то они равносоставлены.

Эту теорему, доказанную в первой половине XIX в. венгерским математиком Ф.Бойяи и немецким офицером и любителем математики П.Гервином, можно представить и в таком виде: если имеется торт в форме многоугольника и многоугольная коробка, совершенно другой формы, но той же площади, то можно так разрезать торт на конечное число кусков (не переворачивая их кремом вниз), что их удастся уложить в эту коробку.

Заключение

В заключении отмечу, что задач на плоские фигуры достаточно представлено в различных источниках, но интерес представили для меня те, на основании которых мне пришлось придумывать свои задачи-головоломки.

Ведь решая такие задачи, можно не просто накопить жизненный опыт, но и приобрести новые знания и умения.

В головоломках при построении действий-ходов используя повороты, сдвиги, переносы на плоскости или их композиции, у меня получились самостоятельно созданные новые образы, например, фигурки-многогранники из игры «Танграм».

Библиографический список

1. Павлова, Л.В. Нетрадиционные подходы к обучению черчению: учебное пособие/ Л.В. Павлова. – Нижний Новгород: Изд-во НГТУ, 2002. – 73 с.

2. Энциклопедический словарь юного математика /Сост. А.П. Савин. – М.: Педагогика, 1985. – 352 с.

Анкета-опросник для одноклассников

1. Знаете ли вы, что такое головоломка «Танграм»?

2. Что такое «греческий крест»?

3. Было бы вам интересно узнать, что такое «Танграм»?

4. Было бы вам интересно узнать, что такое «греческий крест»?

Было опрошено 22 ученика 8 класса. Результаты: 22 ученика не знают, что такое «Танграм» и «греческий крест». 20-ти ученикам было бы интересно узнать о том, как с помощью головоломки «Танграм», состоящая из семи плоских фигур, получить более сложную фигуру. Результаты опроса обобщены на диаграмме.

Элементы игры «Танграм» и геометрические фигуры

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *