какие фигуры относятся к телам вращения
Тела вращения
Содержание
Примеры тел вращения
За площадь боковой поверхности цилиндра принимается площадь его развертки: Sбок = 2πrh.
За площадь боковой поверхности конуса принимается площадь ее развертки: Sбок = πrl Площадь полной поверхности конуса: Sкон = πr(l+ r)
При вращении контуров фигур возникает поверхность вращения (например, сфера, образованная окружностью), в то время как при вращении заполненных контуров возникают тела (как шар, образованный кругом).
Объём и площадь поверхности тел вращения
Объём и площадь поверхности тел вращения можно узнать при помощи теорем Гульдина-Паппа.
Площадь поверхности, образуемой при вращении линии, лежащей в плоскости целиком по одну сторону от оси вращения, равна произведению длины линии на длину окружности, пробегаемой центром масс этой линии.
Объём тела, образуемого при вращении фигуры, лежащей в плоскости целиком по одну сторону от оси вращения, равен произведению площади фигуры на длину окружности, пробегаемой центром масс этой фигуры.
Литература
А.В. Погорелов. «Геометрия. 10-11 класс» §21.Тела вращения. — 2011
Примечания
Полезное
Смотреть что такое «Тела вращения» в других словарях:
деталь с закрытым уступом – тела вращения — Часть детали, поверхность которой ограничена с обеих сторон поверхностями вращения, имеющими больший диаметр. Наличие закрытых уступов не влияет на определение ступенчатости наружной поверхности. Проточки для выхода инструмента не считается… … Справочник технического переводчика
оболочка, имеющая форму тела вращения — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN shell of revolution … Справочник технического переводчика
тонкого тела теория — Обтекание тонкого тела при отличном от нуля угле атаки. тонкого тела теория теория пространственного безвихревого течения идеальной жидкости около тонких тел [тела, у которых поперечный размер l (толщина, размах) мал по сравнению с… … Энциклопедия «Авиация»
тонкого тела теория — Обтекание тонкого тела при отличном от нуля угле атаки. тонкого тела теория теория пространственного безвихревого течения идеальной жидкости около тонких тел [тела, у которых поперечный размер l (толщина, размах) мал по сравнению с… … Энциклопедия «Авиация»
Тонкого тела теория — теория пространственного безвихревого течения идеальной жидкости около тонких тел (тела, у которых поперечный размер l (толщина, размах) мал по сравнению с продольным размером L: (τ) = l/L … Энциклопедия техники
Частота вращения — Угловая скорость (синяя стрелка) в одну единицу по часовой стрелке Угловая скорость (синяя стрелка) в полторы единицы по часовой стрелке Угловая скорость (синяя стрелка) в одну единицу против часовой стрелки Уг … Википедия
ФИЗИКА ТВЕРДОГО ТЕЛА — раздел физики, изучающий структуру и свойства твердых тел. Научные данные о микроструктуре твердых веществ и о физических и химических свойствах составляющих их атомов необходимы для разработки новых материалов и технических устройств. Физика… … Энциклопедия Кольера
ПАДЕНИЕ ТЕЛА — движение тела в поле тяготения Земли с нач. скоростью, равной нулю. П. т. происходит под действием силы тяготения, зависящей от расстояния r до центра Земли, и силы сопротивления среды (воздуха или воды), к рая зависит от скорости v движения. На… … Физическая энциклопедия
ось вращения — прямая, неподвижная относительно вращающегося вокруг неё твердого тела. Для твердого тела, имеющего неподвижную точку (например, для детского волчка), прямая, проходящая через эту точку, поворотом вокруг которой тело перемещается из данного… … Энциклопедический словарь
Падение тела — движение тела в поле тяготения Земли с начальной скоростью, равной нулю. П. т. происходит под действием силы тяготения, зависящей от расстояния r до центра Земли, и силы сопротивления среды (воздуха или воды), которая зависит от скорости… … Большая советская энциклопедия
Тела вращения
Тела вращения — это объёмные тела, возникающие при вращении плоской геометрической фигуры, ограниченной кривой, вокруг оси, лежащей в той же плоскости. Шар — образован полукругом, вращающимся вокруг диаметра разреза.
Содержание:
Понятие о поверхностях и телах вращения
Если многоугольник ABCDE вращается вокруг прямой АВ (рис. 2.257), то каждая его точка, не принадлежащая прямой АВ, описывает окружность с центром на этой прямой. Весь многоугольник ABCDE при этом описывает некоторое тело вращения (рис. 2.258); прямая АВ — ось этого тела.
Плоскость, проходящая через ось тела вращения, является его плоскостью симметрии. Таких плоскостей каждое тело вращения имеет бесконечно много.
Любая плоскость, проходящая через ось тела вращения, пересекает это тело. Полученное сечение называют осевым сечением. В частности, осевое сечение тела вращения может состоять из двух изолированных друг от друга плоских фигур, симметричных относительно оси (рис. 2.259). Все осевые сечения тела вращения равны.
Чтобы задать тело вращения, достаточно указать его ось и фигуру, вращением которой получено данное тело. Описывая такое тело словесно, вместо оси иногда указывают принадлежащий ей отрезок. Например, вместо «тело, образованное вращением треугольника вокруг оси, содержащей его сторону» говорят и короче: «тело, образованное вращением треугольника вокруг его стороны».
Цилиндр
Можно дать определение цилиндра.
Определение. Цилиндром (точнее, круговым цилиндром) называют тело, которое состоит из двух кругов, совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих кругов. Круги называют основаниями цилиндра, а отрезки, соединяющие соответствующие точки окружностей кругов — образующими цилиндра (рис. 2.260, 2.261).
Можно доказать, что основания цилиндра равны и лежат в параллельных плоскостях, что у цилиндра образующие параллельны и равны. Поверхность цилиндра состоит из оснований и боковой поверхности. Боковая поверхность составлена из образующих.
Определение. Цилиндр называют прямым, если его образующие перпендикулярны плоскостям оснований.
На рисунке 2.261 изображен наклонный цилиндр, а на рис. 2.260 — прямой. В школьном курсе, как правило, рассматривают только прямые цилиндры, называя их для краткости просто цилиндрами.
Цилиндр можно рассматривать как тело, полученное при вращении прямоугольника вокруг одной из его сторон как оси (рис. 2.262).
Радиусом цилиндра называют радиус его основания. Высотой цилиндра называют расстояние между плоскостями оснований. Осью цилиндра называют прямую, проходящую через центры оснований. Ось цилиндра параллельна образующим.
Сечение цилиндра плоскостью, проходящей через ось цилиндра, называют осевым сечением цилиндра (рис. 2.263). Именно через такое сечение обозначают цилиндр. Плоскость, проходящая через образующую прямого цилиндра и перпендикулярная осевому сечению, проведенному через эту образующую, называется касательной плоскостью цилиндра (рис. 2.264).
Плоскость, перпендикулярная оси цилиндра, пересекает его боковую поверхность по окружности, равной окружности основания.
На рисунке 2.265 изображено сечение цилиндра плоскостью, параллельной его оси. Оно представляет собой прямоугольник.
Если цилиндр с радиусом основания
разрезать по образующей
(рис. 2.266) и развернуть на плоскости, получится прямоугольник, стороны которого — спрямленная окружность основания
и образующая
— развертка боковой поверхности цилиндра. Чтобы получить развертку полной поверхности, надо присоединить два круга — основания цилиндра (рис. 2.267).
Призма, вписанная в цилиндр и описанная около него
При решении геометрических задач часто приходится рассматривать комбинации многогранников и цилиндров, в частности, призм, вписанных в цилиндр и описанных около цилиндра.
Определение. Призмой, вписанной в цилиндр, называют такую призму, основания которой — равные многоугольники, вписанные в основания цилиндра. Ее боковые ребра являются образующими цилиндра (рис. 2.268).
Определение. Призму называют описанной около цилиндра, если ее основания — равные многоугольники, описанные около основания цилиндра. Плоскости ее граней касаются боковой поверхности цилиндра (рис. 2.269).
Пример:
В цилиндр вписана правильная шестиугольная призма. Найдите угол между диагональю ее боковой грани и осью цилиндра, если радиус основания равен высоте цилиндра.
Решение:
Из условия задачи имеем (рис. 2.270):
1. В цилиндр вписана правильная шестиугольная призма.
2. Радиус основания цилиндра равен высоте призмы
3. Требуется найти угол между
4. (1, свойства правильного шестиугольника, вписанного в окружность).
5. — квадрат (1, 4, определение квадрата).
Надо найти угол между Как это сделать? Лучше всего рассмотреть осевое сечение призмы, изображенное на рисунке 2.271. Задача сводится к нахождению угла
.
6. = 45° (найдите самостоятельно).
Конус
Определение. Конусом (точнее, круговым конусом) называют тело, которое состоит из круга — основания конуса, точки, не лежащей в плоскости этого круга, — вершины конуса и всех отрезков, соединяющих вершину конуса с точками основания. Отрезки, соединяющие вершину конуса с точками окружности основания, называют образующими конуса (рис. 2.272).
Поверхность конуса состоит из основания и боковой поверхности.
Определение. Конус называется прямым, если прямая, соединяющая вершину конуса с центром основания, перпендикулярна плоскости основания (рис. 2.272).
На рисунке 2.273 изображен наклонный конус, в дальнейшем будет рассматриваться только прямой конус, называемый для краткости просто конусом.
Прямой круговой конус можно рассматривать как тело, полученное при вращении прямоугольного треугольника вокруг его катета как оси (рис. 2.274).
Определение. Высотой конуса называют перпендикуляр, опущенный из его вершины на плоскость основания.
У прямого конуса основание высоты совпадает с центром основания (рис. 2.272). Осью прямого конуса называется прямая, содержащая его высоту. У наклонного конуса основание высоты может не совпадать с центром круга, лежащего в основания конуса (рис. 2.273).
Если конус РАВ с радиусом основания и образующей
(рис. 2.275) разрезать по образующей РВ и развернуть на плоскости, то получим развертку.
Развертка конуса будет состоять из сектора ВРАВ и круга (основания) диаметра
Сечение конуса плоскостью, проходящей через его ось, называют осевым сечением. Плоскость, проходящая через образующую конуса и перпендикулярная осевому сечению, проведенному через эту образующую, называется касательной плоскостью конуса (рис. 2.276).
Плоскость, перпендикулярная оси конуса, пересекает конус по кругу, а боковую поверхность — по окружности с центром на оси конуса.
Плоскость, перпендикулярная оси конуса, отсекает от него меньший конус. Оставшуюся часть называют усеченным конусом (рис. 2.277).
Усеченный конус можно получить и как тело вращения.
Определение. Усеченным конусом называют тело вращения, образованное вращением прямоугольной трапеции около боковой стороны, перпендикулярной основаниям.
Круги О и — его основания (рис. 2.277), его образующие равны между собой, прямая
— ось, отрезок
— высота. Его осевое сечение
— равнобедренная трапеция.
Пример:
Конус пересечен плоскостью, параллельной основанию, на расстоянии d от вершины. Найдите площадь сечения, если радиус основания конуса R, а высота Н.
Решение:
Из условия задачи имеем:
1. Конус с вершиной S.
2.
5. Плоскость пересекает конус и параллельна основанию.
6. Найдите площадь сечения конуса.
7. Сечение конуса получается из основания конуса преобразованием гомотетии относительно вершины конуса с коэффициентом гомотетии (1, 2, 3, 4, 5, определение гомотетии).
8. Радиус круга в сечении (7).
9. Площадь сечения (8, теорема о площади круга).
Пирамида, вписанная в конус и описанная около него
Определение. Пирамидой, вписанной в конус, называют такую пирамиду, основание которой есть многоугольник, вписанный в окружность основания конуса, а вершиной является вершина конуса. Боковые ребра пирамиды, вписанной в конус, являются образующими конуса (рис. 2.279).
Определение. Пирамиду называют описанной около конуса, а конус — вписанным в пирамиду, если ее основанием является многоугольник, описанной около основания конуса, а вершина совпадает с вершиной конуса. Плоскости боковых граней описанной пирамиды являются касательными плоскостями конуса (рис. 2.280).
Определение. Шаром называют тело, которое состоит из всех точек пространства, находящихся на расстоянии, не большем данного, от данной точки. Эту точку называют центром шара, а данное расстояние — радиусом шара (рис. 2.281).
Границу шара называют шаровой поверхностью или сферой. На рисунке 2.281 точки А, В и D принадлежат сфере, а, например, точка М ей не принадлежит. Таким образом, точками сферы являются все точки шара, которые удалены от центра на расстояние, равное радиусу. Любой отрезок, соединяющий центр шара с точкой шаровой поверхности, также называют радиусом.
Отрезок, соединяющий две точки шаровой поверхности и проходящий через центр шара, называют диаметром. Концы любого диаметра называют диаметрально противоположными точками шара.
Шар так же, как цилиндр и конус, является телом вращения. Он получается при вращении полукруга вокруг его диаметра, как оси (рис. 2.282).
Теорема 62. Всякое сечение шара плоскостью есть круг. Центр этого круга есть основание перпендикуляра, опущенного из центра шара на секущую плоскость.
Если шар с центром О и радиусом R пересечен плоскостью , то в сечении по теореме 62 получается круг радиуса
с центром К (рис. 2.283).
Радиус сечения шара плоскостью можно вычислить по формуле
Из формулы видно, что плоскости, равноудаленные от центра, пересекают шар по равным кругам. Радиус сечения шара тем больше, чем ближе секущая плоскость к центру шара, т. е. чем меньше расстояние ОК. Наибольший радиус имеет сечение плоскостью, проходящей через центр шара. Радиус этого круга равен радиусу шара.
Плоскость, проходящую через центр шара, называют диаметральной плоскостью. Сечение шара диаметральной плоскостью называют большим кругом, а сечение сферы — большой окружностью.
Теорема 63. Любая диаметральная плоскость шара является его плоскостью симметрии. Центр шара является его центром симметрии.
Плоскость, проходящую через точку А шаровой поверхности и перпендикулярную радиусу, проведенному в точку А, называют касательной плоскостью. Точку А называют точкой касания (рис. 2.284).
Теорема 64. Касательная плоскость имеет с шаром только одну общую точку — точку касания.
Прямую, проходящую через точку А шаровой поверхности перпендикулярно к радиусу, проведенному в эту точку, называют касательной (рис. 2.285).
Теорема 65. Через любую точку шаровой поверхности проходит бесконечно много касательных, причем все они лежат в касательной плоскости шара.
Пример:
Через середину радиуса шара проведена перпендикулярная радиусу плоскость. Как относится площадь полученного сечения к площади большого круга?
Решение:
Из условия задачи имеем:
1. Шар с центром О и радиусом R, ОС = OA = R.
2. ОВ = ВС = .
3. СО перпендикулярен плоскости окружности с центром в точке В.
4. Найдите отношение площади круга с центром в точке В к площади большого круга.
Чтобы решить задачу, надо знать радиус получающегося в сечении круга с центром в точке В. Как его найти?
5. — прямоугольный (3, определение перпендикуляра к плоскости).
6. Если радиус шара R, то радиус круга в сечении будет
7. Отношение площади этого круга к площади большого круга равно (1, 2, 5, теорема Пифагора).
Части шара и сферы
В геометрии существуют специальные названия частей сферы и шара, которые получаются при разбиении этих фигур на части отрезками, прямыми или плоскостями.
Определение. Часть шара, отсекаемую плоскостью, называют шаровым сегментом.
Шаровой сегмент ограничен: 1) частью сферы, которую называют сегментной поверхностью; 2) кругом, который называют основанием шарового сегмента.
На рис. 2.287 плоскость , проходящая через точку В, отсекает от шара два шаровых сегмента.
Определение. Сферическим сегментом называют часть сферы, отсекаемую плоскостью.
Окружность, по которой плоскость пересекает сферу, называют основанием сферического сегмента.
Высотой шарового сегмента и сегментной поверхности называют отрезок радиуса, перпендикулярного к основанию сегмента. На рисунке 2.287 верхний сегмент имеет высоту АВ.
Если пересечь шар двумя параллельными плоскостями, тогда шар (его граничная сфера) разделится на три части, две из них — шаровые (сферические) сегменты.
Определение. Часть шара, заключенную между двумя пересекающими его параллельными плоскостями, называют шаровым слоем.
На рисунке 2.288 две параллельные плоскости, проходящие через точки СВ, отсекают от шара шаровой слой.
Определение. Сферическим поясом называют часть сферы, заключенную между двумя ее параллельными сечениями.
Поверхность шарового слоя состоит из двух кругов, называемых основаниями шарового слоя, и сферического пояса соответственно.
Высотой шарового слоя называют перпендикуляр, проведенный из точки одного основания к плоскости другого; чаще всего берут за высоту отрезок диаметра сферы, перпендикулярного основаниям, с концами на них. Высотой сферического пояса называют высоту соответствующего шарового слоя. На рисунке 2.288 высотой шарового слоя является отрезок ВС.
Сферический сегмент и сферический пояс можно рассматривать как поверхности, образованные вращением некоторых дуг окружности вокруг прямой АВ (рис. 2.288).
Шаровой сектор — это часть шара, получаемая не простым сечением шара плоскостью (или плоскостями), а как фигура, образованная при вращении соответствующего кругового сектора (рис. 2.289).
Определение. Шаровым сектором называют фигуру, полученную при вращении кругового сектора с углом, меньшим 90°, вокруг прямой, содержащей один из ограничивающих круговой сектор радиусов.
Эта лекция взята со страницы полного курса лекций по изучению предмета «Математика»:
Смотрите также дополнительные лекции по предмету «Математика»:
2. Конспект для ученика по теме «Тела вращения (теория)»
В статье представлены основные виды тел вращения. Материал актуален для подготовки к ЕГЭ.
Тело вращения
Вот самый простой пример: цилиндр.
Берем прямоугольник и начинаем вращать его вокруг одной из сторон.
Было Вращаем Стало
А теперь гораздо хитрее. Бывает так, что ось вращения находится далеко от фигуры, которая вращается.
Что получится? Бублик. А по научному ТОР.
Ну и так вот можно любую фигуру вертеть вокруг любой оси, и будут получаться разные более или менее сложные тела вращения.
Вообще-то есть и другое определение шара – через ГМТ (геометрическое место точек)
Скажу тебе по секрету, что хоть второе определение и пугающее на вид, оно удобнее в обращении. Задумайся, ведь если тебя попросят сказать, что такое шар, ты скажешь что-то вроде
«ну …там есть центр и радиус…, подразумевая, что все точки внутри шара находятся я на расстоянии не большем, чем радиус.
Ну, в общем, шар он и есть шар.
Названия, которые ты должен знать:
Незнакомое тебе, наверное, только одно.
Площадь поверхности сферы
Откуда взялось? Умные математики придумали – это не так уж просто – придется просто запомнить.
Это еще одна хитрая формула, которую придется запомнить, не понимая, откуда она взялась.
Цилиндр
Вообще – то полное имя этого тела «прямой круговой цилиндр», но составители задач и мы вместе с ними по дружбе называем его просто цилиндром. Названия, относящиеся к цилиндру, такие:
Основания у цилиндра – это круги
Еще у цилиндра есть так называемая развертка.
Что получится? Представь себе, прямоугольник.
Развертка цилиндра – прямоугольник.
Площадь поверхности цилиндра
Площадь боковой поверхности
Площадь полной поверхности цилиндра
Прибавляем теперь площадь двух кругов – оснований и получаем
Конус
И опять же, полное название этого тела: «прямой круговой конус», но во всех задачах у нас говорится просто «конус».
Названия, относящиеся к конусу:
Что тут нужно твердо помнить?
Ясно ли это? Вроде должно быть ясно, ведь образующая – это гипотенуза (одна и та же!) Треугольника, который вращаем, а радиус основания – катет.
У конуса тоже есть развертка.
Снова представим, что основания нет, разрежем боковую поверхность вдоль образующей и развернём кулек. Что получится?
Представь себе сектор круга. Пусть длина образующей равна lll.
Площадь поверхности конуса:
Как найти площадь боковой поверхности корпуса? Вспомним о развертке, Ведь для цилиндра все было просто именно с помощью развертки.
Нужно осознать, что же такое дуга в развертке? Это бывшая окружность основания! Поэтому длина этой дуги равна 2πR.
С другой стороны, длина этой же дуги равна l, так как это дуга окружности радиусаl. Поэтому
Тела и поверхности вращения. коротко о главном
Было Вращаем Стало
Закрепление