какие физические свойства металлов используют в технике
1. Назовите самый легкоплавкий металл.
2. Какие физические свойства металлов используют в технике?
В технике используются такие свойства металлов, как электропроводность, твердость, термоустойчивость.
3. Фотоэффект, т. е. свойство металлов испускать электроны под действием лучей света, характерен для щелочных металлов, например для цезия. Почему? Где это свойство находит применение?
Щелочные металлы имеют самую низкую энергию ионизации, т.е. они легко отдают электрон с последнего слоя. Для того, чтобы отнять этот электрон от металла, достаточно даже энергии света (фотона).
На явлении фотоэффекта основано действие фотоэлектрических приборов, получившие разнообразное применение в различных областях науки и техники — фотоэлементы, работающие на основе фотоэффекта, преобразуют энергию излучения в электрическую.
4. Какие физические свойства вольфрама лежат в основе его применения в лампах накаливания?
На тугоплавкости вольфрама основано его применение в лампах накаливания. Температура плавления 3422С.
5. Какие свойства металлов лежат в основе образных литературных выражений: «серебряный иней», «золотая заря», «свинцовые тучи»?
В литературных выражениях «серебряный иней», «золотая заря», «свинцовые тучи» заключено свойство металлов отражать световые лучи, в результате чего они приобретают характерную окраску, металлический блеск.
5 физических свойств металлов, которые используют в технике
Какие физические свойства металлов используют в технике: краткий обзор свойств группы металлов + 5 главных свойств.
Если речь заходит о взаимосвязях между свойствами и применением металлов, то путь лежит к науке «материаловедение». В сегодняшней статье я лишь вкратце расскажу, какие физические свойства металлов используются в технике. Для более глубокого понимания тематики, советую ознакомиться с другими статьями в рамках данного сайта.
Пара слов о группе металлов и ее свойствах
Обратите внимание: практическая значимость различных типов металлов сильно варьируется. Наибольшее значение имеет железо. На базе данного материала изготавливается более 88% всей металлургической продукции в мире.
Группа цветных металлов хоть и применяется реже, но ее физические и химические свойства являются более уникальными, и заменить их более доступным аналогом бывает просто невозможно. Среди промышленно значимых цвет металлов наибольшее значение имеет алюминий, медь, магний и титан.
О базовых свойствах металлов расскажу отдельной таблицей.
Категория | Свойство | Описание |
---|---|---|
Механика | Прочность | Потенциал металлического элемента в сопротивлении к разрушительным действиям из вне. |
Твердость | Потенциал сопротивляться прониканию другого металлического элемента под силой тяжести или под внешней нагрузкой. | |
Вязкость | Сопротивление металлического элемента в отношении нагрузок динамического характера. | |
Упругость | Уровень восстановления формы + изначальных физических параметров формы после окончания приложения усилия на элемент из вне. | |
Пластичность | Уровень пиковых изменений формы без существенных разрушений общей структуры металлического элемента. | |
Хрупкость | Разрушение металла в результате воздействия внешних сил при отсутствии деформаций остаточного типа. | |
Технология | Ковкость | Способность металлического материала выдерживать внешнее воздействие (обработку) под давлением не разрушаясь структурно. |
Свариваемость | На сколько качественные швы способен образовывать выбранный металл в процессе сварочных работ. | |
Резка | На сколько хорошо металл обрабатывается инструментами режущего типа (ножницы по металлу и прочее). | |
Химия | Жаростойкость | Потенциал металла в оказании сопротивления окислительным процессам под воздействием газовой среды в комбинации с высоким температурным воздействием. |
Жаропрочность | Потенциал сохранения механических свойств элемента в условия влияния высокого температурного режима. | |
Износостойкость | Предельно допустимые значения сопротивляемости верхнего слоя металла в отношении разрушающего воздействия силы трения. | |
Стойкость к радиации | На сколько хорошо внешняя и внутренняя структура материала способна оказывать сопротивление воздействию ядерного облучения. |
В твердом состоянии подавляющее большинство металлов имеет кристаллическое строение решетки. Форма может быть одной из трех – кубическая объёмно-центрическая, гранецентрическая или гексагональная с плотной упаковкой атомов.
Какие физические свойства металлов используют в технике?
1) Плотность
Картинка выше, взятая их технической литературы дает возможность узнать плотность большинства популярных марок сталей, чугуна и прочих черных или цветных сплавов. Для измерения значения плотности нестандартных сплавов, которые не указаны в шаблонных таблицах, в 95%+ случаев используется гидростатический метод. В остальных 5% применяется пикнометрический метод.
ГОСТы по гидростатическому методу измерения плотности:
В основе измерений лежат хорошо смачивающие материалы, которые не вступают в реакции с металлом + не улетучиваются в процессе проведения самих измерений. Обычно используется наиболее простой вариант – дистиллированная вода.
Важно: значение плотности является решающим при изготовлении деталей в авиационной и ракетной технике. Получаемые конструкции просто обязаны сочетать в себе прочность и легкость.
2) Температура плавления
Большинство металлов располагают рядом оригинальных свойств, присущих исключительно им. У каждого имеется собственная критическая точка, при которой наступает разрушение кристаллической решетки и переход из твердой формы в жидкую с сохранением объема металлического элемента. Описанный процесс называется плавлением металлов и в металлургической промышленности он является основой производства.
Важно: в технике используются сплавы из чистых металлов и легирующих добавок. Получить нужные свойства без применения процесса плавления невозможно.
Новые соединения образуются в процессе смешивания кристаллических решеток чистых элементов. Температура плавления – величина непостоянная, зависящая от концентрации входящих в сплав компонентов.
В зависимости от температуры плавления, металлы подразделяют на 3 категории – легкоплавкие, среднеплавкие и тугоплавкие. Первые имеют верхний порог расплавки менее 1 000 по Цельсию, а последние более 1500 градусов.
О применении тугоплавких и легкоплавких металлов в технике ниже.
Тугоплавкие металлы | Легкоплавкие металлы |
---|---|
Применение в сварке. Все мы знаем об электродах из вольфрамового сплава. В данном случае металл выступает в качестве основы для расходника. | Жидкометаллические тепловые носители нашли применение в энергетической промышленности и машиностроении. |
Элементы в электронике. | Изготовление моделей выплавляемого типа. |
Космос и авиация. Некоторые сплавы используются в сверхзвуковой авиации и производстве космических кораблей. | Вакуумная техника. Применение в уплотнениях, пайке швов и прочем подобном. |
Военная промышленность. Как правило, конструктивно важные элементы, которые обязаны быть защищены от высоких температур и расплавки, упаковывают в оболочки из тугоплавкого металла. | Микроэлектроника, а именно покрытие различных датчиков, предохранителей и конечно же использование в качестве припоев. |
Применяются при разработке техники вакуумного типа. | Используются как основа для расплавляемой смазки для металлов. |
Наиболее популярным и наглядным применением тугоплавких металлов является нити накалывания в лампах. Из металлопроката можно выделить полосы вытяжки, фольгу, трубы и проволоку.
3) Электропроводимость
Обратите внимание: любой из сплавов имеет намного меньшую электрическую проводимость нежели чистое вещество.
Причиной тому служит слияние структурной сетки элементов, из-за чего прекращается нормальная работа электронов внутри нового металлического вещества. Формирование базы знаний вокруг рассматриваемого свойства происходило за счет теории электропроводимости металлов.
В нее входит 6 пунктов:
Наибольшей электропроводимостью могут похвастаться металлы из щелочной группы, но из-за их ограничений по другим свойствам (температура плавления и химическая активность), их применение в технике и промышленности крайне ограничено.
Где используются электроповодимые металлы:
Ну и основная функция проводников – это доставка электричества. Обход наукой стороной данного свойства не позволил бы развиваться техническому прогрессу как таковому в принципе.
4) Какие еще физические свойства металлов используют в технике: теплопроводимость
Справочные значения тепловой проводимости для популярных металлов и сплавов представленный на картинке выше. Более детальные таблицы представлены в специализированной литературе по материаловедению.
Обратите внимание: значения теплопроводимости подают на промежутке от 0 до 600 по Цельсию.
Сказать о тотальном преимуществе металлов с высокой или низкой теплопроводиомстью нельзя. Все зависит от сферы применения материала.
В каких областях важен рассматриваемый параметр:
Важно понимать, что при образовании новых типов сплавов параметр проводимости тепла изменяется. Чтобы узнать актуальные значения, используются опытные методы определения. Частный выбор зависит от особенностей исследуемого металла.
Базовые физические свойства металлов:
5) Магнетизм
Способность металлов намагничиваться или притягиваться магнитами стоит на втором месте по важности для ниши техники. Существует 2 способа определения уровня магнетизма металлов – магнитно-металлографический метод и магнитная металлография. Второй реализовать проще, ибо в основе лежат проявления магнитных свойств на поверхности исследуемого образца металлического элемента.
О классификации металлических элементов в чистом виде по отношению к магнитным полям расскажу отдельной таблицей.
Группа | Отношение | Представители |
---|---|---|
Ферромагниты | Могут набирать магнитное поле при воздействии слабых магнитных полей. | Кобальт, железо, никель, гадолиний. |
Парамагниты | Практически не набирают магнитное поле вне зависимости от его силы воздействия. | Хром, титан, алюминий, лантан, лютеций и другие лантаноиды. |
Диамагниты | Совсем не притягиваются к магнитам + некоторые могут даже отталкиваться. | Олово, висмут, медь. |
По факту, магнитными свойствами обладает очень мало металлов, но в повседневности использование магнита указывает нам на противоположный факт. Причина тому 90% промышленности, которая в основе сплавов использует железо, проявляющее крайне сильные ферромагнитные свойства по отношению к магнитным полям.
Где нужны магнитные свойства металлов:
В дополнение, металлы с магнетизмом – это источник прогресса в медицине и автоматизированных транспортных системах. Ну и не будем забывать о магнитных устройствах, что используются в рекламе, реализациях, выставках и прочих мероприятиях по всему миру.
Некоторые специалисты к физическим свойствам относят также коэффициенты линейного и объемного расширений. Данные параметры характеризуют способность металлов расширяться в процессе нагревания. Особо важно учитывать данный параметр в строительной сфере – мосты, железные дороги, трамвайные пути и тому подобное. Так как свойство является составляющей теплопроводимости, рассматривать отдельно его я не вижу смысла.
На этом разбор вопроса считаю исчерпанным. Теперь вы в полной мере знаете, какие физические свойства металлов используют в технике и прочих сферах деятельности человека. При возникновении вопросов, можете изложить их в комментариях.
Какие физические свойства металлов используют в технике
Физические свойства
В условиях комнатной температуры и без применения давления все вещества обладают твердым состоянием. Но есть галлий, он уже при 30 градусах тепла начинает деформироваться, тает в руках. Можно отметить характеристики:
Таблица температуры плавления легкоплавких металлов и сплавов:
Название металла | Температура плавления, оС |
Ртуть | -38,83 |
Франций | 25 |
Цезий | 28,44 |
Галлий | 29,7646 |
Рубидий | 39,3 |
Калий | 63,5 |
Натрий | 97,81 |
Индий | 156,5985 |
Литий | 180,54 |
Олово | 231,93 |
Полоний | 254 |
Висмут | 271,3 |
Таллий | 304 |
Кадмий | 321,07 |
Свинец | 327,46 |
Цинк | 419,53 |
Классификация и виды металлов
Есть чистые, однокомпонентные структуры и сплавы. Самым классическим примером можно назвать различные виды стали. Они различаются по ГОСТу в соответствии с добавлением легирующих добавок. Чем больше содержание углерода, тем крепче материал. Также есть общепринятое разграничение, ниже представим подтипы.
Черные
Их добывают из металлической руды. В производстве они занимают 90% от всего сырья. Обычно это чугуны и стали. Для изменения характеристик добавляют большее или меньшее количество углерода и легирующие добавки: медь, кремний, хром, никель.
Одним из очень популярных подвидов является нержавейка, которая отличается своим блеском поверхности и уникальными свойствами – легкостью, высокой прочностью и устойчивостью к влажности, температурным перепадам.
Что относится к цветным металлам
Второе название – нежелезные, то есть сплавы не содержат в себе железа, а состоят из более дорогостоящих материалов. Вещества имеют различный цвет, отличаются уникальными качествами:
Благодаря этому, определенные разновидности можно использовать в медицине, ювелирном деле, химической промышленности, при изготовлении электрических проводов. К цветмету относится алюминий, цинк, олово, свинец, никель, хром, серебро, золото и другие.
Медь и ее сплавы являются популярными металлами
Медная руда была обработана человеком одна из первой, потому что она подвергается холодному методу ковки и штамповки. Податливость привела к востребованности повсеместно. Кислород в составе приводит к красному отливу. Но уменьшение валентности в различных соединениях приведет к желтому, зеленому, синему цвету. Привлекательным качеством считается отличная теплопроводность – на втором месте после серебра, поэтому она применяется для проводов. Соединения могут быть:
К металлам относятся алюминий и сплавы
Al открыт в 1825 году и отличается легкостью и простотой в металлообработке. Производится из бокситов, при этом запасы этой горной породы практически неиссякаемы. Далее элемент соединяют в различных пропорциях с медью, марганцем, магнием, цинком, кремнием. Реже с титаном, литием, бериллием. Особенности в зависимости от добавок:
Его применяют для изготовления ювелирных изделий, столовых приборов, а также для стекловарения, в пищевой и военной промышленности, для создания ракет и для производства водорода и тепла в алюмоэнергетике.
Все о металлах магний, титан и их сплавах
Mg – самое легкое вещество из этой группы. Не обладает прочностью, но есть достоинства, например, пластичность, химическая активность. Благодаря высокой конструкционной способности его добавляют в составы, чтобы увеличивать свариваемость, простоту металлообработки режущим ножом. Необходимо учитывать, что магний очень восприимчив к ржавлению.
Титан имеет похожие качества – легкость, пластичность, серебристый цвет. Но антикоррозийная пленка появляется при первом соприкосновении с кислородом. Отличительные особенности – низкая теплопроводность, электропроводность, отсутствие магнитизма. Металл, содержащий титан, – это вещество, используемое для авиационной, химической, судостроительной промышленности.
Антифрикционные сплавы
Характерная особенность этой группы – удобство применения при механических воздействиях. Они практически не создают трения, а также снижают его у других композитов. Очень часто они выступают в качестве твердой смазки для узлов, например, для подшипников. В составе обычно бывает фторопласт, латунь, бронза, железографит и баббит.
Мягкие
Это те, у которых ослаблены металлические связи. По этой причине они имеют более низкую температуру плавления и кипения, просто деформируются. Иногда можно одним нажатием пальца сделать вмятину, ногтем оставить царапину К ним относятся: медь, серебро, золото, бронза, свинец, алюминий, цезий, натрий, калий, рубидий и другие. Одним из наиболее мягких является ртуть, она находится в природе в жидком состоянии.
Что значит твердый металл
В природе такая руда встречается крайне редко. Порода находится у упавших метеоритов. Один из наиболее популярных – хром. Он тугоплавкий и легко поддается металлообработке. Еще один элемент – вольфрам. Он очень плохо плавится, но при правильной обработке используется в осветительных приборах благодаря устойчивости к теплу и гибкости.
Металлические материалы в энергетике
Мы бы не имели такую развитую электросеть и массу приборов, потребляющих электричество, если бы ряд веществ не отличались наличием свободных электронов, положительных ионов и высокой проводимостью. Провода делают из свинца, меди и алюминия. Отлично бы подошло серебро, но его редкость влияет на стоимость, поэтому редко используется.
Особенности черных вторичных металлов
Это отходы, которые образуются в результате одного из этапа металлообработки – ковки, резки. Это могут быть обрезки или стружки. Они отправляются в сталеплавильные печи, но перед этим должны пройти проверки по ГОСТу. Лом называют чермет, его различают на стальной и чугунный по цене. Его использование очень востребовано вместо обработки руды.
Щелочноземельные сплавы
Это твердые вещества, которые имеют высокую химическую активность. В чистом виде встречаются очень редко, зато применяются в соединениях. Их значение нельзя переоценить с точки зрения анатомии человека и животного. Магний и кальций – необходимые микроэлементы.
Понятие щелочной металл
Они способны растворяться в воде, образуя щелочь. Из-за своей повышенной химической активности (вступление в реакцию происходит с бурным действием, воспламенением, выделением газа, дыма) в природе почти не встречается. Ведь на внешнем уровне всего один электрон, который легко отдается любому веществу. Гидроксиды очень важны в промышленности.
Общая характеристика материалов из d- и f-семейств
Это переходные элементы, которые могут являться как окислителями, так и восстановителями. Свойства зависят от среды, в которой они находятся. Но есть и общие:
Из чего состоят побочные подгруппы металлов системы Менделеева
По сути это разновидности предыдущей категории – переходные элементы. Это линейка от скандия до цинка. Они часто выплавляются и обладают фактически такими же характеристиками, как и вышеперечисленные материалы из d- и f-семейств.
Таблица температуры плавления среднеплавких металлов и сплавов:
Название металла | Температура плавления, оС |
Сурьма | 630,63 |
Нептуний | 639 |
Плутоний | 639,4 |
Магний | 650 |
Алюминий | 660,32 |
Радий | 700 |
Барий | 727 |
Стронций | 777 |
Церий | 795 |
Иттербий | 824 |
Европий | 826 |
Кальций | 841,85 |
Лантан | 920 |
Празеодим | 935 |
Германий | 938,25 |
Серебро | 961,78 |
Неодим | 1024 |
Прометий | 1042 |
Актиний | 1050 |
Золото | 1064,18 |
Самарий | 1072 |
Медь | 1084,62 |
Уран | 1132,2 |
Марганец | 1246 |
Бериллий | 1287 |
Гадолиний | 1312 |
Тербий | 1356 |
Диспрозий | 1407 |
Никель | 1455 |
Гольмий | 1461 |
Кобальт | 1495 |
Иттрий | 1526 |
Эрбий | 1529 |
Железо | 1538 |
Скандий | 1541 |
Тулий | 1545 |
Палладий | 1554,9 |
Протактиний | 1568 |
Сравнение свойств
Вторая часть элементов в периодической системой отличается многообразием характеристик, поэтому почти невозможно привести полную сводную таблицу. Мы предлагаем таблицу, на которой представлено 4 отличительные черты:
Признаки | Металлы | Неметаллы |
Положение в П. С. | Под диагональю бор-астат | Над ней |
Строение атома | Большой атомный радиус, чисто электронов на последнем слое — от 1 до 3 | Маленький, от 4 до 7 — соответственно |
Физические св-ва | Электропроводность, теплопроводность, блеск, ковкость, пластичность, по агрегатному состоянию, в основном, твёрдые | Диэлектрики, неблестящие, хрупкие, газы, жидкости и летучие твёрдые вещества |
Кристаллические решетки | Металлическая | Молекулярная, атомная |
Химические св-ва | Восстановители | Окислительные (иногда восстанов-ли) |
Таблица температуры плавления тугоплавких металлов и сплавов:
Название металла | Температура плавления, оС |
Лютеций | 1652 |
Титан | 1668 |
Торий | 1750 |
Платина | 1768,3 |
Цирконий | 1855 |
Хром | 1907 |
Ванадий | 1910 |
Родий | 1964 |
Технеций | 2157 |
Гафний | 2233 |
Рутений | 2334 |
Иридий | 2466 |
Ниобий | 2477 |
Молибден | 2623 |
Тантал | 3017 |
Осмий | 3033 |
Рений | 3186 |
Вольфрам | 3422 |
Алюминиевые сплавы
Если первая половина XX века была веком стали, то вторая по праву назвалась веком алюминия.
Алюминиевые сплавы подразделяют на:
Основные преимущества соединений алюминия:
Советуем изучить — Схема стенда для проведения испытаний электрических аппаратов защиты
Основным недостатком сплавных материалов является низкая термостойкость. При достижении 175°С происходит резкое ухудшение механических свойств.
Еще одна сфера применения — производство вооружений. Вещества на основе алюминия не искрят при сильном трении и соударениях. Их применяют для выпуска облегченной брони для колесной и летающей военной техники.
Весьма широко применяются алюминиевые сплавные материалы в электротехнике и электронике. Высокая проводимость и очень низкие показатели намагничиваемости делают их идеальными для производства корпусов различных радиотехнических устройств и средств связи, компьютеров и смартфонов.
Слитки из алюминиевых сплавов
Присутствие даже небольшой доли железа существенно повышает прочность материала, но также снижает его коррозионную устойчивость и пластичность. Компромисс по содержанию железа находят в зависимости от требований к материалу. Отрицательное влияние железа скомпенсируют добавлением в состав лигатуры таких металлов, как кобальт, марганец или хром.
Конкурентом алюминиевым сплавам выступают материалы на основе магния, но ввиду более высокой цены их применяют лишь в наиболее ответственных изделиях.