какие формовочные смеси работают в наиболее тяжелых условиях

Формовочные смеси для литья

Литейное производство достаточно простой и широко распространенный технологический процесс для получения отливок различного размера и разнообразной формы. Получение деталей методом литья практикуется в автомобилестроении, станкостроении, вагоностроении и многих прочих отраслях машиностроения. Для получения полых или с множеством отверстий отливок используются стержневые и формовочные смеси различных составов. Экономически обосновано использование песчано-глинистых форм при массовом производстве.

какие формовочные смеси работают в наиболее тяжелых условиях. Смотреть фото какие формовочные смеси работают в наиболее тяжелых условиях. Смотреть картинку какие формовочные смеси работают в наиболее тяжелых условиях. Картинка про какие формовочные смеси работают в наиболее тяжелых условиях. Фото какие формовочные смеси работают в наиболее тяжелых условиях

Состав смесей зависит от:

Материалы, которые используются для получения формовочных смесей, подразделяются на следующие группы:

Глинистые пески могут содержать глины в своем составе до 50%. Делят их по количеству содержания глины на:

Также используются кварцевые пески. Силикатная основа позволяет принимать в форму расплав, температура которого достигает 1700С.

Получение отливок высокого качества требует использования противопригарных покрытий и материалов мелкой фракции, чтобы предупредить образование в форме пор.

Виды и состав смесей

К формовочным смесям для литья предъявляются следующие требования:

Формовочные и стержневые смеси обладают одинаковыми свойствами. Но к стержням предъявляются более высокие требования, потому что на него расплавленный металл оказывает более сильное давление.

какие формовочные смеси работают в наиболее тяжелых условиях. Смотреть фото какие формовочные смеси работают в наиболее тяжелых условиях. Смотреть картинку какие формовочные смеси работают в наиболее тяжелых условиях. Картинка про какие формовочные смеси работают в наиболее тяжелых условиях. Фото какие формовочные смеси работают в наиболее тяжелых условиях

Состав различных смесей

Формовочные смеси делятся на три типа:

Единая смесь предназначается для наполнения всего объема литейной формы. В полном объеме используется при машинной формовке при выпуске отливок в большом количестве. Для ее приготовления используется большой объем еще неиспользовавшихся материалов.

Облицовочная смесь предназначена для получения слоя формы, контактирующего непосредственно с расплавом. Его толщина зависит от типа смеси и тяжести отливки и составляет 20-100 мм. Для того чтобы дополнить оставшийся объем используется наполнительная смесь.

Состав формовочной смеси напрямую зависит от формы и метода ее изготовления. Формирование песчано-глинистых форм происходит двумя способами, в результате которых получаются сухие и сырые формы. Для их податливости при формировании в смесь вводятся сгорающие наполнители – торф или древесные опилки. В состав подсушиваемых форм кроме глины и песка закладываются крепитель, измельченный асбест и барда.

Кроме них используются:

В быстро отверждающихся смесях связкой выступает жидкое стекло. Если для сушки жидкого стекла необходима теплая продувка, то в данном случае отвердение происходит за счет феррохромового шлака.

какие формовочные смеси работают в наиболее тяжелых условиях. Смотреть фото какие формовочные смеси работают в наиболее тяжелых условиях. Смотреть картинку какие формовочные смеси работают в наиболее тяжелых условиях. Картинка про какие формовочные смеси работают в наиболее тяжелых условиях. Фото какие формовочные смеси работают в наиболее тяжелых условиях

Классификация формовочных смесей

Самостоятельно отверждающиеся составы в первоначальном состоянии жидкие. Затем в них вводятся ПАВ и песочный наполнитель. Такой состав сохраняет текучесть не более 10 минут. Поэтому они приготавливаются на формовочных участках.

Химически отверждающиеся смеси имеют малый срок жизни. В следствие чего в смесь добавляется едкий натр.

Жидкостекольные разновидности после формирования подвергаются сушке продуванием углекислым газом. В процессе сушки протекают химические реакции: образование кремниевой кислоты и углекислого натрия.

Для изготовления стержня, например, первого класса, смесь целиком состоит кварца и крепителей. Для формовки крупных стержней используется 1/3 часть использованного и восстановленного состава.

Температура плавления цветных металлов значительно ниже, чем у сталей и чугунов. Из-за чего формовочные смеси имеют меньшую огнеупорность. Для литья бронзы и медных сплавов формовочные составы готовят при использовании глинистого песка П класса. Такие наполнители как борная кислота, серный цвет или фтористая присадка используются для литья алюминия. Они препятствуют активному окислению расплава.

Требуемые свойства

Для получения качественной отливки необходима литейная форма, изготовленная из ингредиентов, подобранных под разлив определенного металла. Формовочная смесь для литья должна обладать определенной влажностью. При малой влажности форма склонна к осыпаемости, что затрудняет формовку.

Плохая газовая проницаемость провоцирует образование в отливке дефектов — газовых пор и раковин. Из-за чего необходим песок крупной фракции (более 50%).

Свойства формовочных смесей характеризует твердость. Она зависит от равномерности и степени уплотнения. Уплотнение формы сверх нормы провоцирует появление таких дефектов как:

какие формовочные смеси работают в наиболее тяжелых условиях. Смотреть фото какие формовочные смеси работают в наиболее тяжелых условиях. Смотреть картинку какие формовочные смеси работают в наиболее тяжелых условиях. Картинка про какие формовочные смеси работают в наиболее тяжелых условиях. Фото какие формовочные смеси работают в наиболее тяжелых условиях

Литье в песчано-глинистую форму

Высокая прочность формы и стержня не позволяет изменять геометрию отливки. Чтобы ее получить применяются специальные связующие материалы.

Приготовление смесей

Процесс приготовления формовочных и стержневых смесей проводится в три этапа. Первый этап — подготовительный. Здесь происходит подготовка еще неиспользованных материалов. Проводится сушка, дробление и последующее просеивание.

На втором этапе происходит подготовка отработанного состава. Это позволяет экономить на материалах. Процесс начинается на охладительных барабанах. Происходит выбивка, размельчение, охлаждение.

Формовочные смеси для литья готовятся на третьем этапе в смесителях. Широкое применение нашли катковые модели. Они используются для приготовления таких составов как:

При больших объемах выпуска производство автоматизировано. Механизация процессов отражается на снижении себестоимости продукции.

Источник

Холоднотвердеющие формовочные и стержневые смеси

По виду связующего можно выделить смеси с неорганическими (жидкое стекло, фосфаты, кристаллогидраты), органическими (смолы, ЛCT и др.) и комбинированными связующими (органическими и неорганическими).

Жидкостекольные смеси. Это наиболее широко применяемые холоднотвердеющие смеси. Для обеспечения твердения смесей с жидким стеклом используются продувка CO2, ввод в смесь двухкальциевых силикатов, жидких эфиров, ферросилиция, выдержка на воздухе.

СО2-процесс. Освоение жидкостекольных смесей, отверждаемых продувкой CO2, было начато в 1950-х гг. Эти смеси явились первыми холоднотвердеющими смесями, позволившими во многих случаях исключить сушку форм и стержней, повысить производительность труда и качество отливок, снизить их себестоимость.

На практике применяются следующие способы продувки форм и стержней углекислым газом:

• продувка через отверстия в модели и стенках стержневого ящика;

• продувка через каналы в форме по контуру модели или в знаковой части стержня (до извлечения из оснастки);

• установка на полуформу или стержневой ящик со стержнем герметизированной камеры, из которой CO2 поступает в рабочее пространство формы или стержень;

• выдержка стержней в камере, наполненной CO2.

Для продувки форм и стержней применяют чистый, пищевой углекислый газ либо углекислый газ, разбавленный воздухом или дымовыми газами (до концентрации CO2 50-60 %). Прочность смеси и скорость твердения увеличиваются при повышении температуры газа.

Важными параметрами смесей являются модуль и плотность жидкого стекла, а также его содержание в смеси. В процессе продувки прочность смеси повышается до некоторой величины, а затем уменьшается. С увеличением модуля жидкого стекла длительность продувки до достижения максимальной прочности сокращается, но при этом снижается величина максимальной прочности. Поэтому при необходимости отверждать формы и стержни быстро при малом сроке их хранения следует применять жидкое стекло с модулем 2,6-3.

С увеличением модуля жидкого стекла падает живучесть смеси. Для сохранения пластических свойств смеси в течение нескольких суток целесообразно применять жидкое стекло с модулем 2,3-2,6. При изготовлении крупных форм и стержней, обладающих высокой прочностью, следует использовать жидкое стекло с модулем 2-2,3.

Оптимальные вязкость и содержание влаги в жидком стекле обеспечиваются при его плотности 1480-1520 кг/м3. При большей плотности ухудшается распределение жидкого стекла по зернам песка, а при меньшей плотности снижается прочность смеси.

Обычно в смесях содержится 5-7 % жидкого стекла. При меньшем содержании прочность смесей мала, а при большем ухудшается выбиваемость смеси. Для СО2-процесса следует применять пески с минимальным содержанием глины, которая снижает прочность в обработанном состоянии.

XTC с жидким стеклом нетоксичны, обладают хорошей податливостью. На стальном литье при их применении получается легкоудаляемый пригар, даже без окраски формы. К недостаткам этих смесей следует отнести их плохую выбиваемость и затрудненную регенерацию. Составы и свойства типичных жидкостекольных смесей приведены в табл. 5.34.

На практике применяют комбинацию продувки смесей CO2 с последующей тепловой обработкой при 200 °С. При этом с повышением длительности продувки CO2 эффективность последующей сушки падает, что приводит к уменьшению прочности с увеличением продолжительности предварительной продувки CO2. При выдержке на воздухе XTC с жидким стеклом твердеют медленно (от 7 до 24 ч). Сравнительные данные А.М. Лясса по прочности и продолжительности отверждения XTC различными способами приведены в табл. 5.35.

Отверждение двухкальциевыми силикатами. Жидкостекольные ХТС, в которых для отверждения применяют двухкальциевые силикаты (ферро-хромовый шлак и нефелиновый шлам), бывают двух видов: пластичные и жидкие самотвердеющие смеси.

какие формовочные смеси работают в наиболее тяжелых условиях. Смотреть фото какие формовочные смеси работают в наиболее тяжелых условиях. Смотреть картинку какие формовочные смеси работают в наиболее тяжелых условиях. Картинка про какие формовочные смеси работают в наиболее тяжелых условиях. Фото какие формовочные смеси работают в наиболее тяжелых условиях
какие формовочные смеси работают в наиболее тяжелых условиях. Смотреть фото какие формовочные смеси работают в наиболее тяжелых условиях. Смотреть картинку какие формовочные смеси работают в наиболее тяжелых условиях. Картинка про какие формовочные смеси работают в наиболее тяжелых условиях. Фото какие формовочные смеси работают в наиболее тяжелых условиях

Текучесть смеси при применении ПАВ объясняется пенообразованием и снижением поверхностного натяжения воды, приводящим к уменьшению сил связи между смоченными зернами наполнителя. К ПАВ, используемым в ЖСС, предъявляются следующие основные требования: высокая пенообразующая способность и умеренная устойчивость пены (пена должна опадать за относительно короткое время, 5-20 мин).

какие формовочные смеси работают в наиболее тяжелых условиях. Смотреть фото какие формовочные смеси работают в наиболее тяжелых условиях. Смотреть картинку какие формовочные смеси работают в наиболее тяжелых условиях. Картинка про какие формовочные смеси работают в наиболее тяжелых условиях. Фото какие формовочные смеси работают в наиболее тяжелых условиях

В практике приготовления ЖСС используют следующие пенообразователи:

какие формовочные смеси работают в наиболее тяжелых условиях. Смотреть фото какие формовочные смеси работают в наиболее тяжелых условиях. Смотреть картинку какие формовочные смеси работают в наиболее тяжелых условиях. Картинка про какие формовочные смеси работают в наиболее тяжелых условиях. Фото какие формовочные смеси работают в наиболее тяжелых условиях

• мылонафт (нерастворимые в воде натриевые мыла нафтеновых кислот). Формула мылонафта CnH2n-22O2Na (n колеблется от 8 до 20);

ДС-РАС обладает высокой пенообразующей способностью с повышенной устойчивостью пены. Для снижения устойчивости пены (уменьшения времени ее опадания ДС-РАС комбинируют с НЧК, который образует быстроопадающую пену и является пеногасителем. Контакт Петрова обладает повышенной, но меньшей, чем ДС-РАС, пенообразующей способностью, и образует малоустойчивую пену. Для повышения устойчивости пены контакт Петрова комбинируют с мылонафтом. КЧНР обладает оптимальной устойчивостью пены. Для повышения устойчивости пены при применении НЧК его комбинируют со смачивателем HE.

В состав ЖСС входят жидкая композиция (ПАВ, жидкое стекло и вода), наполнитель, отвердитель и различные добавки для регулирования технологических и рабочих свойств смеси.

Нефелиновый шлам (побочный продукт производства глинозема из нефелиновых руд) содержит 80-85 % 2СаО * SiO2. В нем должно содержаться не менее 53 % CaO (с удельной поверхностью зерен 7500-8000 см2/г).

Твердение смесей является следствием обменных реакций между жидким стеклом и силикатом кальция. Первым этапом является растворение силиката кальция в жидком стекле. В растворе происходит взаимодействие в соответствии с реакцией

какие формовочные смеси работают в наиболее тяжелых условиях. Смотреть фото какие формовочные смеси работают в наиболее тяжелых условиях. Смотреть картинку какие формовочные смеси работают в наиболее тяжелых условиях. Картинка про какие формовочные смеси работают в наиболее тяжелых условиях. Фото какие формовочные смеси работают в наиболее тяжелых условиях

Нарастание прочности ЖСС во времени характеризуется наличием инкубационного периода ти, величина которого зависит от продолжительности достижения предельной растворимости гидросиликатов в жидком стекле. С повышением концентрации жидкого стекла в смеси эта продолжительность увеличивается, что приводит к возрастанию ти. Увеличение количества отвердителя и его удельной поверхности ведет к снижению ти. С величиной ти связана живучесть смеси. Для обеспечения качественного заполнения опок и стержневых ящиков живучесть смеси должна быть не менее 2-3 мин. Характер изменения пластической прочности ЖСС в процессе твердения показан на рис. 5.43.

Источник

Формовочные и стержневые смеси

1 Требования, предъявляемые к формовочным и стержневым смесям, вытекают из условий их работы. Смеси должны обладать следующими свойствами: огнеупорностью, пластичностью, проч­ностью, газопроницаемостью, податливостью и непригораемостью.

Огнеупорность — способность смеси не размягчаясь выдержи­вать высокие температуры заливаемого в форму жидкого металла. От огнеупорности будет зависеть чистота поверхности отливки.

Пластичность — способность смеси давать четкий отпечаток модели (при изготовлении формы) или стержневого ящика (при из­готовлении стержня).

Прочность — способность уплотненной смеси сохранять форму без разрушения при транспортировке готовой формы и заливке ее металлом.

Газопроницаемость — способность формовочной и особенно стер­жневой смеси пропускать через стенки формы и стержень выделя­ющиеся газы из охлаждающегося металла. При недостаточной газо­проницаемости возможно образование газовых раковин в отливке.

Податливость — способность смеси не препятствовать линей­ной усадке закристаллизовавшегося металла отливки. Охлаждение затвердевшего металла сопровождается уменьшением размеров отливки (линейная усадка), в результате чего металл прочно сжи­мает стержень и выступающие части формы. Это вызывает напря­жения в отливке, а так как усадка происходит при высокой темпе­ратуре, когда еще металл недостаточно прочен, то при плохой подат­ливости смеси могут образоваться трещины.

Непригораемость — способность смеси не образовывать пригар песка на поверхности отливки, затрудняющий ее механическую обработку.

Кроме того, формовочные и стержневые смеси должны быть негигроскопичными, долговечными и дешевыми.

2 Состав формовочных и стержневых смесей. Наиболее полно указанным свойствам отвечают смеси, приготовленные из кварце­вого песка и глины. Кварцевый песок играет роль наполнителя, а глина – связующего материала. Глина улучшает такие свойства смеси, как огнеупорность, прочность и пластичность, но ухудшает газопроницаемость и податливость. Поэтому глины в смеси вводят не более 8…12 % по объему, остальное кварцевый песок, который обеспечивает хорошую огнеупорность и газопроницаемость. Круп­нозернистый песок обеспечивает высокую газопроницаемость, но дает шероховатую поверхность отливки и повышает пригар песка, так как жидкий металл заходит в поры между зернами и охватывает их. Мелкий песок дает гладкую поверхность отливки, но резко сни­жает газопроницаемость смеси. Поэтому при производстве крупных отливок, где требуется отвод большого количества выделяющихся газов, применяют крупнозернистый песок, а при получении мелкого литья, где чистота поверхности является главным требованием, используют мелкозернистый песок.

Предупреждают пригар вводом в смесь противопригарных доба­вок, таких как каменноугольная пыль, тальк, графит, которые в виде припыла наносят на поверхность форм для чугунных отли­вок. Из маршалита, магнезита, циркона изготавливают противо­пригарные краски, которыми красят стержни и полость форм для стальных отливок.

Стержни работают в наиболее тяжелых условиях, так как они окружены жидким металлом со всех сторон (за исключением зна­ковых частей). Поэтому стержневая смесь должна обладать более высокой прочностью, газопроницаемостью и податливостью. Глина как связующая добавка в стержневой смеси применяется только для крупных стержней простой формы. Для тонких и сложных стержней в качестве связующей добавки в стержневой смеси используют оксоль, жидкое стекло, смолы, декстрин, патоку и др. Для повышения газопроницаемости и податливости в стержневую смесь вводят древесные опилки или торф (2. 3 %), которые в процессе сушки стерж­ня выгорают, образуя поры, что повышает газопроницаемость и по­датливость.

Виды формовочных смесей и их применение. Наиболее ши­роко используют облицовочные, наполнительные и единые формо­вочные смеси.

Облицовочные смеси применяют при ручной формовке для обра­зования рабочей поверхности литейной формы, которая контакти­рует с жидким металлом. При формовке ее наносят на модель слоем толщиной 15. 20 мм. Она обладает лучшими свойствами и приго­тавливают ее из свежих песка и глины с добавкой противопригар­ных материалов.

Наполнительную смесь насыпают поверх облицовочной, запол­няя остальную часть литейной формы. Эту смесь приготавливают из оборотной, переработанной после выбивки опок смеси с добавкой 5…10 % свежих песка и глины.

Единые смеси применяют в массовом производстве при машинной формовке для набивки всего объема литейной формы. Приготавли­вают ее из оборотной смеси с добавкой до 50% свежих песка и глины.

По состоянию формы перед заливкой металла различают смеси для изготовления форм: сырых, подсушенных, сухих, химически твердеющих и самотвердеющих.

Сырые формы (наиболее экономичные) изготавливают из боль­шого количества оборотной смеси и широко применяют для не­ответственных отливок из чугуна, стали и цветных сплавов массой до 3000 кг.

Подсушенные (полусухие) формы изготавливают из облицовоч­ной смеси, содержащей 2. 4 % быстротвердеющих связующих кре­пителей. Такие формы применяют для получения ответственных отливок из чугуна и стали с поверхностями большой протяженности (станины, столы станков и др.).

Сухие формы изготавливают из смесей с повышенным содержа­нием глины и меньшим количеством оборотной смеси, т. е. Солее прочных и менее газопроницаемых и податливых. Чтобы облегчить выход газов и повысить податливость, в смеси для сухих форм вводят добавки, выгорающие при сушке (опилки, торф). Сухие формы применяют только для ответственных и крупных (более 1000 кг) отливок из различных сплавов.

Химически твердеющие формы применяют в единичном и мелко­серийном производстве средних и крупных отливок. Изготавливают их из смеси, содержащей жидкое стекло, которое быстро твердеет при пятиминутной продувке углекислым газом. Такие смеси повы­шают производительность при формовке в 3. 5 раз, сокращают про­должительность сушки в 10. 30 раз и экономят топливо, необходи­мое для сушки.

какие формовочные смеси работают в наиболее тяжелых условиях. Смотреть фото какие формовочные смеси работают в наиболее тяжелых условиях. Смотреть картинку какие формовочные смеси работают в наиболее тяжелых условиях. Картинка про какие формовочные смеси работают в наиболее тяжелых условиях. Фото какие формовочные смеси работают в наиболее тяжелых условиях

Самотвердеющие формы и стержни изготавливают из жидких самотвердеющих смесей (ЖСС). Опоки и стержневые ящики зали­вают смесью, в которую вводят химические реагенты, переводящие смесь в жидкотекучее состояние. ЖСС хорошо заполняет все извилины формы (стержневого ящика). Отпадает необходимость в уплотнении смеси. Стержни и формы из ЖСС затвердевают по всему объему при нормальной температуре за 30. 40 мин. ЖСС дают возможность механизировать и автоматизировать формовку не только в массовом, но и даже в единичном производстве; повысить точность отливок; совместить смесеприготовительное, формовочное и стержневое отделения в одном; улучшить условия труда, избавив литейный цех от шума, пыли и вибраций.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Формовочные и стержневые смеси

1. Требования, предъявляемые к формовочным и стержневым смесям,

вытекают из условий их работы. Смеси должны обладать следующими свой­ствами: огнеупорностью, пластичностью, прочностью, газопроницае­мостью, податливостью и непригораемостью.

Огнеупорность — способность смеси не размягчаясь выдерживать высокие температуры заливаемого в форму жидкого металла. От огнеупор­ности будет зависеть чистота поверхности отливки.

Пластичность — способность смеси давать четкий отпечаток модели (при изготовлении формы) или стержневого ящика (при изготовлении стержня).

Прочность — способность уплотненной смеси сохранять форму без разрушения при транспортировке готовой формы и заливке ее ме­таллом.

Газопроницаемость — способность формовочной и особенно стержне­вой смеси пропускать через стенки формы и стержень выделяющиеся газы из охлаждающегося металла. При недостаточной газопроницаемости возможно образование газовых раковин в отливке.

Податливость — способность смеси не препятствовать линейной усадке закристаллизовавшегося металла отливки. Охлаждение затвердев­шего металла сопровождается уменьшением размеров отливки (линейная усадка), в результате чего металл прочно сжимает стержень и выступаю­щие части формы. Это вызывает напряжения в отливке, а так как усадка происходит при высокой температуре, котда еще металл недостаточно прочен, то при плохой податливости смеси могут образоваться трещины.

Непригораемость — способность смеси не образовывать пригар пескя на поверхности отливки, затрудняющий ее механическую обработку.

Кроме того, формовочные и стержневые смеси должны быть негигро­скопичными, долговечными и дешевыми.

2. Состав формовочных и стержневых смесей. Наиболее полно ука-
занным свойствам отвечают смеси, приготовленные из кварцевого пески
и глины. Кварцевый песок играет роль наполнителя, а глина — связу­ющего материала. Глина улучшает такие свойства смеси, как огнеупор­ность, прочность и пластичность, но ухудшает газопроницаемость и по­датливость. Поэтому в смеси глины вводят не более 8—12 % по объему, остальное — кварцевый песок, который обеспечивает хорошую огнеупор­ность и газопроницаемость. Крупнозернистый песок обеспечивает вы­сокую газопроницаемость, но дает шероховатую поверхность отливки и повышает пригар песка, так как жидкий металл заходит в поры между зернами и охватывает их. Мелкий песок дает гладкую поверхность от­ливки, но резко снижает газопроницаемость смеси. Поэтому при произ­водстве крупных отливок, где требуется отвод большого количества вы­деляющихся газов, применяют крупнозернистый песок, а при получении мелкого литья, где чистота поверхности является главным требованием, используют мелкозернистый песок.

Предупреждают пригар вводом в смесь противопригарных добавок, таких как каменноугольная пыль, тальк, графит, которые в виде при­пыла наносят на поверхность форм для чугунных отливок. Из маршалита, магнезита, циркона изготавливают противопригарные краски, которыми красят стержни и полость форм для стальных отливок.

Стержни работают в наиболее тяжелых условиях, так как они окру­жены жидким металлом со всех сторон (за исключением знаковых частей). Поэтому стержневая смесь должна обладать более высокой прочностью, газопроницаемостью и податливостью. Глина как связующая добавка в стержневой смеси применяется только для крупных стержней простой формы. Для тонких и сложных стержней в качестве связующей добавки в стержневой смеси используют оксоль, жидкое стекло, смолы, декстрин, патоку и др. Для повышения газопроницаемости и податливости в стерж­невую смесь вводят древесные опилки или торф (2—3 %), которые в про­цессе сушки стержня выгорают, образуя поры, что повышает газопрони­цаемость и податливость.

3. Виды формовочных смесей и их применение. Наиболее широко используют облицовочные, наполнительные и единые формовочные смеси.

Облицовочные смеси применяют при ручной формовке для образования рабочей поверхности литейной формы, которая контактирует с жидким металлом. При формовке ее наносят на модель слоем толщиной 15—20 мм. Она обладает лучшими свойствами и приготавливают ее из свежих песка и глины с добавкой противопригарных материалов.

Наполнительную смесь насыпают поверх облицовочной, заполняя остальную часть литейной формы. Эту смесь приготавливают из оборот­ной, переработанной после выбивки опок смеси с добавкой 5—10 % све­жих песка и глины.

Единые смеси применяют в массовом производстве при машинной формовке для набивки всего объема литейной формы. Приготавливают ее из оборотной смеси с добавкой до 50 % свежих песка и глины.

По состоянию формы перед заливкой металла различают смеси для изготовления форм: сырых, подсушенных, сухих, химически твердею­щих и самотвердеющих.

Сырые формы (наиболее экономичные) изготавливают из большего количества оборотной смеси и широко применяют для неответственных отливок из чугуна, стали и цветных сплавов массой до 3000 кг.

Подсушенные (полусухие) формы изготавливают из облицовочной смеси, содержащей 2—4 % быстротвердеющих связующих крепителей. Такие формы применяют для получения ответственных отливок из чугуна и стали с поверхностями большой протяженности (станины, столы станков и др.).

Сухие формы изготавливают из смесей с повышенным содержанием глины и меньшим количеством оборотной смеси, т. е. более прочных и менее газопроницаемых и податливых. Чтобы облегчить выход газов и повысить податливость, в смеси для сухих форм вводят добавки, выгора­ющие при сушке (опилки, торф). Сухие формы применяют только для от­ветственных и крупных (более 1000 кг) отливок из различных сплавов.

Химически твердеющие формы применяют в единичном и мелкосе­рийном производстве средних и крупных отливок. Изготавливают их и? смеси, содержащей жидкое стекло, которое быстро твердеет при пятими­нутной продувке углекислым газом. Такие смеси повышают производи­тельность при формовке в 3—5 раз, сокращают продолжительность суш­ки в 10—30 раз и экономят топливо, необходимое для сушки.

Самотвердеющие формы и стержни изготавливают из жидких само-
твердеющих смесей (ЖСС). Опоки и стержневые ящики заливают смесью,
в которую вводят химические реагенты, переводящие смесь в жидкоте-
кучее состояние. ЖСС хорошо заполняет все извилины формы (стержне-
вого ящика). Отпадает необходимость в уплотнении смеси. Стержни и фор-
мы из ЖСС затвердевают по всему объему при нормальной температуре за
30—40 мин. ЖСС дают возможность механизировать и автоматизировать
формовку не только в массовом, но и даже в индивидуальном производ-
стве; повысить точность отливок; совместить смесеприготовительное,
формовочное и стержневое отделения в одно; улучшить условия труда,
избавив литейный цех от шума, пыли и вибраций. I

4. Приготовление формовочных и стержневых смесей начинают с под­готовки исходных материалов. Кварцевый песок сушат, просеивают и распределяют по бункерам над смесителями. Глину и каменный уголь дробят, сушат и затем тонко измельчают. Отработанную смесь регене­рируют: спекшиеся куски дробят и пропускают через магнитный сепара­тор для отделения металлических включений. После подготовки все ис­ходные компоненты смешивают в нужных пропорциях в бегунах. Ув­лажненная формовочная смесь ленточным транспортером направляется в бункер-отстойник для выдержки в течение 3—4 ч для выравнивания влажности по всему объему. Окончательно готовую формовочную и стерж­невую смеси транспортером подают к месту формовки.

§ 9. Технология ручной формовки

1. Общие сведения. При изготовлении крупных отливок (станины металлорежущих станков, прокатных станов, изложницы и др.), а также в индивидуальном и мелкосерийном производстве мелких и сред­них отливок широко используют ручную формовку.

Характерной особенностью ручной формовки является большое раз­нообразие методов изготовления формы: в двух опоках (по неразъемной п разъемной моделям, по модели с отъемными частями, с перекидным «болваном», с подрезкой); по шаблонам; по скелетной модели; в трех или

какие формовочные смеси работают в наиболее тяжелых условиях. Смотреть фото какие формовочные смеси работают в наиболее тяжелых условиях. Смотреть картинку какие формовочные смеси работают в наиболее тяжелых условиях. Картинка про какие формовочные смеси работают в наиболее тяжелых условиях. Фото какие формовочные смеси работают в наиболее тяжелых условиях

более опоках; в стержнях; в почве и др. Формовка по модели с отъемными частями, по шаблонам, по скелетной модели (ниже будет рассмотрена), в стержнях, в трех и более опоках, с перекидным «болваном» (здесь не рассматриваются) может быть выполнена только вручную.

Технологический процесс ручной формовки состоит из следующих основных элементов: набивка нижней опоки; набивка верхней опоки; удаление модели из формы; отделка формы; сборка и нагружение формы.

2. Формовка в двух опоках по разъемной модели (рис. II 1.9) — самый распространенный метод получения разовых форм, так как подавляющее большинство отливок имеет сложную конфигурацию, требующую разъ­ема модели. Процесс формовки ведут в такой последовательности:

1) для изготовления нижней полуформы на подмодельную доску 3 устанавливают нижнюю половину модели 2 и накрывают нижней опокой 1 (а);

2) на модель наносят слой облицовочной и затем наполнительной сме­си, трамбовкой уплотняют ее, излишки срезают линейкой на уровне верхней кромки опоки и накалывают душником вентиляционные каналы 4(6);

3) готовую нижнюю полуформу переворачивают на 180°, устанавли­вают верхнюю полумодель 8, модели шлакоуловителя 9, стояка 6, выпора 5 и верхнюю опоку 7, соединив ее с нижней штырями 10 (в);

4) при набивке верхней полуформы повторяют в той же последова­тельности проделанное с нижней полуформой, а затем вырезают литниковую чашу 11, удаляют из формы модели стояка 6 и выпора 5 (г);

5) для удаления полумоделей из полуформ верхнюю полуформу 12 снимают с нижней 13 и переворачивают ее на 180°; формовочную смесь вокруг полумоделей смачивают водой; в» полумодели забивают подъем­ники 14, легкими ударами по подъемнику полумодели расталкивают в стороны и затем вертикально вверх удаляют из полуформ; таким же образом удаляют из формы модель шлакоуловителя 9 (д);

какие формовочные смеси работают в наиболее тяжелых условиях. Смотреть фото какие формовочные смеси работают в наиболее тяжелых условиях. Смотреть картинку какие формовочные смеси работают в наиболее тяжелых условиях. Картинка про какие формовочные смеси работают в наиболее тяжелых условиях. Фото какие формовочные смеси работают в наиболее тяжелых условияхРис. 111.10. Фор­мовка по модели с отъемными час­тями.

6) разрушенные участки полуформ исправляют; прорезают питатели 17 в нижней полуформе; устанавливают на стержневые знаки стержень 15; нижнюю полуформу накрывают верхней и нагружают грузами 16 (е);

7) после заливки формы металлом и его кристаллизации форму раз­рушают и освобождают готовую отливку вместе с литниковой системой (ж);

3. Формовку по модели с отъемными частями применяют в том случае,
если отливка имеет выступающие части, мешающие удалению модели из
формы без разрушения последней. Формовку такой отливки можно было
бы осуществить с помощью дополнительного разъема модели или приме-
няя дополнительный стержень. Если же выступающие части на модели
сделать отъемными, то можно избежать дополнительных разъемов мо-
дели и дополнительных стержневых ящиков, что усложняет и удорожает
формовку.

Процесс формовки по модели с отъемными частями приведен на рис. ШЛО. Отъемные части 1 и 2 (а) закрепляют на модели шпильками 3 ч 4. Последовательность формовки такая же, как и рассмотренная выше: сначала набивают нижнюю полуформу (б), затем ее переворачивают (в) и вынимают шпильки 3 с отъемных частей /. При набивке верхней полу­формы формовочную смесь под отъемными частями 2 уплотняют осторожно, вынимают из них шпильки 4 (отъемные части 2 теперь удерживаются формовочной смесью) и заканчивают набивку (г). Раскрывают форму, удаляют модель, а затем и отъемные части: с нижней полуформы — час­ти 1, а с верхней — полукольца 2 в стороны. В позиции (д) показана фор­ма в сборе.

4. Формовку по шаблонам используют в единичном и мелкосерийном
производстве крупных отливок, имеющих форму тела вращения (котлы,
чаши, маховики и др.). Процесс получения литейной формы осуществля-
ется без модели путем выгребания профиля отливки в уплотненной фор-
мовочной смеси шаблоном.

Шаблон — профилированная доска с вырезанным наружным или
внутренним профилем отливки. Изготовление шаблона значительно
проще, чем модели, не требует большого расхода древесины и трудоем-
ких работ. ‘

Формовку можно осуществлять с помощью вертикальных, горизон­тальных и протяжных шаблонов. На рис. 111.11 дана схема формовки

какие формовочные смеси работают в наиболее тяжелых условиях. Смотреть фото какие формовочные смеси работают в наиболее тяжелых условиях. Смотреть картинку какие формовочные смеси работают в наиболее тяжелых условиях. Картинка про какие формовочные смеси работают в наиболее тяжелых условиях. Фото какие формовочные смеси работают в наиболее тяжелых условияхб 6

Рис. 111.19. Разливочные ковши.

(рис. Ш.19,а) и имеют рукоятку, а емкостью 25—60 кг (рис. III.19,6) — снабжены носилками. Крановыми чайниковыми ковшами емкостью 250— 800 кг (рис. III. 19, в) разливают чугун и цветные сплавы. Вертикальная огнеупорная перегородка 1 задерживает шлак 2, препятствуя его попа­данию в полость формы. Слой шлака защищает поверхность металла от окисления и снижает его теплоотдачу.

Сталь заливают в форму стопорными ковшами (рис. 111.19, г) через отверстие в керамическом стакане 8. Отверстие перекрывается стопором 3 с помощью рычажного механизма 4. На металлическую штангу 6 наса­живают керамические трубки 5 и керамическую пробку 7. Стопорные ковши емкостью 1—6 т снабжаются одним стопором, а емкостью 8—10 т — двумя.

Дата добавления: 2015-03-26 ; просмотров: 5366 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *