какие функции непрерывны на своих областях определения ответ
Непрерывность функций и точки разрыва с примерами решения
Содержание:
Непрерывность функций и точки разрыва
Непрерывность функции
Определение: Функция
— предел функции в точке равен значению функции в исследуемой точке, т.е.
Пример:
Найти область непрерывности функции
Решение:
Данная функция непрерывна так как в каждой точке указанного интервала функция определена, в каждой точке существуют конечные и равные лево- и правосторонние пределы, а предел функции в каждой точке равен значению функции в этой точке.
Замечание: Всякая элементарная функция непрерывна в области своего определения.
Точки разрыва
Определение: Точки, в которых не выполняется хотя бы одно из условий непрерывности функции, называются точками разрыва. Различают точки разрыва первого и второго родов.
Определение: Точкой разрыва I рода называется точка, в которой нарушается условие равенства лево- и правостороннего пределов, т.е.
Пример:
Доказать, что функция в точке
имеет разрыв первого рода.
Решение:
Нарисуем график функции в окрестности нуля (Рис. 64): Рис. 64. График функции
Область определения функции:
т.е. точка
является точкой подозрительной на разрыв. Вычислим лево- и правосторонние пределы в этой точке:
Следовательно, в изучаемой точке данная функция терпит разрыв первого рода.
Замечание: По поводу точки разрыва I рода иначе говорят, что в этой точке функция испытывает конечный скачок (на Рис. 64 скачок равен 1).
Определение: Точка, подозрительная на разрыв, называется точкой устранимого разрыва, если в этой точке левосторонний предел равен правостороннему.
Пример:
Доказать, что функция имеет в точке
устранимый разрыв.
Решение:
В точке функция имеет неопределенность
поэтому эта точка является точкой, подозрительной на разрыв. Вычислив в этой точке лево- и правосторонний пределы
убеждаемся, что данная точка является точкой устранимого разрыва.
Определение: Все остальные точки разрыва называются точками разрыва II рода.
Замечание: Для точек разрыва второго рода характерен тот факт, что хотя бы
один из односторонних пределов равен т.е. в такой точке функция терпит бесконечный разрыв.
Пример:
Исследовать на непрерывность функцию
Решение:
Найдем область определения этой функции: т.е. точка
является точкой подозрительной на разрыв. Вычислим лево- и правосторонние пределы в этой точке:
Так как левосторонний предел конечен, а правосторонний предел бесконечен, то в изучаемой точке данная функция терпит разрыв II рода.
Пример:
Исследовать на непрерывность функцию
Решение:
Найдем область определения этой функции: т.е. точка
является точкой подозрительной на разрыв. Вычислим лево- и правосторонние пределы в этой точке:
Так как левосторонний и правосторонний пределы бесконечены, то в изучаемой точке данная функция терпит разрыв II рода.
Операции над непрерывными функциями
Теорема: Сумма (разность) непрерывных функций есть непрерывная функция.
Доказательство: Докажем приведенную теорему для суммы двух функций которые определены в некоторой
-окрестности точки
в которой лево- и правосторонние пределы равны между собой. Так как функции
непрерывны в некоторой
-окрестности точки
то выполняются равенства:
В силу того, что существуют конечные пределы обеих функций, то по теореме о пределе суммы двух функций имеем, что
Аналогично теорема доказывается для суммы (разности) любого конечного числа непрерывных функций. Нижеприведенные теоремы доказываются так же, как и теорема.
Теорема: Произведение непрерывных функций есть непрерывная функция.
Теорема: Частное двух непрерывных функций при условии, что во всех точках общей области определения функция
, есть непрерывная функция.
Теорема: Сложная функция от непрерывных функций есть непрерывная функция.
Схема исследования функции на непрерывность
Исследование функции на непрерывность проводят по следующей схеме:
Пример:
Исследовать на непрерывность функцию
Решение:
Согласно схеме исследования функции на непрерывность имеем:
Рис. 65. Поведение графика функции в малой окрестности точки разрыва второго рода
Из рисунка видно, что график функции —неограниченно приближается к вертикальной прямой
нигде не пересекая эту прямую.
Свойства непрерывных функций на отрезке (a; b)
Свойства непрерывных функций на отрезке .
Определение: Замкнутый интервал будем называть сегментом.
Приведем без доказательства свойства непрерывных функций на сегменте .
Теорема: Если функция непрерывна на сегменте
, то она достигает своего наименьшего (
) и наибольшего (
) значения либо во внутренних точках сегмента, либо на его концах.
Пример:
Привести примеры графиков функций, удовлетворяющих условиям теорем(см. Рис. 66).
Рис. 66. Графики функций, удовлетворяющих условиям теоремы.
Решение:
На графике а) функция достигает своего наименьшего и наибольшего
значений на концах сегмента
На графике б) функция достигает своего наименьшего
и наибольшего значения
во внутренних точках сегмента
На графике в) функция достигает своего наименьшего значения
на левом конце сегмента
а наибольшего значения
во внутренней точке сегмента
Тб. Если функция непрерывна на сегменте
и достигает своего наименьшего (
) и наибольшего (
) значений, то для любого вещественного числа С, удовлетворяющего неравенству
, найдется хотя бы одна точка
такая, что
.
Пример:
Изобразить графики функций, удовлетворяющих условиям Тб (см. Рис. 67).
Рис. 67. Графики функций, удовлетворяющих условиям Тб.
Теорема: Если функция непрерывна на сегменте
и на его концах принимает значения разных знаков, то найдется хотя бы одна точка
такая, что
.
Пример:
Изобразить графики функций, удовлетворяющих условиям теоремы(см. Рис. 68).
Рис. 68. Графики функций, удовлетворяющих условиям теоремы.
На графике а) существует единственная точка, в которой выполняются условия теоремы. На графиках б) и в) таких точек две и четыре, соответственно. Однако в случаях б) и в) для удовлетворения условий теоремы надо разбивать сегмент на отдельные отрезки.
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Математический анализ
Записки лекций
Илья Щуров (НИУ ВШЭ)
13 Непрерывность
13.1 Непрерывность функции в точке
13.1.1 Определение непрерывности
Условие (13.1) можно переписать в кванторах:
13.1.2 Односторонняя непрерывность
Аналогично определяется непрерывность слева.
13.1.3 Какие функции непрерывны
Например, все вычисления на компьютере с вещественными числами происходят с некоторыми погрешностями: компьютер не может запомнить бесконечное число цифр после запятой, и постоянно прибегает к округлениям. Если бы не непрерывность, компьютерные вычисления были бы в основном бессмысленными.
Поэтому очень важно понимать, какие функции являются непрерывными, и в каких случаях непрерывность может нарушаться. К счастью, те функции, которые нас интересуют, часто являются непрерывными на своей области определения.
Остальные утверждения доказываются аналогично. ∎
На семинарах мы также докажем непрерывность синуса, косинуса, тангенса, экспоненты, логарифма, квадратного корня на всей области определения. Ниже мы докажем ещё одну важную теорему — о непрерывности композиции — но пока давайте поговорим, что бывает, когда непрерывность нарушается.
13.2 Разрывы
Какими бывают разрывы? Тут принята такая немножко условия классификация.
13.2.1 Разрывы первого рода
Если односторонние пределы существуют, но различны, такой разрыв называется скачком.
13.2.2 Разрывы второго рода
Может статься, что предел f ( x ) при x → x 0 не существует, но при этом равен бесконечности (вы ведь помните, что когда предел равен бесконечности, он не существует?). Такие разрывы мы будем называть полюсами.
Всё остальное будем называть существенными разрывами. (Тут терминология может быть не очень однозначной и разные источники могут вкладывать несколько разный смысл. Например, можно считать полюсом любой разрыв с вертикальной асимптотой. Но мы будем придерживаться этих определений.)
13.3 Непрерывность композиции
13.3.1 Сложные функции
13.3.2 Предел сложной функции
Теперь сформулируем правильное утверждение.
Нам дано. Первый предел:
Итак, искомая δ задаётся следующим образом:
Неверный ответ. Разве π / x всюду непрерывна?
Неверный ответ. Думаете, только в нуле? В этом выражении больше, чем один знаменатель.
Какие функции непрерывны на своих областях определения ответ
Теорема 1.
Пусть функция \(f\left( x \right)\) непрерывна в точке \(x = a\) и \(C\) является константой. Тогда функция \(Cf\left( x \right)\) также непрерывна при \(x = a\).
Теорема 2.
Даны две функции \(
Теорема 3.
Предположим, что две функции \(
Теорема 4.
Даны две функции \(
Теорема 5.
Предположим, что функция \(
Теорема 6 (Теорема о предельном значении).
Если функция \(
Теорема 7 (Теорема о промежуточном значении).
Пусть функция \(
Все элементарные функции являются непрерывными в любой точке свой области определения.
Непрерывность функции: определение, точки разрыва, примеры
Непрерывные функции образуют основной класс функций, с которыми оперирует математический анализ. Представление о непрерывной функции можно получить, если сказать, что график ее непрерывен, т.е. его можно начертить, не отрывая карандаша от бумаги.
К абстракции непрерывности человек пришел, наблюдая окружающие его, так называемые сплошные среды — твердые, жидкие или газообразные, например металлы, воду, воздух. На самом деле, как теперь хорошо известно, всякая физическая среда представляет собой скопление большого числа отделенных друг от друга движущихся частиц. Однако эти частицы и расстояния между ними настолько малы по сравнению с объемами сред, с которыми приходится иметь дело в макроскопических физических явлениях, что многие такие явления можно достаточно хорошо изучать, если считать приближенно массу изучаемой среды без всяких просветов, непрерывно распределенной в занятом ею пространстве. На таком допущении базируются многие физические дисциплины, например гидродинамика, аэродинамика, теория упругости. Математическое понятие непрерывности играет, естественно, в этих дисциплинах, как и во многих других, большую роль.
Дадим еще такое определение:
Функция называется непрерывной для всех значений, принадлежащих к данному отрезку, если она непрерывна в каждой точке этого отрезка, т.е. в каждой такой точке выполняется равенство (1).
Таким образом, для того чтобы ввести математическое определение свойства функции, заключающегося в том, что график ее есть непрерывная (в обычном понимании этого термина) кривая, появилась необходимость определить сначала локальное, местное свойство непрерывности (непрерывность в точке ), а затем на этой основе определить непрерывность функции на целом отрезке.
Приведенное определение, впервые указанное в начале прошлого столетия Коши, является общепринятым в современном математическом анализе. Проверка на многочисленных конкретных примерах показала, что это определение хорошо соответствует сложившемуся у нас практическому представлению о непрерывной функции, например представлению о непрерывном графике.
Функция может служить примером разрывной в точке функции. Ряд других примеров разрывных функций дают графики, изображенные на рис. 1.
Определение непрерывности функции
Сумма, разность и произведение конечного числа непрерывных функций есть функция непрерывная.
Точки разрыва функции
Решение. Найдем приращение функции
Решение. Для доказательства найдем приращение функции при переходе значения аргумента от к
Найдем предел приращения функции при
Так как предел приращения функции при равен нулю, то функция при непрерывна.
Пример 3. Определить характер разрыва функций и построить графики:
y=\operatorname
a) При функция не определена, найдём односторонние пределы в этой точки:
Следовательно, в точке функция имеет разрыв второго рода.
c) Функция определена на всей числовой оси, неэлементарная, так как в точке аналитическое выражение функции меняется. Исследуем непрерывность функции в точке :
Очевидно, что в точке функция имеет устранимый разрыв.
d) Найдём левый и правый пределы функции в точке :
Итак, в точке справа функция имеет разрыв второго рода, а слева – непрерывность.
e) Найдём односторонние пределы функции в точке :
Итак, в точке с обеих сторон у функции скачки.