какие характеристики процессора влияют на его

Основные характеристики процессора

Производительность центрального процессора зависит от показателей разрядности, частоты и особенностей архитектуры процессора. От этой интегральной величины зависит работа ЭВМ в целом, а значит, при выборе придется обратить внимание на все характеристики процессора. Процессор должен обладать достаточной производительностью для решения определенных задач.

какие характеристики процессора влияют на его. Смотреть фото какие характеристики процессора влияют на его. Смотреть картинку какие характеристики процессора влияют на его. Картинка про какие характеристики процессора влияют на его. Фото какие характеристики процессора влияют на его

Производители процессоров

На рынке процессоров два крупных, лидирующих производителя: Intel и AMD. Характеристики процессоров у разных производителей различны. Многое зависит от совершенства технологий, использованных материалов, компоновки и других нюансов.

Тактовая частота процессора

Тактовая частота указывает скорость работы процессора в герцах (ГГц) – количество рабочих операций в секунду. Тактовая частота процессора подразделяется на внутреннюю и внешнюю. Да, эта характеристика процессора значительно влияет на скорость работы вашего ПК, но производительность зависит не только он неё.

Разрядность процессора

Разрядность представляет собой предельное количество разрядов двоичного числа, над которым единовременно может производиться машинная операция передачи информации. Чем больше разрядность, тем выше производительность процессора. Сейчас большинство процессоров имеют разрядность в 64 бита и поддерживают от 4 гигабайт ОЗУ. Это одна из основных характеристик процессора, но далеко не единственная, при выборе нужно руководствоваться не только ей.

Размерность технологического процесса

Определяет размеры транзистора (толщину и длину затвора). Частота работы кристалла определяется частотой переключений транзисторов (из закрытого состояния в открытое). Если меньше размер, значит меньше площадь, а значит и выделение тепла. Размерность технологического процесса измеряется в нанометрах, чем меньше этот показатель, тем лучше.

Сокет или разъем

Гнездовой или щелевой разъем, предназначен для интеграции чипа ЦП в схему материнской платы. Каждый разъем допускает установку только определенного типа процессоров, сверьте сокет выбранного процессора с вашей материнской платой, она должна ему соответствовать.

Тип гнездового разъема:

Кэш-память процессора

Кэш-память процессора является одной из ключевых характеристик, на которую стоит обратить внимание при выборе. Кэш-память – массив сверхскоростной энергозависимой ОЗУ. Является буфером, в котором хранятся данные, с которыми процессор взаимодействует чаще или взаимодействовал в процессе последних операций. Благодаря этому уменьшается количество обращений процессора к основной памяти. Этот вид памяти делится на три уровня: L1, L2, L3. Каждый из уровней отличается по размеру памяти и скорости, и задачи ускорения у них отличаются. L1 — самый маленький и быстрый, L3 — самый большой и медленный. Чем больше объем кэш-памяти, тем лучше. К каждому уровню процессор обращается поочередно (от меньшего к большему), пока не обнаружит в одном из них нужную информацию. Если ничего не найдено, обращается к оперативной памяти.

Энергопотребление и тепловыделение

Чем выше энергопотребление процессора, тем выше его тепловыделение. Нужно позаботиться о достаточном охлаждении.

TDP (Thermal Design Power) – параметр, указывающий на то количество тепла, которое способна отвести охлаждающая система от определенного процессора при наибольшей нагрузке. Значение представлено в ваттах при максимальной температуре корпуса процессора.

ACP (Average CPU Power) – средняя мощность процессора, показывающая энергопотребление процессора при конкретных задачах.

Значение параметра ACP на практике всегда ниже TDP.

Рабочая температура процессора

Наивысший показатель температуры поверхности процессора, при котором возможна нормальная работа (54-100 °С). Этот показатель зависит от нагрузки на процессор и от качества отвода тепла. При превышении предела компьютер либо перезагрузится, либо просто отключится. Это очень важная характеристика процессора, которая напрямую влияет на выбор типа охлаждения.

Множитель и системная шина

Эти параметры необходимы скорее тем, кто со временем планирует разогнать свой камень. Front Side Bus – частота системной шины материнской платы. Тактовая частота процессора является произведением частоты FSB на множитель процессора. У большинства процессоров заблокирован разгон по множителю, поэтому приходится разгонять по шине. Стоит ознакомиться с этой характеристикой процессора более детально, если вы через какой-то промежуток времени захотите увеличить производительность программным способом, без апгрейда железа.

Встроенное графическое ядро

Процессор может быть оснащен графическим ядром, отвечающим за вывод изображения на ваш монитор. В последние годы, встроенные видеокарты такого рода хорошо оптимизированы и без проблем тянут основной пакет программ и большинство игр на средних или минимальных настройках. Для работы в офисных приложениях и серфинга в интернете, просмотра Full HD видео и игры на средних настройках такой видеокарты вполне достаточно, и это Intel.

Что касается процессоров от компании AMD, их встроенные графические процессоры более производительные, что делает процессоры от AMD приоритетнее для любителей игровых приложений, желающих сэкономить на покупке дискретной видеокарты.

Количество ядер (потоков)

Многоядерность одна из важнейших характеристик центрального процессора, но в последнее время ей уделяют слишком много внимания. Да, сейчас уже нужно постараться, чтобы найти рабочие одноядерные процессоры, они себя благополучно изжили. На замену одноядерным пришли процессоры с 2, 4 и 8 ядрами.

Если 2 и 4-ядерные вошли в обиход очень быстро, процессоры с 8 ядрами пока не так востребованы. Для использования офисных приложений и серфинга в интернете достаточно 2 ядер, 4 ядра требуются для САПР и графических приложений, которым просто необходимо работать в несколько потоков.

Что касается 8 ядер, очень мало программ поддерживают так много потоков, а значит, такой процессор для большинства приложений просто бесполезен. Обычно, чем меньше потоков, тем больше тактовая частота. Из этого следует, что если программа, адаптированная под 4 ядра, а не под 8, на 8-ядерном процессе она будет работать медленнее. Но этот процессор отличное решение для тех, кому необходимо работать сразу в большом количестве требовательных программ одновременно. Равномерно распределив нагрузку по ядрам процессора можно наслаждаться отличной производительностью во всех необходимых программ.

В большинстве процессоров количество физических ядер соответствует количеству потоков: 8 ядер – 8 потоков. Но есть процессоры, где благодаря Hyper-Threading, к примеру, 4-ядерный процессор может обрабатывать 8 потоков одновременно.

Заключение

Из статьи вы узнали о существующих характеристиках центральных процессоров, теперь вы в курсе, на что нужно обратить внимание при выборе. Если информация в статье больше не актуальна, сообщите об этом в комментариях, тогда мы обновим или дополним информацию в статье.

Источник

Влияние различных характеристик на быстродействие процессоров современных архитектур

Мы продолжаем серию материалов, посвящённых исследованию производительности современных процессоров в реальных задачах и влиянию различных их характеристик на производительность. В этой статье мы затронем тему, которую ранее не исследовали: влияние на производительность частоты работы ядра. Теоретически данный вопрос в достаточной степени проработан: в любой конкретной архитектуре при росте частоты работы ядра, производительность процессора должна сначала практически линейно расти, потом, на определённом этапе, темпы роста должны замедляться, и, наконец, начиная с некой частоты, дальнейшее её наращивание становится уже бессмысленным т.к. перестаёт приводить к росту производительности процессора. Причина этих явлений также давно обозначена: производительность «упирается» в подсистему памяти, которая просто не успевает доставлять данные и код с такой скоростью, с которой их обрабатывает ядро CPU.

Нас же, как практиков, заинтересует простой вопрос: где именно наступают эти «переломные частотные моменты» в случае с конкретными процессорными архитектурами? Сегодня мы исследуем данный вопрос применительно к процессору Intel Core i7.

Конфигурация тестовых стендов

Множитель внеядра* (да простят нас читатели за этот новояз, но попробуйте сами перевести одним словом англоязычный термин «uncore») у всех процессоров серии Core i7 одинаков — x16 (частота работы внеядра, соответственно — 2,13 ГГц). Технология Hyper-Threading была включена, а вот Turbo Boost пришлось выключить т.к. в данном исследовании нам был нужен процессор, работающий на строго определённых частотах.

* — Часть процессоров Core i7, находящаяся «снаружи ядра», и работающая на своей, отличной от ядра частоте. Две наиболее значимые части внеядра — контроллер памяти и контроллер процессорной шины.

На первом графике приведена кривая роста производительности, построенная на основании баллов производительности каждого «процессора», вычисленных, согласно нашей методике тестирования (красная линия). Синяя же линия олицетворяет собой «идеально масштабируемую» производительность, которая вычисляется, исходя из предыдущего результата и предположения о том, что следующий результат будет настолько же больше, насколько выросла частота процессора. Т.е. если 1,86 ГГц CPU продемонстрировал в некой группе производительность X, подразумевается, что «идеальная» производительность 2,26 ГГц CPU будет равна Y=X*2,26/1,86. Соответственно, производительность 2,66 ГГц процессора будет равна Z=Y*2,66/2,26. Зачем эта линия на графике? Нам кажется, что она позволяет сделать результаты данного тестирования существенно более наглядными. В конце концов, конкретные цифры всегда можно взять из таблицы с подробными результатами, а вот степень расхождения между практикой и идеалом проще оценивать визуально.

На втором графике (если в нём есть необходимость) линии олицетворяют прирост производительности по мере увеличения частоты для каждого приложения из данной тестовой группы в отдельности. Отсчёт начинается с системы с частотой CPU 1,86 ГГц, производительность которой, соответственно, принята за 100% — поэтому все линии выходят из одной точки. Этот график позволяет нам более точно отследить поведение отдельных программ.

И, наконец — таблица с результатами тестов (также по каждому приложению в отдельности). Начиная со столбика «2,26 ГГц», в ней присутствуют не только абсолютные величины результатов, но и некие проценты. Что это? Это цифра, отражающая прирост производительности данной системы по отношению к предыдущей. Запомните, это очень важно: по отношению к предыдущей, а не к исходной. Таким образом, если мы видим в столбике «2,66 ГГц» цифру 22% — это значит, что система в данном приложении показала на 22% более хороший результат, чем при частоте процессора 2,26 ГГц.

Учитывая то, что разброс +/-2% у нас принято считать допустимой погрешностью измерений, мы получаем 3 диапазона: от +20 до +24%, от +16 до +20%, и от +13 до +17%. Хотя, впрочем, нижние границы нас не очень интересуют: масштабируемость запросто может являться неидеальной, и даже равняться нулю (отрицательной, теоретически, быть не может). А вот суперлинейный прирост с идеальной точки зрения невозможен — поэтому значения выше +24%, +20% и +17%, соответственно, придётся как-то объяснять.

Также, традиционно, мы даём любознательным читателям ссылку на таблицу в формате Microsoft Excel, в которой приведены все результаты тестов в самом подробном виде. А также, для удобства их анализа, присутствуют две дополнительные закладки — «Compare #1» и «Compare #2». На них, как и в таблицах, присутствующих в статье, произведено сравнение четырёх систем в процентном отношении. Разница очень простая: в случае с Compare #1, проценты вычисляются так же, как в таблицах в статье, — по отношению к предыдущей системе, а в случае с Compare #2, все системы сравниваются с базовой (1,86 ГГц).

3D-визуализация

1,86 GHz2,26 GHz2,66 GHz3,06 GHz
3ds max ↑*10,5712,6420%15,4322%16,436%
Lightwave ↓23,0218,6423%15,2822%12,8719%
Maya ↑2,553,1222%3,8423%4,2210%
SolidWorks ↓70,6464,510%60,726%57,85%
Pro/ENGINEER ↓1457123518%109313%10237%
UGS NX ↑2,352,7216%2,730%3,2318%
Group Score ↑9411118%12714%14010%

* — здесь и далее в таблицах стрелочкой вверх (↑) помечены те тесты, где лучшим является больший результат, стрелочкой вниз (↓) — тесты, где лучшим является меньший результат.

Ждать от группы визуализации идеальной масштабируемости не стоило — всё-таки, по идее, в данном процессе не последнюю роль должна играть видеокарта. Однако, как оказалось, пакеты трёхмерного моделирования при интерактивной работе весьма существенно зависят от процессора, несмотря на использование различных 3D API (Lightwave и Maya — OpenGL, 3ds max — Direct3D). Собственно, чемпионом является как раз Lightwave, график которого представляет собой практически идеально прямую линию. Инженерные пакеты намного более скромны в аппетитах (то есть, получается, лучше используют видеокарту). Сверхлинейный рост производительности наблюдается при переходе с частоты 2,26 ГГц на частоту 2,66 ГГц (три раза) и при переходе с частоты 2,66 ГГц на частоту 3,06 ГГц (один раз). Пока что просто запомним это.

Трёхмерный рендеринг

1,86 GHz2,26 GHz2,66 GHz3,06 GHz
3ds max ↑11,1513,4120%15,919%17,611%
Lightwave ↓120,999,0622%84,6617%74,4114%
Maya ↑03:3502:5721%02:3117%02:1314%
Group Score ↑10813121%15418%17312%

Рендеринг, как и следовало ожидать, масштабируется практически идеально, причём независимо от пакета (и, соответственно, рендер-движка) — линии 3ds max, Maya и Lightwave на индивидуальном графике практически слились в одну толстую линию.

Научные и инженерные расчёты

1,86 GHz2,26 GHz2,66 GHz3,06 GHz
Maya ↑5,776,9721%8,3320%9,8218%
SolidWorks ↓60,4851,0618%41,3124%40,961%
Pro/ENGINEER ↓2658218622%172527%153912%
UGS NX ↓3,574,1917%4,9618%5,5712%
MAPLE ↑0,12960,156921%0,192523%0,219714%
Mathematica ↑1,81342,22523%2,714222%3,036412%
MATLAB ↓0,0632290,05221221%0,04501116%0,040611%
Group Score ↑8510220%12321%13711%

Напомним, что в «вычислительной» группе участвуют приложения трёх типов: инженерные CAD, математические пакеты, и даже один пакет трёхмерного моделирования. Ситуация сложилась забавная: ни в одной группе, состоящей более чем из одного члена, «согласья нет». MAPLE и Mathematica возглавляют рейтинг самых хорошо масштабирующихся приложений (к ним присоединяется пакет трёхмерного моделирования Maya), однако у MATLAB с масштабируемостью скорости при росте частоты всё существенно хуже, особенно под конец. Инженерные CAD и вовсе разбрелись кто куда: у Pro/ENGINEER с масштабируемостью всё отлично, у UGS NX — похуже (его линия практически совпадает с MATLAB), а SolidWorks при переходе с 2,66 ГГц на 3,06 ГГц вообще практически никакого ускорения не получил. Соответственно, бессмысленно пытаться рассуждать о каких-то тенденциях при таком разнобое. Впрочем, благодаря приложениям-лидерам, средняя масштабируемость по группе вышла очень высокой (см. первый график — расхождение с идеалом весьма незначительно и начинается только под конец). И снова мы наблюдаем случаи сверхлинейного роста производительности, причём наиболее массовые при переходе с частоты 2,26 ГГц на 2,66 ГГц. Обратите внимание: учитывая количество случаев, это уже можно смело считать обозначившейся тенденцией.

Растровая графика

1,86 GHz2,26 GHz2,66 GHz3,06 GHz
ACDSee ↓07:3606:0924%05:2215%05:210%
Paint.NET ↓00:2400:2020%00:1718%00:1513%
PaintShop Pro ↓15:4213:0520%10:2426%09:486%
Photoimpact ↓10:1308:2521%07:1516%06:3311%
Photoshop ↓08:5207:3218%06:2019%05:509%
Group Score ↑9010820%12919%1387%

В группе растровой графики можно отметить поведение двух программ, выбивающихся из общей колеи: пакет ACDSee, который под конец перестал масштабироваться вообще (несмотря на то, что до этого у него всё было в норме и из общей группы он ничем не выделялся), и PaintShop Pro, у которого наблюдается резкий сверхлинейный скачок производительности. опять при переходе 2,26 → 2,66 ГГц! Чтобы не томить читателей, скажем сразу: увидим мы этот феномен ещё не раз и не два, а возможное объяснение ему мы дадим после комментариев ко всем тестам, т.к. по нашей версии оно универсальное, и от типа программного обеспечения совершенно не зависит.

Сжатие данных без потерь

1,86 GHz2,26 GHz2,66 GHz3,06 GHz
7-Zip ↓06:0605:0221%04:1220%03:4612%
WinRAR ↓01:5701:3424%01:1821%01:154%
Group Score ↑8911024%13220%1428%

Почти идеальная масштабируемость — и опять у WinRAR сверхлинейный рост в уже хорошо нам знакомой точке.

Компиляция

И снова мы наблюдаем «горб» на графике в районе 2,66 ГГц, где реальная производительность несколько превосходит идеальный прогноз. Однако расхождение не очень большое (см. таблицу с подробными результатами), около 2%, поэтому нельзя утверждать точно, имеем ли мы дело с вышеописанным феноменом, или же с банальной погрешностью измерений. Хотя, конечно, то, что эта «погрешность» опять возникла именно на точке 2,66 ГГц — конечно, наводит на определённые размышления. 🙂

Кодирование аудио

Достаточно странный результат, требующий дополнительных исследованний. Создаётся впечатление, что тест во что-то «упёрся», и это явно не процессор. Судя по данным предыдущих тестов, подозревать подсистему памяти не стоит. Быть может, жёсткий диск.

Кодирование видео

1,86 GHz2,26 GHz2,66 GHz3,06 GHz
Canopus ProCoder ↓05:2804:3320%03:3925%03:1811%
DivX ↓05:5805:0219%04:2215%03:5312%
Mainconcept VC-1 ↓08:3407:0920%06:0119%05:2611%
x264 ↓09:5308:1221%07:0217%06:1014%
XviD ↓03:4003:0519%02:3916%02:2212%
Group Score ↑9711721%13818%15412%

Одна из самых хорошо масштабируемых групп в этом тестировании, причём график по приложениям тоже очень плотный — все кривые, кроме одной, почти что складываются в одну толстую линию. Как ни странно, лидером группы является довольно старый Canopus ProCoder. Впрочем, данный феномен можно попытаться объяснить тем, что он же не очень хорошо использует многоядерность: более современные кодеки, умеющие задействовать все 8 ядер, должны создавать большую нагрузку на подсистему памяти — и, соответственно, зависеть ещё и от неё. А Canopus ProCoder остаётся зависеть исключительно от процессора.

Ситуация настолько похожа на предыдущую, что можно было бы сэкономить на диаграммах, использовав оба раза одну и ту же. 🙂 Впрочем, ничего странного в этом нет: коль SPECjvm способен создавать хорошую нагрузку для процессоров с любым количеством ядер — неудивительно, что он и масштабируется хорошо при повышении быстродействия CPU.

Трёхмерные игры

1,86 GHz2,26 GHz2,66 GHz3,06 GHz
STALKER: Clear Sky ↑485515%597%602%
Devil May Cry 4 ↑1951982%1990%2022%
Far Cry 2 ↑495716%629%655%
Grand Theft Auto 4 ↑58639%653%662%
Lost Planet ↑43430%430%430%
Unreal Tournament 3 ↑12914210%1559%1656%
Crysis: Warhead ↑46484%5413%564%
World in Conflict ↑45487%504%500%
Left 4 Dead ↑10111615%14222%1506%
Group Score ↑1021097%1166%1182%

Тройка лидеров по процессорозависимости: Left 4 Dead*, Far Cry 2 и Unreal Tournament 3, причём Left 4 Dead идёт впереди всех с весомым отрывом. Следует заметить, что вхождение в тройку Unreal Tournament 3 может быть объяснено особенностью самого теста: в отличие от других игровых бенчмарков, бенчмарк для UT3 не воспроизводит заранее записанную демку, а имитирует реальную игру (CTF), с той только разницей, что всеми игроками на поле управляет компьютер. Потенциально, это действительно гораздо более сложная для процессора задача т.к. управление 8-ю игроками в режиме реального времени создаст хорошую вычислительную нагрузку даже при самом примитивном «искусственном интеллекте». Однако в целом всё плохо (или хорошо — зависит от того, с какой стороны смотреть): игровая группа демонстрирует самую низкую процессорозависимость, являясь по данному параметру «лидером наоборот» сегодняшнего тестирования.

* — мы привели результаты Left 4 Dead в таблице и на диаграмме т.к. они оказались самыми показательными с точки зрения зависимости от процессора, но не стоит забывать о том, что данный бенчмарк входит в группу «опциональных тестов», и, соответственно, не влияет на общий балл игровой группы.

Карты на стол!

Что ж, настала пора наконец-таки дать объяснения последнему неразгаданному феномену: массовым случаям сверхлинейного роста производительности при переходе от частоты 2,26 ГГц к частоте 2,66 ГГц. Быть может, мы кому-то покажемся несколько занудными :), однако давайте все вместе «станцуем от печки» — честное слово, так интереснее.

Итак: что нужно для того, чтобы на одном из «переходов» образовался сверхлинейный прирост производительности? Вопрос кажется дурацким (ибо ответ в первом приближении: «чтобы следующий по частоте процессор был сверхлинейно быстрее»), однако подождите делать преждевременные выводы: быстрее — отнюдь не единственный вариант. Если представить нашу гипотетическую идеальную производительность как функцию от частоты, т.е. быстродействие (S) = частота (F) * некий коэффициент (K), то сверхлинейный рост невозможен. Что нужно для того, чтобы он появился? Для этого нужно, чтобы следующему по частоте процессору спустился с небес некий бонус (+B) или. чтобы предыдущий процессор получил бонус отрицательный (-B) т.е. оказался бы медленнее, чем ему положено согласно его частоты. Итак, чувствуете, как изменилась наша задача? Теперь нам нужно найти ответ не на один вопрос, а на один из двух: либо на вопрос «почему 2,66 ГГц процессор такой быстрый?», либо «почему 2,26 ГГц такой медленный?» При этом также нельзя исключать того, что существуют ответы на оба вопроса*.

* — Вы правильно догадались: так оно на самом деле и есть. 🙂

Искали бы мы эти ответы, наверное, намного дольше, если бы не один счастливый факт: мы-то чётко понимали, что де-факто, физически, процессор был один и тот же. Изменялся только коэффициент умножения, с помощью которого получается частота работы ядра. Значит, если отбросить магию маленьких зелёных человечков, ответ может быть один: дело именно в коэффициенте умножения. Впрочем, это ещё не ответ. Это лишь область для поисков.

Ещё одно наше везение состояло в том, что коэффициенты умножения «быстрого» и «медленного» процессора уж очень сильно разнятся: 17 и 20. Первое число — вообще простое, т.е. делится только само на себя и на единицу. Второе — делится на 2, 4, 5 и 10. И вот как раз на цифре «4» прозвучала та самая «эврика!» — ну да, конечно же — коэффициент умножения внеядра во всех случаях был равен 16, а это число тоже делится на 4!

Подводя итоги: видимо, расходы на согласование между ядром и внеядром, когда они работают на разных частотах — действительно существенный фактор, способный влиять в том числе на быстродействие процессора. Соотношение между коэффициентами умножения ядра и внеядра в случае с частотой первого 2,26 ГГц, довольно «неудобное» — 17:16. И ввиду того, что 17 — простое число, сократить эту дробь невозможно. В случае с 2,66 ГГц процессором, соотношение составляет 20:16, что легко сокращается до 5:4. Судя по всему, универсальное правило «чем сильнее асинхронность — тем хуже», работает и в данном случае. Косвенным подтверждением этого служит вторая диаграмма, где сравнивается идеальный и реальный средний прирост производительности: чётко видно, что 2,66 ГГц процессор намного ближе к своему идеалу, чем 2,26 ГГц.

Разумеется, мы не можем сейчас настаивать на том, что изложенная гипотеза является доказанной: выявленный феномен требует дополнительного исследования, вполне возможно, с привлечением низкоуровневых тестов, которые в подобных случаях обеспечивают большую точность и больший разброс, нежели тесты с помощью реального ПО. Однако в рамках ныне проведенного исследования, гипотеза выглядит вполне непротиворечиво, и, к тому же, никакого другого объяснения вышеизложенным фактам, мы придумать пока не смогли.

Что же касается двух случаев сверхлинейного роста при переходе границы 2,66 / 3,06 ГГц — то их нам, увы, остаётся объявить «артефактами» данного тестирования т.к. с логической точки зрения они необъяснимы, а количество случаев настолько невелико, что списать всё на случайность ещё можно.

Конечно, несколько неожиданно наблюдать настолько стремительно возрастающую разницу между идеальным (под идеальным мы подразумеваем соответствующий росту частоты) приростом производительности и реальным уже на частоте 3,06 ГГц. Фактически, это означает, что даже в лучшем случае производительность гипотетического Core i7 3,46 ГГц будет равна примерно 156 баллов по нашей шкале (3,46 умножить на предполагаемую эффективность порядка 45 баллов за гигагерц) — и это ещё достаточно оптимистичный прогноз. С другой стороны — может, увеличение объёма кэша третьего уровня позволит поднять общую эффективность системы, так что бить тревогу ещё рановато. Собственно, это косвенно подтверждается достаточно спокойной позицией Intel, которая отнюдь не торопится с анонсами новых процессорных архитектур, предпочитая «подтягивать хвосты» в других областях — например, в области графических решений и их интеграции с CPU. Поэтому в целом, мы бы сказали, ничего удивительного нам сегодняшнее тестирование не открыло: да, как правило, в рамках одной и той же архитектуры, чем больше частота — тем меньше эффективность. Это давно всем известно, и блестяще подтвердилось практическими результатами.

Однако раз уж мы провели такое полномасштабное тестирование, грех было бы останавливаться на одной только процессорной тематике, не затронув сами программы. Давайте посмотрим: а какие группы ПО из используемой методики как реагируют на увеличение частоты работы процессорного ядра? Для начала, возьмём разницу между двумя крайними точками: 1,86 ГГц и 3,06 ГГц.

Распределение вполне ожидаемое: научные и инженерные вычисления, рендеринг, архивация, кодирование видео. Несколько правда, странно наличие в нижних строчках группы кодирования аудио. Самая нижняя позиция игровой подгруппы, наоборот, лишь подтверждает правильность нашего выбора опций для тестирования: с нормальными графическими настройками производительность в играх и не должна сильно зависеть от процессора.

А теперь давайте посмотрим на тот же рейтинг, но уже с точки зрения разницы между двумя последними позициями: 2,66 ГГц и 3,06 ГГц. Эта диаграмма позволит нам ответить на вопрос: какие приложения сохраняют хорошую масштабируемость даже на самом верхнем пределе частот?

Первый сюрприз связан как раз с первым же местом: лучше всего масштабируются на верхних частотах, как оказывается, Java-приложения. Больше сюрпризов не наблюдается: все те же рендеринг, кодирование видео, научные и инженерные расчёты. В целом, можно констатировать, что никаких расхождений с нашими интуитивными ощущениями две последних диаграммы не вызывают: даже не видя результатов, руководствуясь одними только логикой и здравым смыслом, пятёрку лидеров любой из редакторов процессорного раздела назвал бы легко.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *