какие реакции возникают в различных опорах
Как определить реакции опор или найти опорные реакции: для балки или рамы
Что такое реакция опоры или опорная реакция?
Реакция опоры или опорная реакция – это силовой фактор, возникающий в опоре, от действия на конструкцию внешней нагрузки. В опорах, как правило, возникают реактивные силы, которые для удобства ручного расчета раскладываются на две составляющие: вертикальную и горизонтальную проекции. В жестких заделках, которые ограничивают все степени свободы конструкций, в том числе поворот сечений, также могут появляться реактивные моменты.
Зачем определять реакции опор?
На элементы конструкций всегда наложены какие-то связи, в виде опор, жестких заделок, стержней, которые ограничивают степени свободы конструкций. Под действием внешней нагрузки в этих связях возникают реакции. И эти реакции опор нужно обязательно учитывать при расчетах на прочность, жесткость и т. д., так как они являются внешними нагрузками. Практически любая задача по сопромату начинается с нахождения реакций связей, именно поэтому статья будет одной из первых на этом сайте.
Пример определения опорных реакций для балки
Давайте рассмотрим пример, на котором я покажу как определяются реакции опор. Причем, постараюсь объяснить максимально просто, буквально на пальцах.
Возьмем простую балку, загруженную сосредоточенной силой F, под действием которой в опорах появляются реакции RA и RB. Также сразу вводим систему координат x, y:
Чтобы узнать численное значение эти реакций, воспользуемся первой формой уравнений равновесия:
Первое уравнение равновесия
Записываем первое уравнение. Так как оси x не параллельна ни одна из сил, то соответственно сумма проекций сил на эту ось будет равна нулю:
Таким будет первое уравнение для этой расчетной схемы.
Второе уравнение равновесия
Второе уравнение, связанно с проекциями на вертикальную ось. Здесь все намного лучше, все силы параллельны этой оси, а значит дадут проекции. Вопрос только с каким знаком, каждая сила пойдет в уравнение. Если направление силы, совпадает с направлением оси, то в уравнение она пойдет со знаком «плюс» (RA и RB). Если же сила направленна в противоположную сторону, как F, в нашем случае, то в уравнении будем записывать ее с минусом. Таким образом, получим второе уравнение равновесия:
Как видите, во втором уравнении у нас находится 2 неизвестные реакции. Чтобы, наконец, решить задачу, давайте запишем третье уравнение равновесия.
Третье уравнение равновесия
Это уравнение отличается от первых двух, так как тут речь идет о моментах. Напомню, момент – это произведение силы на плечо. В свою очередь, плечо – это перпендикуляр, опущенный от центра момента до линии действия силы. То есть это кратчайшее расстояние от центра момента до силы. В качестве центра моментов у нас назначена точка A, по условию сумма моментов всех сил должна быть равна нулю относительно этой точки.
Начинаем рассуждать и записывать уравнение. Реакция RA не дает момента, относительно точки А, так как линия действия этой силы пересекает эту точку и соответственно плечо равно нулю. А там, где нет плеча, нет и момента.
Сила F, относительно точки А, создает момент равный:
Обратите внимание, плечо в данном случае равно 2 метрам. Кроме того, важен знак момента, для этого традиционно используется правило, которое продвинутым студентам известно еще с теоретической механики:
Для силы F, как видите, момент отрицательный:
Реакция опоры — RB, создает момент равный RB · 4, так как сила поворачивает против часовой стрелки, то в уравнение записываем его со знаком плюс:
Вычисление реакций опор
Вот собственно и все, все уравнения составлены. Теперь осталось только решить их и найти искомые значения реакций опор (F=2 кН):
В этой статье, мы рассмотрели достаточно простой пример. Если вы хотите развить свои навыки по определению реакций опор, узнать различные хитрости по их нахождению, научится определять реакции, когда на конструкцию действуют силы под различными углами, учитывать в уравнениях сосредоточенные моменты и распределенную нагрузку, приступайте к изучению статьи – как определить реакции опор для балки.
Типы опор и опорные реакции
Для того чтобы балка могла воспринимать внешнюю нагрузку, она должна быть закреплена. На практике чаще всего встречаются три основных типа опор: шарнирно подвижная, шарнирно неподвижная опоры и жесткая заделка (защемление). Рассмотрим основные конструктивные особенности и реакции, возникающие в опорах балки.
Шарнирно подвижная опора (рис. 7.6) допускает перемещение и балки в горизонтальном направлении и поворот балки относительно опоры на некоторый угол (р. Вертикальное перемещение и на такой опоре отсутствует (рис. 7.6, а). В соответствии с этим в шарнирно подвижной опоре возникает только вертикальная реакция, которую будем обозначать R. Закрепление балки с помощью такой опоры накладывает на нее одну связь. Такую опору принято также изображать в виде короткого стержня (рис. 7.6, б) с шарнирами на концах (опорная связь).
Шарнирно неподвижная опора (рис. 7.7) допускает поворот балки относительно опоры и не допускает линейных перемещений (рис. 7.7, а).
Схематично такая опора изображается также в виде двух опорных связей (рис. 7.7, б, в). В опоре возникают две реакции: вертикальная R и горизонтальная Я.
Жесткая заделка (рис. 7.8) не допускает поворота и поступательного перемещения закрепленного конца балки. В ней
возникают три опорные реакции: вертикальная R, горизонтальная Н и реактивный момент М (рис. 7.8, а).
Жесткая заделка эквивалентна трем опорным связям (рис. 7.8, —
горизонтальной и двум близко расположенным вертикальным опорным связям.
Количество опорных связей в схематическом изображении опоры равно числу составляющих опорной реакции.
В балочных конструкциях встречаются конструктивные особенности в виде промежуточных шарниров (рис. 7.9, а). Особенностью балки с промежуточным шарниром является то, что вертикальные и горизонтальные перемещения сечений слева и справа от шарнира одинаковы, а углы поворота различны. Таким образом, в шарнире имеет место взаимный угол поворота сечений Д(р (рис. 7.9, б), а изгибающий момент равен нулю.
В зависимости от конструкции и расположения опор различают следующие основные типы балок. Однопролетная двухопорная балка (рис. 7.10), у которой одна опора шарнирно неподвижная, а вторая — подвижная. Такое закрепление позволяет подвижной опоре свободно перемещаться в горизонтальном направлении. При этом в балке не возникают продольные усилия.
На рис. 7.11 изображена консольная балка (или консоль); на рис. 7.12 — шарнирно опертая балка с консолями.
В рассмотренных балках (рис. 7.10—7.12) количество опорных реакций равно трем, и для их определения достаточно трех уравнений равновесия, которые можно записать для всей балки в целом:
Здесь сумма моментов составляется относительно произвольной точки О, расположенной в плоскости действия сил.
При отсутствии горизонтальных внешних нагрузок из уравнения ИХ = 0 следует, что #= 0. Два других уравнения позволяют определить оставшиеся реакции. Чаще всего более удобно вместо приведенных выше уравнений статики использовать другую систему уравнений. Например, для балки, изображенной на рис. 7.12, для определения реакций RA и RB следует составить два уравнения моментов:
в каждое из которых войдет по одному неизвестному.
Балки, в которых количество неизвестных опорных реакций равно количеству независимых уравнений статики, называются статически определимыми. Если число реакций превышает число уравнений статики, то балка называется статически неопределимой (рис. 7.13).
Особый случай представляют балки с промежуточными шарнирами. В таких балках наряду с тремя уравнениями равновесия для всей балки в целом можно составить дополнительное уравнение равновесия (моментов) для части балки, расположенной слева или справа от шарнира. Так, для балки, показанной на рис. 7.9, а, таким дополнительным уравнением будет
Таким образом, данная балка является статически определимой, так как для определения четырех опорных реакций RA, RB, НА, МА имеются четыре уравнения равновесия: к трем обычным, записанным для всей балки, добавляется одно из уравнений (7.1).
iSopromat.ru
Опорными называют реакции связей, возникающие в опорах под действием внешних нагрузок и удерживающие рассматриваемый элемент или конструкцию в статическом равновесии.
При расчете элементов конструкций реакции опор также выступают в качестве внешних усилий приложенных к рассматриваемому телу.
Подрообнее о реакциях в различных типах опор смотрите в нашем видео:
При этом некоторые задачи в сопромате можно решить без их определения. Это возможно в случаях, когда за расчетную схему принимается брус, закрепленный в жесткой опоре (заделке) без дополнительных опор, например, статически определимые консольные балки, стержни либо стержневые системы.
Реакции в шарнирных опорах
Реакции в шарнирных опорах могут возникать только по тем направлениям, в которых перемещение исключено:
нормально к опорной поверности и вдоль неё.
Моменты в шарнирных опорах не возникают.
Реакции в шарнирно-неподвижных опорах
В плоской шарнирно-неподвижной опоре исключены линейные перемещения во всех направлениях и возможен только поворот относительно шарнира.
Поэтому в таких опорах могут иметь место реакции, направленные нормально к поверхности и вдоль нее:
Они являются проекциями полной реакции R на вертикальную и горизонтальную оси.
Реакции в шарнирно-подвижных опорах
В шарнирно-подвижной опоре возможно поступательное перемещение вдоль одной из осей, следовательно в данном направлении реакции быть не может.
В данном случае, оставшаяся реакция по величине и направлению, будет равна полной.
Реакции в шарнире
В трехмерном шаровом шарнире аналогично, осевые проекции полной реакции R направляются вдоль всех трех осей:
При этом, в зависимости от схемы нагружения, некоторые из проекций могут быть равны нулю.
Расчет реакций в опорах
Количество и направление реакций зависит как от вида опор, так и от способа нагружения бруса и для статически определимых систем определяются из уравнений равновесия конструкции или ее элементов.
Для общего случая нагружения (пространственных систем), при котором может возникать до 6 реакций опор, требуется соответствующее количество уравнений.
Например, из условия, что заданная система относительно опор не перемещается в пространстве (вправо-влево, вверх-вниз, и вперед-назад) можем приравнять к нулю сумму проекций всех сил на оси x, y и z.
Из условия, что система не вращается, приравниваем к нулю суммы моментов всех нагрузок относительно соответствующих осей.
Совместное решение системы полученных уравнений позволяет определить величину и направление реакций в опорах.
Для плоской системы нагружения можно составить максимум три уравнения равновесия для определения до трех искомых усилий в опорах.
Линейно нагруженные элементы позволяют записать лишь одно уравнение равновесия.
Для расчета реакций опор статически неопределимых систем помимо уравнений статики требуются дополнительные зависимости, связывающие усилия с соответствующими им деформациями.
В некоторых случаях опорные реакции могут быть равны нулю. Это говорит лишь о том, что внешние нагрузки и остальные реакции взаимно уравновешены таким образом, что система может оставаться статичной и без соответствующего усилия в данной точке.
Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач
✔ Выполнение учебных работ
✔ Помощь на экзаменах
Теоретическая механика
3. Основные типы связей и их реакций
В задачах статики почти всегда приходится рассматривать равновесие несвободного тела, то есть тела, так или иначе закрепленного или имеющего ту или иную опору. В зависимости от вида или типа опоры можно указать следующие основные типы связей:
— гладкая поверхность (без трения);
— гибкая невесомая нить;
— невесомый стержень с шарнирно закрепленными концами;
— подвижный шарнир без трения (каток);
Рассмотрим каждый тип реакций связей подробнее.
На рис.С.6. приведены примеры реакции гладкой поверхности.
Пусть балка DE опирается в точке D о гладкую поверхность, а в точке E о гладкий выступ. Реакция гладкой поверхности приложена в точке касания и направлена по нормали к поверхности, в то время как реакция гладкого выступа приложена в точке опоры балки и направлена по нормали к оси балки.
Гибкая невесомая нить
Невесомый прямолинейный стержень с шарнирно закрепленными концами
Пусть груз Q весом закреплен в точке В прямолинейным невесомым стержнем. Трением в шарнирах можно пренебречь. Реакция невесомого стержня с шарнирно закрепленными концами приложена к точке крепления стержня с грузом и направлена по оси стержня.
Если стержень под действием нагрузки подвергается растяжению, то реакция стержня направлена в сторону, указанную на рис.С.9а. Если стержень под действием нагрузки подвергается сжатию, то реакция стержня
направлена в сторону, указанную на рис.С.9б.
Подвижный шарнир без трения (каток)
Пусть тело весом опирается точкой С на подвижный каток, который может перемещаться по гладкой плоской поверхности
(рис.С.10).
Пусть тело весом
опирается точкой D на неподвижный шарнир (рис.С.11). Реакция неподвижного шарнира приложена в точке касания тела D с осью шарнира. Направление реакции неподвижного шарнира заранее неизвестно.
При решении задач реакцию неподвижного шарнира обычно раскладывают на две составляющие, соответствующие проекциям на оси координат. При этом могут быть случаи, когда реакцию неподвижного шарнира удобнее раскладывать по другим направлениям.
Если после решения задачи окажется, что проекция силы реакции 0″ alt=» \vec
В точке Е реализуется свободное опирание балки с реакцией .
Брус DE закреплен в точке D неподвижным шарниром, а в точке Е опирается на гладкую поверхность стены (рис.С.12а).
Для бруса DE связями служат два тела: неподвижный шарнир D и гладкая поверхность стены.
Раскладываем реакцию неподвижного шарнира на две составляющие и
и показываем на чертеже предполагаемые направления этих составляющих.
Реакция гладкой стены приложена в точке Е касания балки и стены и направлена по нормали к стене (рис.С.12б).
На рис.С.13 приведен также пример использования опирания на неподвижный шарнир и гладкий выступ.
Как определить реакции в опорах?
Автор: Константин Вавилов · Опубликовано 03.02.2016 · Обновлено 15.05.2018
Привет! В этой статье, предлагаю поговорить о реакциях опор, еще известных как опорные реакции. Для успешного освоения курса – «сопротивление материалов», каждый студент должен уметь определять реакции в опорах, и этому уделяют особое внимание на термехе. А курс термеха, по традиции, читают до сопромата. Для тех, кто проспал механику на первом курсе, я подготовил данную статью, чтобы каждый желающий мог приобрести навыки по расчету опорных реакций.
Что такое реакция опоры?
Реакция опоры – это та сила, которая возникает в опоре от действия внешней нагрузки. В зависимости от конструкции опоры и ее назначения, в ней может появляться разное количество реакций, это может быть как сила, так и момент.
В начале этой статьи, расскажу о том, что должен уже уметь читатель, для успешного освоения данного урока. Если у Вас есть проблемы по поднятым вопросам на старте статьи, переходите по ссылкам на другие материалы на нашем сайте, после чего возвращайтесь к нам на чай реакции. Во второй части статьи, посмотрим, как вычисляются реакции на простейшем примере – балки, загруженной по центру сосредоточенной силой. Тут я покажу, как пользоваться уравнениями равновесия статики, как их правильно составлять. Дальше по плану, научу учитывать распределенную нагрузку, на примере той же балки. И завершать данный урок, будет пример определения реакций для плоской рамы, загруженной всевозможными типами нагрузок. Где применим уже все фишки, о которых я буду рассказывать по ходу урока. Что же, давайте начнем разбираться с реакциями!
Что вы должны уже уметь?
В этом блоке статье, я расскажу, как и обещал, что Вы должны УЖЕ уметь, чтобы понять то, что я буду докладывать дальше, про реакции опор.
Должны уметь находить сумму проекций сил
Да, это то, что Вам когда-то рассказывали на термехе, как собственно, и опорные реакции. Если Вы шарите немного в этих проекциях, то можете смело переходить к следующему пункту. Если же нет, то специально на этот случай, у меня есть другая статья, про проекции сил. Переходите, просвещайтесь, после чего, обязательно, возвращайтесь сюда!
Должны уметь составлять сумму моментов относительно точки
Немного теории! Познакомимся для начала с самим понятием момент силы. Момент силы — это произведение силы на плечо. Где плечо — это кратчайшее расстояние от точки до силы, то есть перпендикуляр. Проиллюстрирую написанное:
На изображении показано, как определить момент силы F, относительно точки O.
Так же, для моментов, нужно задаться каким-то правилом знаков. Сила относительно точки может поворачивать как по часовой стрелке, так и против нее. Я в своих уроках буду придерживаться такого правила:
Причем, это правило условно! Какое правило Вы будете использовать совсем не важно, результат получите тот же самый. В теоретической механике, к примеру, делают также как я рассказываю.
Должны разбираться в основных видах опор
Теперь поговорим о самих опорах. В этой статье, будем работать с двумя типами опор: шарнирно-подвижной и шарнирно-неподвижной.
Шарнирно-подвижная опора препятствует вертикальному перемещению элементу конструкции, в связи с чем, в ней, под действием внешней нагрузки возникает вертикальная реакция. Обозначают ее обычно как Ri, где i — точка крепления опоры.
Шарнирно-неподвижная опора имеет две реакции: вертикальную и горизонтальную. Так как препятствует перемещению в этих двух направлениях.
Вообще-то способов закрепления элементов конструкций и их условных обозначений достаточно много, но в рамках этой статьи их рассматривать не будем.
Примеры определения сил реакций опор
Вроде, всю подготовительную информацию дал, теперь будем рассматривать конкретные примеры. И начнем с простейшей расчетной схемы балки.
Определение реакций опор для балки
Возьмем балку на двух опорах, длиной 2 метра. Загрузим ее, посередине пролета, сосредоточенной силой:
Для этой расчетной схемы, выгодно записать такое условие равновесия: То есть, будем составлять две суммы моментов относительно опорных точек, из которых можно сразу выразить реакции в опорах. В шарнирно-неподвижной опоре горизонтальная реакция будет равна нулю, ввиду того, что горизонтальные силы отсутствуют. Последним уравнением, взяв сумму проекций на вертикальную ось, сможем проверить правильность нахождения опорных реакций, это сумма должна быть равна нулю.
Введем систему координат, пустим ось х вдоль балки, а ось y вертикально. Обозначим реакции в опорах как RA и RB:
Запишем уравнение моментов, относительно точки А. Сила F поворачивает ПО часовой стрелки, записываем ее со знаком МИНУС и умножаем на плечо. Сила RB поворачивает ПРОТИВ часовой стрелки, пишем ее со знаком ПЛЮС и умножаем на плечо. Все это приравниваем к нулю:
Из полученного уравнения выражаем реакцию RB.
Первая реакция найдена! Вторая реакция находится аналогично, только теперь уравнение моментов записываем относительно другой точки:
После нахождения реакций, делаем проверку:
Определение реакций опор для балки с распределенной нагрузкой
Теперь рассмотрим балку, загруженную распределенной нагрузкой:
Перед тем как посчитать реакции опор, распределенную нагрузку нужно свернуть до сосредоточенной силы. Если умножить интенсивность q на длину участка, на которой действует нагрузка, получим силу Q. Сила Q будет находиться ровно посередине балки, как и сила F в нашем первом примере:
Подробно комментировать нахождение реакций в опорах здесь, не буду. Просто приведу решение:
Определение опорных реакций для плоской рамы
Теперь, после освоения азов по расчету реакций, предлагаю выполнить расчет плоской рамы. Для примера, возьмем раму, загруженную всевозможными видами нагрузок:
Проводим ряд действий с расчетной схемой рамы:
Для такой расчетной схемы, лучше использовать следующую форму условий равновесия:
Составив первое уравнение, относительно точки A, сразу найдем реакцию в опоре B:
Записав второе уравнение, сумму проекций на ось х, найдем горизонтальную реакцию HA:
И, наконец, третье уравнение, позволит найти реакцию RA:
Не пугайтесь отрицательного значения реакции! Это значит, что при отбрасывании опоры, мы не угадали с направлением этой силы.
Расчет же показал, что RA, направленна в другую сторону:
В итоге, получили следующие реакции в опорах рамы:
Осталось проверить наши расчеты! Для этого предлагаю записать уравнение моментов, относительно точки B. И если, эта сумму будет равна нулю, то расчет выполнен верно:
Как видим, расчет реакций выполнен правильно!
На этом заканчиваю данный урок. Если у Вас остались какие-то вопросы по нахождению опорных реакций, смело задавайте их в комментариях к этой статье. Обязательно на все отвечу!
Спасибо за внимание! Если понравилась данная статья, расскажите о ней своим одногруппникам, не жадничайте 🙂
Также рекомендую подписаться на наши соц. сети, чтобы быть в курсе обновлений материалов проекта.