какие рибосомы в митохондриях 70s или 80s
Рибосомы: строение и функции
Рибосомы – это как крошечные фабрики в клетке. Они производят белки, которые выполняют различные функции для работы клетки.
Рибосомы или находятся в жидкости внутри клетки, что называется цитоплазмой, или присоединены к мембране. Их можно найти как у прокариотах (бактерий), так и у эукариотах (животные и растения). Больше о химическом составе и структуре клетки читайте в учебнике по биологии за 9 класс Л.И. Остапченко.
Рибосома имеет два основных компонента, которые называются большой и малой субъединицами. Эти две единицы объединяются, когда рибосома готова выработать новый белок. Они состоят из цепей РНК и различных белков.
В большой субъединицы содержатся сайты, где создаются новые связи при создании белков. Малая субъединица на самом деле не так уж и мала, только немного меньше, чем большая. Она отвечает за поток информации при синтезе белка.
Согласно величине константы седиментации, которая зависит от размера частиц, их формы и плотности, рибосомы разделяют на 70S (S является единицей измерения Сведберга) – прокариотические и 80S – эукариотические. Рибосомы хлоропластов высших растений относятся к 70S типа. Митохондриальные рибосомы грибов имеют коэффициент седиментации 75S, а митохондрии млекопитающих содержат мини-рибосомы – 55S, хотя функциями они похожи на 70S рибосом прокариот.
Основная работа рибосомы – это изготовление белков для клетки. Клетке необходимо изготовить сотни белков, поэтому рибосома требует конкретных инструкций, как изготовить каждый. Эти инструкции поступают из ядра в виде месенджерних РНК. В м-РНК содержатся конкретные коды, которые действуют как рецепт, чтобы рассказать рибосоме, как сделать белок.
В выработке белков есть два основных этапа: транскрипция и трансляция. Рибосома делает этап трансляции. Узнать больше о белках можно в учебнике по биологии за 9 класс В.И. Соболя.
Трансляция – это процесс получения инструкций от м-РНК и превращения ее в белок. Основной задачей функционирования живой клетки считается биосинтез белка. Для воспроизведения этой операции абсолютно во всех клеточных организмах находятся рибосомы. Рибосома делает следующие шаги, чтобы сделать белок:
Две субъединицы объединяются вместе с РНК для обмена сообщениями.
Рибосома распознает тритонуклеотидные кодоны м-РНК.
Рибосома движется вниз по РНК, читая инструкции о том, какие аминокислоты присоединить к белку. Для отличия аминокислот в клетке существуют особые «адаптеры» – молекулы т-РНК. Они напоминают форму листа клевера, имеющий область (антикодон), соответствующую кодону м-РНК, и еще один участок для присоединения аминокислоты, которая комплиментарная этому кодону.
Рибосома присоединяет аминокислоты, образующие белок. Прикрепление аминокислот к т-РНК происходит в энергозависимой реакции с помощью ферментов аминоацил-т-РНК-синтетазы.
Рибосома прекращает строить белок, когда он достигает кода «стоп» в РНК, который сообщает ему, что белок готов.
Интересные факты о рибосоме:
Название рибосомы происходит от рибонуклеиновой кислоты (РНК), которая дает указания по изготовлению белков.
Рибосомы изготавливаются внутри ядра. После того, как они готовы, они направляются за его пределы через поры в мембране ядра.
Рибосомы отличаются от большинства органелл тем, что они не окружены защитной мембраной.
Рибосому было открыто в 1974 году Альбертом Клодом, Кристианом де Дюве и Джорджем Эмилем Палладом. Они получили Нобелевскую премию за свое открытие.
ЦИТОЛОГИЯ: Органоиды эукариот
Приятного чтения! Если хочешь подготовиться на 80+ с автором этого справочника, то обязательно посмотри вот этот способ подготовки (тыкай, чтобы получить расписание и подробности в ЛС).
Клеточная теория
Прежде чем начать разбирать клетку, необходимо понимать, с чем имеешь дело. Ученые Шлейден и Шванн (а также российский ученый Вирхов) создали клеточную теорию, у которой есть несколько постулатов:
Следующая информация относится исключительно к эукариотической клетке. О прокариотах мы говорим в соответствующей статье.
Какие бывают органоиды эукариотической клетки?
Каждая эукариотическая клетка имеет органоиды. Их делят на 3 типа:
— Двумембранные: ядро, митохондрии, пластиды (хлоропласты, лейкопласты, хромопласты)
— Одномембранные: аппарат (комплекс) Гольджи, эндоплазматическая сеть, вакуоли, лизосомы и пероксисомы
— Немембранные: клеточный центр (центриоли), цитоскелет и рибосомы
Ядро клетки контролирует клеточный цикл (деление) и обмен веществ, проще говоря — жизнедеятельность.
Также ядро хранит наследственный материал (ДНК) и содержит в себе ядрышко, в котором образуются рибосомы. В ядерной оболочке (мембранах ядра) есть поры, через которые ядро сообщается с цитоплазмой клетки. Жидкость внутри ядра называют кариоплазмой.
Цитоплазма — содержимое клетки вокруг ядра. Грубо говоря, цитоплазма — все, кроме ядра.
Митохондрии
Митохондрии — «энергетические станции клетки». Они тоже состоят из двух мембран.
На внутренней мембране митохондрий расположены грибовидные тела (или АТФ-синтетазы, или ферменты окислительного фосфорилирования), которые участвуют в синтезе АденозинТриФосфата (АТФ) — универсального источника энергии.
Полость внутренней мембраны называется матриксом. В матриксе митохондрии расположены рибосомы и нуклеоид (кольцевая ДНК), которые позволяют быть ей полуавтономным органоидом. Образуются митохондрии путем деления надвое.
Пластиды
Пластиды бывают трёх видов:
— в хлоропластах происходит фотосинтез (синтез глюкозы из углекислого газа под действием солнечных лучей и ферментов)
— в хромопластах хранятся пигменты (каротиноиды), которые придают окраску (например, красный цвет моркови или различные цвета лепестков)
— в лейкопластах хранятся питательные вещества (крахмал)
В ЕГЭ подробно рассматривается строение хлоропласта. Внутри него находятся граны. Граны — это множество тилакоидов, сложенных в стопку.
Строма — это полость между гранами и внешней мембраной хлоропласта. Кстати, у тилакоидов тоже есть мембрана, которая напрямую участвует в фотосинтезе. Граны соединены между собой ламеллами.
Пластиды тоже содержат рибосомы и нуклеоид, поэтому они — полуавтономные органоиды. Стоит отметить, что наличие пластид характерно только для растений.
Эндоплазматическая сеть
Эндоплазматический ретикулум = эндоплазматическая сеть — одномембранный органоид. Он бывает двух видов: гладкий (агранулярный) и шероховатый (гранулярный). Общая функция обоих — пронизывание всей цитоплазмы клетки и транспорт веществ по ней. Своеобразное метро клетки.
Шероховатый ЭПР получил своё название из-за расположенных на нём рибосом. С их помощью он синтезирует белки и впоследствии, модернизируя их, доставляет к аппарату Гольджи.
Гладкий ЭПР синтезирует жиры и углеводы, также доставляя их к комплексу Гольджи. К ещё одной функции ЭПР относят синтез пероксисом, однако они в ЕГЭ не рассматриваются.
Комплекс Гольджи
Состоит комплекс Гольджи из плоских цистерн и отходящих от них канальцев. От канальцев отпочковываются везикулы (секреторные пузырьки).
Функция аппарата Гольджи — секреторная, транспортная и накопительная. В комплексе Гольджи вещества, синтезированные на ЭПС, дозревают, накапливаются и доставляются с помощью везикул в нужные части клетки, как это показано на рисунке снизу…
Важнейшая функция аппарата Гольджи — синтез лизосом.
Лизосомы
Лизосомы — одномембранные органоиды. Они содержат в себе гидролитические ферменты, которые катализируют внутриклеточное пищеварение. Так, лизосомы «расщепляют» вещества, попавшие в клетку. Также они способны к аутолизу — самоперевариванию части клетки.
Вакуоли
Вакуоли — одномембранные органоиды. У растений есть одна большая вакуоль, заполненная клеточным соком. В ней находится вода и питательные вещества.
У животных и грибов вакуолей много, но они гораздо меньше и выполняют другие функции. Например, у амёбы сократительная вакуоль выделяет из клетки ненужные вещества и избыток воды. О вакуолях животных мы поговорим в зоологии.
Рибосомы
Рибосомы — это важнейшие немембранные органоиды клетки. Они обеспечивают процесс трансляции — синтеза белка.
Рибосомы состоят из рРНК (рибосомальной РНК) и белков. рРНК и белки образуют 2 субъединицы, как на рисунке. Рибосомы расположены в цитоплазме клетки, на шероховатом ЭПС, внутри митохондрий и пластид.
У рибосом есть размерность: большие рибосомы (80S) содержатся в цитоплазме и ЭПС, а маленькие (70S) — в митохондриях, пластидах и бактериях.
Немного о том, что такое 70S и 80S…
S — коэффициент седиментации. Чем больше S, тем больше плотность и масса изучаемого объекта. Этот коэффициент можно определить методом центрифугирования: раствор с объектами помещается в центрифугу. Изучаемые объекты под действием центробежной силы распределяются по раствору в зависимости от плотности и массы. Так, более легкие (рибосомы, например) объекты останутся на поверхности, в то время как тяжелые (ядро, митохондрии) будут у самого дна.
Клеточный центр
Клеточный центр — немембранный органоид. Состоит из 2 центриолей. Каждая центриоль состоит из 9-ти триплетов микротрубочек. Триплеты соединены друг с другом перемычками.
Суммарно в центриоли 27 микротрубочек. Функция клеточного центра: образование веретена деления во время митоза и мейоза. Важно: клеточного центра нет у высших растений.
Цитоскелет
О цитоскелете в ЕГЭ почти не говорят. Нужно знать, что цитоскелет — белковая структура, пронизывающая всю клетку и составляющая её «каркас». Цитоскелет участвует в образовании ресничек, ворсинок, жгутиков и других изменений форм клетки.
Плазматическая мембрана
Плазматическая мембрана (плазмалемма)— это мембрана, которая окружает цитоплазму. Она состоит из нескольких веществ…
Бифосфолипидный слой или билипидный слой. Каждый фосфолипид состоит из гидрофильной головки и гидрофобного хвоста. Примыкая друг к другу гидрофобными хвостами, они образуют плотную структуру. Такая структура обладает «избирательной проницаемостью». Это значит, что она пропускает только определенные вещества (например, большой белок через нее пройти не сможет, а вот углекислый газ — легко)
Белки. Они бывают интегральными (пронизывают билипидный слой насквозь) и периферическими (лежат на поверхности). Эти белки обеспечивают транспорт через мембрану тех веществ, которые не могут пройти через билипидный слой.
Гликокаликс. Это углеводный слой, который выполняет рецепторную функцию. Важно: Он есть только у животной клетки.
Также к бифосфолипидный слой встроен холестерин для поддержания формы и упругости.
Клеточная стенка
У некоторых царств над плазмалеммой есть клеточная стенка, состоящая из углеводов: у растений — целлюлоза, у грибов — хитин, у бактерий — муреин. Функция клеточных стенок — поддержание формы клеток и защита.
Поздравляю с успешным освоением новой темы!
Статьи — круто, но для сотки этого недостаточно. Жми сюда, чтобы получить расписание и подробности самого эффективного курса подготовки к ЕГЭ по биологии.
Получить тест в ЛС→
Примерное время выполнения: 30 минут.
Полноценный тест с автоматической проверкой. Мы используем сервис «РЕШУ ЕГЭ» как самый удобный в коммуникации между учителем и учеником. На сервисе возможна авторизация через ВК.
Какие рибосомы в митохондриях 70s или 80s
Рибосомы — это очень мелкие органеллы (диаметром около 20 нм). Число рибосом в цитоплазме живых клеток весьма велико как у прокариот, так и у эукариот. В обычной бактериальной клетке содержится до 10 000 рибосом, а в эукариотических клетках число их во много раз больше. Рибосомы служат местом синтеза белка.
Каждая рибосома состоит из двух субчастиц, как это можно видеть на рисунке. Из-за мелких размеров рибосомы при дифференциальном центрифугировании седиментируют последними среди всех других органелл: рибосомную фракцию можно получить лишь после центрифугирования при 100 000 g в течение 1—2 ч. Опыты по седиментации выявили существование двух главных типов рибосом, которые были названы 70S- и 80S-рибосомами1. 70S-рибосомы обнаруживаются у прокариот, а несколько более крупные 80S-рибосомы — в цитоплазме эукариотических клеток. Интересно отметить, что в хлоропластах и митохондриях содержатся 70S-pn6ocoMbi, что указывает на какое-то родство этих эукариотических органелл с прокариотами.
Рибосомы состоят из примерно равных (по массе) количеств РНК и белка. Входящая в их состав РНК, называемая рибосомной РНК (рРНК), синтезируется в ядрышке. Распределение в рибосоме белковых молекул и молекул РНК показано на рисунке. Вместе те и другие молекулы образуют сложную трехмерную структуру.
Во время синтеза белка на рибосомах аминокислоты последовательно соединяются друг с другом, формируя полипептидную цепь. Подробно этот процесс описан в статьях. Рибосома служит местом связывания для молекул, участвующих в синтезе, т. е. таким местом, где эти молекулы могут занять по отношению друг к другу совершенно определенное положение. В синтезе участвуют: матричная РНК (мРНК), несущая генетические инструкции от клеточного ядра, транспортная РНК (тРНК), доставляющая к рибосоме требуемые аминокислоты, и растущая полипептидная цепь. Кроме того, в этом процессе участвуют факторы инициации, элонгации и терминации цепи. Весь процесс в целом настолько сложен, что без рибосомы он не мог бы идти эффективно (или не шел бы вообще).
В эукариотических клетках отчетливо видны две популяции рибосом — свободные рибосомы и рибосомы, присоединенные к ЭР. Строение тех и других идентично, но часть рибосом связана с ЭР через белки, которые они синтезируют. Такие белки обычно секретируют-ся. Примером белка, синтезируемого свободными рибосомами, может служить гемоглобин, образующийся в молодых эритроцитах.
В процессе синтеза белка рибосома перемещается вдоль нитевидной молекулы мРНК. Процесс идет более эффективно, когда вдоль мРНК перемещается не одна рибосома, а одновременно много рибосом, напоминающих в этом случае бусины на нитке. Такие цепи рибосом называются полирибосомами или полисомами. На ЭР полисомы обнаруживаются в виде характерных завитков.
Аппарат Гольджи
Структуру, известную теперь как аппарат Гольджи, впервые обнаружил в клетках в 1898 г. Камилло Гольджи (Camillo Golgi), применивший в своих наблюдениях особую методику окрашивания. Однако подробно исследовать ее удалось только с помощью электронного микроскопа. Аппарат Гольджи содержится почти во всех эукариотических клетках и представляет собой стопку уплощенных мембранных мешочков, так называемых цистерн, и связанную с ними систему пузырьков, называемых пузырьками Гольджи. Трехмерную структуру аппарата Гольджи трудно выявить при изучении ультратонких срезов, однако предполагают, что вокруг центральной стопки формируется сложная система взаимосвязанных трубочек.
На одном конце стопки постоянно образуются новые цистерны путем слияния пузырьков, отпочковывающихся от агранулярного ЭР. Эта «наружная», или формирующаяся сторона стопки выпуклая, тогда как другая, «внутренняя», где завершается созревание и где цистерны вновь распадаются на пузырьки, имеет вогнутую форму. Стопка состоит из многих цистерн, которые постепенно перемещаются от наружной стороны к внутренней.
Функцию аппарата Гольджи составляют транспорт веществ и химическая модификация поступающих в него клеточных продуктов. Функция эта особенно важна в секреторных клетках, хорошим примером которых могут служить ацинарные клетки поджелудочной железы. Эти клетки секретируют пищеварительные ферменты панкреатического сока в выводной проток железы, по которому они поступают в двенадцатиперстную кишку. На рисунке, А представлена электронная микрофотография такой клетки, а на рисунке схема упомянутого секреторного пути.
Отдельные этапы этого пути выявляют при помощи радиоактивно меченных аминокислот.
Из аминокислот в клетке строятся белки. Используя меченые аминокислоты, можно проследить их включение в белки и передвижение по различным клеточным органеллам. Для этого образцы ткани гомогенизируют через разные промежутки времени после введения аминокислот, разделяют клеточные органеллы центрифугированием и определяют, в каких органеллах наблюдается наивысшая радиоактивность. После концентрирования в аппарате Гольджи белок в пузырьках Гольджи транспортируется к плазматической мембране. Конечным этапом является секреция неактивного фермента посредством процесса, обратного пиноцитозу. Пищеварительные ферменты, выделяемые поджелудочной железой, синтезируются в неактивной форме, чтобы они не могли разрушать клетки, в которых они образуются. Примером может служить трипсиноген, превращающийся в активный трипсин в двенадцатиперстной кишке.
Обычно у белков, поступающих в аппарат Гольджи из ЭР, имеются короткие олигосахаридные цепи, т. е. они представляют собой гликопротеины. Такие углеводные «антенны» могут претерпевать в аппарате Гольджи модификацию, превращающую их в маркеры, с помощью которых белок направляется строго по своему назначению. Однако, каким образом аппарат Гольджи сортирует и распределяет молекулы, в точности не известно.
Иногда аппарат Гольджи участвует в секреции углеводов, например при синтезе материала клеточных стенок у растений. Рисунок свидетельствует об усиленной его активности в области «клеточной пластинки», т. е. в той области, где после деления ядра между двумя только что образовавшимися дочерними ядрами закладывается новая клеточная стенка.
Пузырьки Гольджи направляются к нужному месту на клеточной пластинке при помощи микротрубочек. Мембраны этих пузырьков становятся частью плазматических мембран дочерних клеток, а их содержимое используется для построения срединной пластинки и новых клеточных стенок. Целлюлоза поставляется отдельно, но не через аппарат Гольджи а с помощью микротрубочек.
Два рассмотренных нами примера — секреция ферментов клетками поджелудочной железы и образование новых клеточных стенок в делящихся растительных клетках — показывают, каким образом многие клеточные органеллы могут объединяться для выполнения какой-либо одной функции.
Аппаратом Гольджи секретируется гликопротеин муцин, в растворе образующий слизь. Он выделяется бокаловидными клетками, находящимися в толще эпителия слизистой оболочки кишечника и дыхательных путей. В железах листьев некоторых насекомоядных растений, например росянки, аппарат Гольджи секретиру-ет клейкую слизь и ферменты, с помощью которых эти растения ловят и переваривают добычу. Во многих клетках аппарат Гольджи участвует в секреции слизи, воска, камеди и растительного клея.
Помимо секреции различных веществ аппарат Гольджи выполняет и еще одну важную функцию — в нем формируются лизосомы, к описанию которых мы теперь перейдем.
Рибосомы
Рис. 14.2. Компоненты рибосом прокариот и эукариот (схема).
Рибосомы представляют собой сложную молекулярную «машину» («фабрику») синтеза белка. Для выяснения тонких механизмов синтеза белка в рибосомах необходимы более точные сведения о структуре и функциях всех компонентов рибосом. В последнее время получены данные, свидетельствующие о вероятной пространственной трехмерной структуре как целых рибосом, так и их субчастиц. В частности, выяснено, что форму и размеры 30S и 40S субчастиц рибосом предопределяют не белковые молекулы этих частиц, а третичная структура входящих в их состав 16S и 18S рРНК. Более того, по данным акад. А.С. Спирина, для сохранения пространственной морфологической модели всей 30S субчастицы оказалось достаточным наличие только двух белков (из 21), содержащихся в определенных топографических участках молекулы 16S рРНК.
Известно, что рРНК образуется из общего предшественника всех типов клеточных РНК, в свою очередь синтезирующегося на матрице ДНК в ядре (см. главу 13). Рибосомные белки имеют цитоплазматическое происхождение, затем они транспортируются в ядрышки, где и происходит спонтанное образование рибосомных субчастиц путем объединения белков с соответствующими рРНК. Объединенные субчастицы вместе или врозь транспортируются через поры ядерной мембраны обратно в цитоплазму, где группа рибосом вместе с мРНК образует полисомы или полирибосомы, принимающие непосредственное участие в синтезе белка.
Какие рибосомы в митохондриях 70s или 80s
Установите соответствие между строением органоида клетки и его видом.
СТРОЕНИЕ ОРГАНОИДА | ВИД ОРГАНОИДА |