какие силы действуют на поршень если под ним зашла
Гидравлическим ударом называется явление, происходящее в двигателях внутреннего сгорания при попадании в рабочую камеру значительного количества жидкости. Как известно, цикл работы поршневого четырехтактного ДВС состоит из 4-х тактов: впуск, сжатие, рабочий ход, выпуск. На такте сжатия происходит сжатие газообразной топливовоздушной смеси (или воздуха у ДВС с впрыском в камеру сгорания). Газы, как известно, значительно изменяют свой объем при изменении давления. Жидкость изменяет свой объем в настолько малой степени, что ее считают практически несжимаемой. Если на такте сжатия в рабочей камере оказалась значительное количество жидкости, то поршень не сможет дойти до верхней мертвой точки и остановится.
Разрушение деталей двигателя происходит в том случае, когда действующие на них нагрузки превышают допустимые по условиям прочности. Нагруженность деталей двигателя при попадании в рабочую камеру жидкости будет зависеть от количества жидкости, рабочего объема цилиндра и степени сжатия, частоты вращения коленчатого вала в момент гидроудара и других факторов.
Отношение количества жидкости, попавшей в рабочую камеру к объему камеры сгорания при нахождении поршня в верхней мертвой точке, позволяет оценить положение поршня в момент его остановки при гидроударе и возможность остановки поршня.
Определим объем рабочей камеры ДВС при нахождении поршня в верхней мертвой точке для четырехцилиндрового двигателя, рабочим объемом 1,6 литра со степенью сжатия ε=10. Рабочий объем одного цилиндра будет Vp=1,6/4=0,4л. Объем рабочей камеры при нахождении поршня в верхней мертвой точке (минимальный объем) составит 44 мл.
Попадание в рабочую камеру значительно меньшего количества жидкости не вызовет гидроудар. Несжимаемая жидкость просто-напросто увеличит степень сжатия (воздух все равно присутствует) и затем удалится в выпускную систему на такте выпуска. Если же в рабочую камеру попадет жидкости больше, то поршень не сможет дойти до ВМТ, так как упрется в жидкость.
С точки разрушения деталей двигателя важны силы, которые будут действовать на детали. Гидроудар происходит на такте сжатия, при котором поршень движется за счет вращения от энергии коленчатого вала. Источником силы на поршне, пытающимся сжать несжимаемую жидкость будет инерционная сила вращения КВ (коленчатого вала), маховика и/или соединенных с ними элементов трансмиссии (плюс масса автомобиля, энергия которого передается через колеса в трансмиссию, и далее). Поршень, совершающий возвратно-поступательные движения соединен с КВ посредством кривошипно-шатунного механизма. Рассмотрим кинематику движения поршня. Допустим, что коленчатый вал вращается равномерно. При этом скорость движения поршня будет меняться от 0 до максимальной скорости Vпmax в середине хода поршня (которая будет равна скорости поступательного движения шатунной шейки коленчатого вала Vпmax=Vшш). Скорость поршня будет зависеть от угла поворота КВ: Vп=Vшш*sin(φ).
Однако, разрушение деталей двигателя при гидроударе происходит не за счет высокой скорости движения поршня на такте сжатия. Даже наоборот. Скорость движения поршня обратно пропорциональна силе, которая может быть приложена к поршню от шатуна.
На графике представлена зависимость силы, которая может быть передана поршню посредством кривошипно-шатунного механизма от коленчатого вала при постоянном на нем моменте. Вблизи мервых (0; 0,5; 1 на графике) точек значительному угловому перемещению КВ соответствует очень малое перемещение поршня. Даже малый момент коленчатого вала способен вызвать на поршне значительную силу. Но при работе двигателя эта сила (на такте сжатия) ограничивается той силой, что необходимо приложить к поршню для сжатия топливовоздушной смеси. Максимальная нагрузка при работе двигателя на элементы кривошипно-шатунного механизма и цилиндро-поршневой группы будет действовать при сгорании топлива в тот момент, когда давление в цилиндре достигнет максимальной величины. Для бензиновых двигателей значения давлений доходят до 50 МПа (500 атмосфер), для дизельных — до 200 МПа (2000 атмосфер). При гидравлическом ударе давления и нагрузки превосходят эти, допустимые по условиям прочности деталей нагрузки.
Последствия гидроудара. Экспертиза причины разрушения деталей двигателя.
С точки зрения разрушения деталей двигателя важно, продолжал ли двигатель работать после того, как погнулся шатун или нет. Если двигатель продолжил работу с погнутым шатуном, то при последующих после гидроудара оборотах коленчатого вала возможно:
— Соударение деформированного шатуна о нижнюю часть цилиндра. На некоторых современных двигателях минимальный зазор в этом месте настолько мал, что даже небольшой изгиб шатуна приводит к соударению, в результате чего происходит разрушение шатуна и повреждение поверхности цилиндра. При дальнейшей работе с разрушенным шатуном двигатель получает значительные повреждения.
— При деформации шатуна уменьшается расстояние между осями его головок. Уменьшается длинна шатуна, что приводит к соударению поршня о противовесы коленчатого вала при подходе к нижней мертвой точке. Минимальный зазор в данном месте на современных двигателях достаточно мал.
Вышеуказанные разрушения по причине погнутого шатуна сопровождаются значительным шумом. Но бывают случаи когда после гидроудара двигатель продолжает работать и не имеет внешних признаков неисправностей. Действительно, небольшая деформация шатуна не выдаст себя какими-то внешними проявлениями. Однако работа двигателя с деформированным шатуном недопустима по следующим причинам:
— При деформации шатуна нарушается параллельность осей его шеек. То есть нарушается параллельность поршневого пальца и шатунной шейки (и оси) коленчатого вала. В итоге поршень ходит с перекосом, шатун относительно шатунной шейки также перекошен — имеется односторонний износ шатунного вкладыша.
— При работе погнутого шатуна в его теле возникают изгибающие напряжения. В итоге велика вероятность образования на теле шатуна усталостной трещины, в результате произойдет разрушение шатуна и последующее разрушение деталей двигателя при взаимодействии вращающегося коленчатого вала с обломками шатуна и «освободившимся» поршнем.
С точки зрения экспертизы двигателя транспортной машины следует разделять гидроудар, произошедший вследствие попадание в рабочую камеру жидкостей из обслуживающих систем силовой установки (топливо, масло системы смазки, охлаждающая жидкость) и гидроудар произошедший по причине попадания воды через систему питания воздухом. В первом случае необходимо исследование причин разгерметизации системы, жидкость из которой попала в рабочую камеру в недопустимом количестве. Второй случай (попадание воды через воздухозаборник) связан с недопустимой эксплуатацией автомобиля, если автомобиль не является транспортной машиной повышенной и высокой проходимости. При попадании через воздухозаборник вода проходит через воздушный фильтр и последующие элементы системы питания воздухом. Соответственно, если двигатель при гидроударе остановился, то в воздушном фильтре и далее по системе питания воздухом будет присутствовать вода.
— Если фильтр бумажный, попадание воды и последующее ее испарение вызовет характерную деформацию и коробление гофр. Если такое удалось найти, практически можно исследование закончить и объявить причину поломки найденной. К сожалению, многие современные моторы комплектуются фильтрами из синтетики, которая на воду никак не реагирует. Тогда следов воды не будет нигде, и придется искать другие верные признаки гидроудара.
— В цилиндре над местом, где верхнее кольцо останавливается в ВМТ (верхняя мертвая точка поршня), всегда есть нагар. Поскольку деформированный шатун укорачивается, поршень в положении ВМТ опускается ниже своего прежнего нормального положения. При смещении поршня ширина кромки нагара ступенчато увеличивается, что хорошо заметно и невооруженным глазом, а величину расширения кромки нагара можно замерить обычной линейкой. Даже после обрыва деформированного шатуна ширина кромки нагара легко укажет, что пока шатун был «жив», его длина была меньше положенной.
— При гидроударе нередко вода попадает не в один, а несколько цилиндров. В соответствии с этим повреждения могут получить несколько шатунов, из которых сломается первым самый гнутый. Тогда остальные легко проверить «на глаз» — если шатун испытал гидроудар, его стержень после потери устойчивости будет иметь вид характерной «змейки» в плоскости качания.
— Когда гнется шатун, оси его отверстий теряют строгую параллельность. Перекос осей, обычно измеряемый сотыми долями миллиметра, после гидроудара настолько велик, что нередко виден даже «на глаз». Очевидно, тогда поршень начинает работать в цилиндре с перекосом. Это классический случай, признаки которого хорошо известны. У поршня на юбке будет заметно пятно контакта характерной диагональной формы. Также на поршне появится дополнительное контактное пятно, расположенное выше поршневого пальца, в то время как противоположная зона огневого пояса, наоборот, будет покрыта большим слоем нагара.
— На цилиндре, в котором работал деформированный шатун, будут ответные поршню следы: в верхней части цилиндра в месте касания поршня поясок нагара будет стерт, его кромка будет неровной, возможно, с рисками от нештатного касания поршня. Иногда ниже на цилиндре появляются также характерные блестящие следы.
— После деформации шатуна вкладыши также начнут работать с перекосом. На них появятся следы «диагонального» износа — блестящие полоски по краям.
— Осаженный на несколько миллиметров шатун и уменьшенная степень сжатия — достаточные основания для уменьшения количества поступающего в данный цилиндр воздуха. Однако форсунка подает топливо в данный цилиндр в том же количестве, что и другие форсунки в соседние цилиндры. Кроме того, с искривленным шатуном и поршневые кольца работают с перекосом. В результате топливовоздушная смесь в цилиндре с укороченным шатуном станет богаче, а нагара на стенки камеры сгорания осядет больше. Это легко увидеть после демонтажа головки блока цилиндров — более темный цвет нагара на стенках цилиндра, «схватившего» гидроудар, скажет сам за себя.
По этим признакам определяется, имел ли быть место в прошлом гидроудар на двигателе, разрушение которого произошло позже.
В ходе проведения независимой автотехнической экспертизы специалисты должны установить все факты и на основании их уже принимать решения о характере гидроудара, а именно производственный или эксплуатационный.
Жидкости и пути их попадания в рабочую камеру ДВС
Рассмотрим основные пути попадания жидкостей в рабочую камеру ДВС:
— Попадание охлаждающей жидкости через негерметичную прокладку головки блока цилиндров. При запущенном двигателе такое практически невозможно, а вот при стоянке, когда избыточное давление из рабочей камеры уходит, вполне возможно затекание жидкости в надпоршневое пространство. При прокрутке двигателя стартером при запуске происходит гидроудар. Подобный дефект прокладки ГБЦ заметно сказывается на работоспособности системы охлаждения двигателя.
— Попадание топлива в рабочую камеру через негерметичную топливную форсунку. Данные случаи встречаются крайне редко.
Перечисленные выше причины гидроудара являются следствием негерметичности систем охлаждения, питания топливом и смазки. Как правило, до гидроудара, данные неисправности оказывают заметное влияние на работоспособность двигателя и его систем.
Большинство случаев гидравлического удара происходит совсем по другой причине:
— Попадание воды (либо других жидкостей) через систему питания воздухом. Вода попадает в систему из окружающей среды через воздухозаборник вместе со всасываемым воздухом.
Данное явление происходит при преодолении водных преград. Это может быть как брод, в котором воздухозаборник погрузился под воду, так и переезд лужи на высокой скорости, при котором брызги попали в воздухозаборник.
По английски гидроудар будет Hydrolock
Из-за меньшего объема камеры сгорания и отсутствия в большинстве моторов дросселирования воздуха дизели «держат гидроудар» гораздо хуже бензиновых двигателей. Образно говоря, дизель сразу отправится в нокаут.
Если вы понимаете, что гидроудар вот вот может произойти (например, пошла волна перед капотом, при прохождении брода) лучшим решением, будет экстренная остановка двигателя. Потом можно будет проделать процедуру, показанную в видео.
Физика камеры сгорания. Часть 7. Основы динамики блока цилиндров
В общении автолюбителей часто встречаются такие слова, как механические потери в двигателе, соотношения диаметр поршня к ходу коленчатого вала, соотношения длины шатуна к ходу коленчатого вала, крутящий момент и силы инерции. К сожалению, подобные разговоры обычно дальше обмена звучными фразами не идут. И даже после трехчасовых дискуссий на эти темы ни у кого из собеседников не появляется чего-то нового в голове.
Сегодня мы окунемся в мир динамики кривошипно-шатунного механизма и уясним, как на деле все это работает. Немного вспомним векторы и обычную механику за 8 класс.
Итак, начнем с того, что же вращает двигатель, а именно:
1. Сила давления газов на поршень.
Эта та сила, которая лежит в основе работы любого ДВС, которая является «оживляющей» силой. Смесь сжалась, воспламенилась, началась химическая реакция и увеличились давление и температура в камере сгорания. Температура в динамике ДВС играет несущественную роль, но вот давление — наиважнейшую.
Итак, сила давления газов на поршень равна:
Fг = (Р — Рк) * п * D^2 / 4, где
Р — давление в цилиндре,
Рк — давление картерных газов,
D — диаметр поршня.
Какие выводы можно сделать?
— Чем больше диаметр цилиндра, тем больше сила давления газов при том же значении давления в цилиндре.
— Чем ниже давление картерных газов, тем больше сила давления газов при том же значении давления в цилиндре.
Каждый автолюбитель знает о сапуне, торчащем из головки блока цилиндров, но мало кто понимает его истинный смысл: снижение давления картерных газов за счет разряжения во впуске. Не раз встречал, как шланг выводили на улицу, а вход в коллектор глушили. Встречался, когда сапун пытались глушить, в итоге давление картерных газов становилось избыточным и мотор попросту глох. Особо серьезно к системе рециркуляции картерных газов относится Хонда, где имеется не только сапун с ГБЦ, есть клапана рециркуляции, шланги с блока, разряжение используется до и после дросселя и так далее — и все это не от нечего делать, а для повышения эффективности силовой установки.
2. Силы инерции движущихся масс.
Итак, мы рассмотрели силы, возникающие по причине изменения давления газов в цилиндре.Но в ДВС возникают и прочие силы, связанные с тем, что детали ШПГ имеют ненулевую массу, а именно: силы инерции.
Силы инерции делятся на два типа:
— Силы инерции возвратно-поступательно движущихся масс
— Силы инерции вращающихся масс.
2.1. Сила инерции возвратно-поступательно движущихся масс.
Данные силы порождаются движением поршня и шатуна. Но если с поршнем все понятно, то с шатуном не все так просто: шатун обычно представляют в виде гантели, представляющей собой две шейки с безмассовым стержнем. Тогда массы шеек гантели рассчитывают следующим образом:
Находится центр масс шатуна вывешиванием, т.е. шатун располагают горизонтально на некоторую ось таким образом. чтобы левая и правая часть шатуна были уравновешены. Это будет не середина шатуна, поэтому левое и правое плечо обозначим как lп и lк, где lп — плечо верхней головки шатуна, куда устанавливается поршневой палец, а lк — плечо нижней головки шатуна, соединяющаяся с шатунной шейкой коленчатого вала.
Тогда массы условной гантели равны:
Масса поршневой части шатуна:
mшп = mш * lк / l = mш * (l — lп) / l
Масса части шатуна, соединяющейся с коленчатым валом:
mшк = mш * lп / l
Таким образом, возвратно-поступательно движущиеся массы:
mвп = mп + mшп, где mп — масса поршня, mпш — масса поршневой части шатуна.
Так как сила есть произведение массы на ускорение,
сила инерции возвратно-поступательно движущихся масс равна:
Fивп = — (mп + mшп) * а, где а — ускорение поршня.
Запишем в общем виде:
Fивп = — (mп + mшп) * w^2 * r * ( < cosф + cos2ф * r / l >+ е * r * < sinф + sin2ф * r / (2*l)>)
При е = 0:
Fивп = — (mп + mшп) * w^2 * r * < cosф + cos2ф * r / l >
Тут должен оговориться, что в массу поршня входят также масса пальца и поршневых колец.
2.2. Сила инерции вращающихся масс.
Одной из вращающихся масс является приведенная масса нижней шейки шатуна. найденная ранее:
mшк = mш * lп / l
Второй массой является сумма масс неуравновешенных частей коленчатого вала, а именно: шатунная шейка и щеки.
С шатунной шейкой проблем нет — это mшш, а вот массы щек необходимо привести к центру оси шатунной шейки для удобства:
mщк = mщ * (r — rшш) / r, где mщ — реальная масса щек коленчатого вала, а rшш — радиус шатунной шейки коленчатого вала.
Так как щеки у одного цилиндра две, масса неуравновешенный частей коленчатого вала равны:
mшш + 2*mщк
Полная сумма вращающихся масс равна сумме масс неуравновешенных частей коленчатого вала и приведенной массы нижней шейки шатуна:
mшк + mшш + 2*mщк
Силы инерции вращающихся масс равны:
Fив = — (mшк + mшш + 2*mщк) * r * w^2
Тут должен отметить, что в массу шатунной шейки входит также масса шатунных вкладышей.
3. Преобразования сил:
Сила давления газов на поршень и сила инерции возвратно-поступательно движущихся масс в сумме дают силы, действующие на поршень по оси цилиндров. Тут важно отметить, что силы инерции возвратно-поступательно движущихся масс имеют знак «минус», т.е. действуют нам во вред (должен оговориться: во вред — часть цикла, в некоторый момент сила меняет знак и работает с пользой).
Fп = Fг + Fивп = (Р — Рк) * п * D^2 / 4 — (mп + mшп) * w^2 * r * ( < cosф + cos2ф * r / l >+ е * r * < sinф + sin2ф * r / (2*l)>),
или же при отсутствии ускорения коленчатого вала, т.е. при е(t) = 0:
Fп = Fг + Fивп = (Р — Рк) * п * D^2 / 4 — (mп + mшп) * w^2 * r * (< cosф + cos2ф * r / l >
Сила, действующая на поршень, в динамике делится на две составляющие силы:
— Сила, направленная по оси шатуна,
Fш = Fп / cosb, где b — угол между осью цилиндра и осью шатуна
— Сила, перпендикулярная оси цилиндра и направленная в противоположную сторону силе по направлению шатуна,
N = Fп * tg b, где b — угол между осью цилиндра и осью шатуна
Сумма векторов данных сил даст опять нам вектор Fп.
Эффективной действующей силой из этих двух является Fш.
3.1. Сила, направленная по оси шатуна.
Fш = Fп / cosb, где b — угол между осью цилиндра и осью шатуна,
Или же (подставив Fп):
Fш = (Fг + Fивп) / cosb
Fш = ((Р — Рк) * п * D^2 / 4 — (mп + mшп) * w^2 * r * ( < cosф + cos2ф * r / l >+ е * r * < sinф + sin2ф * r / (2*l)>)) / cosb
При отсутствии ускорения коленчатого вала, т.е. при е(t) = 0:
Fш = ((Р — Рк) * п * D^2 / 4 — (mп + mшп) * w^2 * r * < cosф + cos2ф * r / l >) / cosb
Как мы уяснили ранее, эта сила — остаток от силы, действующей на поршень, которая участвует в полезной работе ДВС.
Перенесем вектор Fш для удобства дальнейшего рассмотрения в центр шатунной шейки коленчатого вала. Теперь разложим и эту силу на две составляющие:
— Касательную силу, направленную по касательной к окружности вращения шатунной шейки:
Fкв = Fш * sin (ф + b), где ф — угол поворота коленчатого вала, b — угол между осью цилиндра и осью шатуна
— Перпендикулярную силу, направленную от шатунной шейки к оси коленчатого вала:
Fпв = Fш * cos (ф + b), где ф — угол поворота коленчатого вала, b — угол между осью цилиндра и осью шатуна
Здесь полезной силой является касательная сила.
3.2. Сила, направленная по касательной к окружности вращения шатунной шейки.
Fкв = Fш * sin (ф + b), где ф — угол поворота коленчатого вала, b — угол между осью цилиндра и осью шатуна
Подставим выражение для Fш и получим выражение Fкв через Fп:
Fкв = Fп * sin (ф + b) / cosb
Fкв = (Fг + Fивп) * sin (ф + b) / cosb
Fкв = ((Р — Рк) * п * D^2 / 4 — (mп + mшп) * w^2 * r * ( < cosф + cos2ф * r / l >+ е * r * < sinф + sin2ф * r / (2*l)>))*sin (ф + b) / cosb
При отсутствии ускорения коленчатого вала, т.е. при е(t) = 0:
Fкв = ((Р — Рк) * п * D^2 / 4 — (mп + mшп) * w^2 * r * < cosф + cos2ф * r / l >)*sin (ф + b) / cosb
Крайне неудобно, когда функция выражена через два угла, особенно, когда один угол явно зависит от другого, не смотря на то, что в таком виде функция более читаема.
Произведем математическое преобразование угла b через функцию от угла ф:
По теореме синусов:
l / sinф = r / sin b, где:
l — длина шатуна,
r — радиус кривошипа.
выражаем b через ф:
b = arcsin (r/l * sinф).
Перепишем Fкв = Fп * sin (ф + b) / cosb, подставив выажение для b:
Fкв = Fп * sin (ф + arcsin (r/l * sinф)) / cos (arcsin (r/l * sinф))
Или же более развернуто:
Fкв = ((Р — Рк) * п * D^2 / 4 — (mп + mшп) * w^2 * r * ( < cosф + cos2ф * r / l >+ е * r * < sinф + sin2ф * r / (2*l)>))*sin (ф + arcsin (r/l * sinф)) / cos (arcsin (r/l * sinф))
Ну, и если отсутствует ускорение коленчатого вала, т.е. при е(t) = 0:
Fкв = ((Р — Рк) * п * D^2 / 4 — (mп + mшп) * w^2 * r * < cosф + cos2ф * r / l >)*sin (ф + arcsin (r/l * sinф)) / cos (arcsin (r/l * sinф))
3.3. Силы, действующие на шатунную шейку коленчатого вала, или вращающая сила:
Суммарно вращающие силы можно представить в виде суммы силы, направленной по касательной к окружности вращения шатунной шейки, Fкв и силы инерции вращающихся масс Fив.
Опять же отмечу, что силы инерции вращающихся масс имеют знак минус, т.е. действуют нам во вред.
Итого, вращающая сила:
Fв = Fп * sin (ф + arcsin (r/l * sinф)) / cos (arcsin (r/l * sinф)) — (mшк + mшш + 2*mщк) * r * w^2
Или же более развернуто:
Fв = ((Р — Рк) * п * D^2 / 4 — (mп + mшп) * w^2 * r * ( < cosф + cos2ф * r / l >+ е * r * < sinф + sin2ф * r / (2*l)>))*sin (ф + arcsin (r/l * sinф)) / cos (arcsin (r/l * sinф)) — (mшк + mшш + 2*mщк) * r * w^2
Если нет ускорения коленчатого вала, т.е. при е(t) = 0:
Fв = ((Р — Рк) * п * D^2 / 4 — (mп + mшп) * w^2 * r * < cosф + cos2ф * r / l >)*sin (ф + arcsin (r/l * sinф)) / cos (arcsin (r/l * sinф)) — (mшк + mшш + 2*mщк) * r * w^2
Произведение вращающей силы и радиуса кривошипа носит знакомое всем понятие «крутящего момента», т.е.
Или же:
Мкр = r* (Fкв + Fив)
Мкр = r * [Fп * sin (ф + arcsin (r/l * sinф)) / cos (arcsin (r/l * sinф)) — (mшк + mшш + 2*mщк) * r * w^2]
Или же более развернуто:
Мкр = r * [((Р — Рк) * п * D^2 / 4 — (mп + mшп) * w^2 * r * ( < cosф + cos2ф * r / l >+ е * r * < sinф + sin2ф * r / (2*l)>))*sin (ф + arcsin (r/l * sinф)) / cos (arcsin (r/l * sinф)) — (mшк + mшш + 2*mщк) * r * w^2]
Если нет ускорения коленчатого вала, т.е. при е(t) = 0:
Мкр = r * [((Р — Рк) * п * D^2 / 4 — (mп + mшп) * w^2 * r * < cosф + cos2ф * r / l >)*sin (ф + arcsin (r/l * sinф)) / cos (arcsin (r/l * sinф)) — (mшк + mшш + 2*mщк) * r * w^2]
Наряду с крутящим моментом существует реактивный момент двигателя, который стремится развернуть сам двигатель. Он противоположен по направлению крутящему моменту.
Итак, сегодня мы рассмотрели основные силы, возникающие в ШПГ работающего ДВС, выявили зависимости мгновенных значений сил и крутящего момента от давления газов, частоты вращения (в общем случае и ускорения) и угла поворота коленчатого вала. Но следует помнить, что помимо сил инерции и сил, порожденных давлением газов, существуют силы трения и силы сопротивления.
Не забываем поправлять, если заметили ошибку, писать пожелания и ставить лайки.