какие системы отсчета являются инерциальными и неинерциальными
Инерциальные системы отсчета.
Инерциальными системами отсчета называют такие системы, относительно которых все тела, не испытывающие действия сил, движутся равномерно и прямолинейно.
Если какая-либо система отсчета движется относительно инерциальной системы поступательно, но не прямолинейно и равномерно, а с ускорением или же вращаясь, то такая система не может быть инерциальной и закон инерции в ней не выполняется.
Во всех инерциальных системах отсчета все механические и физические процессы протекают совершенно одинаково (при одинаковых условиях).
Согласно принципу относительности, все инерциальные системы отсчета равноправны и все проявления законов физики в них выглядят одинаково, а записи этих законов в разных инерциальных системах отсчета имеют одинаковую форму.
Если в изотропном пространстве существует хотя бы одна инерциальная система отсчета, приходим к выводу, что существует бесконечное множество таких систем, движущихся друг относительно друга поступательно, равномерно и прямолинейно. Если инерциальные системы отсчета существуют, то пространство однородно и изотропно, а время – однородно.
Законы Ньютона и другие законы динамики выполняются только в инерциальных системах отсчета.
Рассмотрим пример инерциальной и неинерциальной систем. Возьмем тележку, на которой находятся два шарика. Один из них лежит на горизонтальной поверхности, а другой подвешен на нити. Сначала тележка движется относительно Земли прямолинейно и равномерно (а). Силы, действующие на каждый шарик по вертикали, уравновешены, а по горизонтали на шарики никакие силы не действуют (силу сопротивления воздуха можно проигнорировать).
При любой скорости движения тележки относительно земли (υ1, υ2, υ3 и т.д.) шарики будут находиться в покое относительно тележки, главное, чтобы скорость была постоянной.
Однако, когда тележка наедет на песчаную насыпь (б), ее скорость начнет быстро уменьшаться, в результате чего тележка остановится. Во время торможения тележки оба шарика придут в движение – изменят свою скорость относительно тележки, хотя их никакие силы не толкают.
В этом примере первой (условно неподвижной) системой отсчета является Земля. Вторая система отсчета, движущаяся относительно первой – тележка. Пока тележка двигалась равномерно и прямолинейно, шарики находились в покое относительно тележки, т. е. выполнялся закон инерции. Как только тележка стала тормозить, т. е. начала двигаться с ускорением относительно инерциальной (первой) системы отсчета, закон инерции перестал выполняться.
Строго инерциальной системы отсчета нет. Реальная система отсчета всегда связывается с каким-нибудь конкретным телом, по отношению к которому изучается различных объектов. Все реальные тела движутся с каким-либо ускорением, следовательно любая реальная система отсчета может рассматриваться в качестве инерциальной лишь приближенно.
Инерциальной системой с очень высокой степенью точности считается гелиоцентрическая система, связанная с центром Солнца и координатными осями, направленными на три далекие звезды. Эту систему используют в задачах небесной механики и космонавтики. В большинстве технических задач инерциальной системой отсчета считают любую систему, жестко связанную с землей (или любым телом, которое покоится или движется прямолинейно и равномерно относительно поверхности Земли).
Системы отсчета и их виды
В физике часто встречаются термины «система отсчета» и «инерциальная система отсчета». Ознакомимся с ними.
Что такое система отсчета
Система отсчета содержит:
Если все три пункта выполнены, то говорят, что задана система отсчета.
С телом отсчета связаны координатные оси, если тело отсчета будет двигаться, то система отсчета будет передвигаться совместно с ним.
Системы отсчета используются не только в физике. В повседневной жизни мы пользуемся картами местности. При этом, на карте мы отмечаем две точки:
Проложив маршрут и измерив расстояние между этими точками, мы сможем посчитать расстояние, которое нужно преодолеть, чтобы переместиться. А указав интервал времени, мы сможем рассчитать, с кокой скоростью нужно двигаться, чтобы вовремя прибыть к месту назначения.
Виды систем отсчета и их сравнение
Все системы отсчета (сокращенно СО) можно разделить на два вида:
От того, как система отсчета движется, зависит, можно ли считать ее инерциальной, или нет.
Инерциальные системы отсчета
Инерциальная система отсчета — это такая, которая:
Примеры инерциальных систем отсчета:
Примечания:
1. Вместо слов «скорость не меняется», физики часто употребляют такие слова: «скорость постоянная», или «модуль вектора скорости сохраняется».
2. Скорость – это вектор, у любого вектора есть две главные характеристики:
Подробнее о векторах и их характеристиках «здесь».
Не инерциальные системы отсчета
Не инерциальная система отсчета — это такая, которая:
Бывает и так, что одновременно изменяет и по модулю, и по направлению. Главное, что изменяет. Например, гоночный автомобиль на соревнованиях входит в поворот и одновременно набирает скорость.
Примеры не инерциальных систем отсчета:
Для чего нужно знать, к какому виду отнести систему отсчета
Предположим, нам нужно решить какую-то задачу механики. Чтобы ее решить мы вводим систему отсчета. Является ли система отсчета инерциальной, нужно знать потому, что
Для иллюстрации рассмотрим такой пример:
Представим, что мы находимся внутри пассажирского вагона. Поднимем на вытянутой руке мяч и разожмем ладонь, чтобы мяч из нее выпал. Будем изучать траекторию, по которой мяч движется. На всех рисунках пунктиром обозначено начальное положение мяча, а сплошным кругом — его конечное положение. Рассмотрим движение мяча в каждом из случаев:
Случай 1. Вагон покоится
Когда вагон покоится, свободно падающий мяч падает вертикально
Случай 2. Вагон движется равномерно прямолинейно
Красная стрелка — это вектор скорости вагона, он обозначен символом \( \vec
Когда вагон движется равномерно прямолинейно, свободно падающий мяч падает вертикально
Случай 3. Вагон движется прямолинейно равнозамедленно
Вектор скорости вагона обозначен символом \( \vec
Когда вагон движется прямолинейно равнозамедленно, свободно падающий мяч отклоняется от вертикали.
Случай 4. Вагон движется прямолинейно равноускоренно
Вектор скорости вагона \( \vec
Когда вагон движется прямолинейно равноускоренно, свободно падающий мяч отклоняется от вертикали
Случай 5. Вагон движется криволинейно
На рисунке представлена одна из возможных траекторий движения мяча. Траектория мяча будет зависеть от того, будет ли вагон, входящий в поворот, ускоряться, или замедляться.
Изогнутая стрелка указывает направление, в котором вагон поворачивает (изменяет направление движения).
Когда вагон движется криволинейно, свободно падающий мяч отклоняется от вертикали.
Подведем итог:
В первых двух случаях (см. рис. №1, №2), траектории мяча были одинаковыми. В этих двух случаях вагон является инерциальной системой отсчета.
Рисунки №3, №4 и №5 иллюстрируют неинерциальные системы отсчета. В случаях, представленных на этих рисунках, траектории мяча различаются. Формы траекторий зависят от дополнительных сил, действующих в неинерциальных системах отсчета на мяч.
Инерция
Понятие инерция в формулировках Галилея и Ньютона
Галилео Галилей и Исаак Ньютон внесли свой вклад в развитие такого раздела физики, как механика. Неудивительно, что каждый из них предложил свою формулировку.
Галилео Галилей
Исаак Ньютон
Формулировка закона инерции
Когда тело движется по горизонтальной поверхности, не встречая никакого сопротивления движению, то его движение — равномерно, и продолжалось бы постоянно, если бы плоскость простиралась в пространстве без конца.
Всякое тело продолжает удерживаться в своем состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не принуждается приложенными силами изменить это состояние.
Инерция — это физическое явление, при котором тело сохраняет свою скорость постоянной или покоится, если на него не действуют другие тела.
Инерция – это физическое явление сохранения скорости тела постоянной, если на него не действуют другие тела или их действие скомпенсировано.
Варианты формулировки не противоречат друг другу и говорят по сути об одном и том же, просто разными словами — выбирайте ту, что вам нравится больше.
Сила: первый закон Ньютона
В повседневной жизни мы часто встречаем, как любое тело деформируется (меняет форму или размер), ускоряется или тормозит, падает. В общем, чего только с разными телами в реальной жизни не происходит. Причина любого действия или взаимодействия — сила.
Сила — это физическая векторная величина, которая воздействует на данное тело со стороны других тел. Она измеряется в Ньютонах (в честь Исаака Ньютона, разумеется).
Сила — величина векторная. Это значит, что, помимо модуля, у нее есть направление. От того, куда направлена сила, зависит результат.
Вот стоите вы на лонгборде: можете оттолкнуться вправо, а можете влево — в зависимости от того, в какую сторону оттолкнетесь, результат будет разный. В данном случае результат выражается в направлении движения.
Теперь зная, что такое сила, мы можем вернуться к ньютоновской формулировке закона инерции — он же, Его Величество, первый закон Ньютона:
Существуют такие системы отсчета, относительно которых тело сохраняет свою скорость постоянной, в том числе равной нулю, если действие на него других сил отсутствует или скомпенсировано.
Первый закон Ньютона
R — результирующая сила, сумма всех сил, действующих на тело [Н]
const — постоянная величина
В этом законе встречается такое словосочетание, как «система отсчета». Оно изучается в самом начале курса физики, но там это понятие читают в контексте «такие системы отсчета». Напрашивается вопрос: какие такие системы отсчета?
Системы отсчета: инерциальные и неинерциальные
Чтобы описать движение нам нужны три штуки:
В совокупности эти три опции образуют систему отсчета:
Инерциальная система отсчета — система отсчёта, в которой все тела движутся прямолинейно и равномерно, либо покоятся.
Неинерциальная система отсчета — система отсчёта, движущаяся с ускорением.
Рассмотрим разницу между этими системами отсчета на примере задачи.
Аэростат — летательный аппарат на картиночке ниже — движется равномерно и прямолинейно параллельно горизонтальной дороге, по которой равноускоренно движется автомобиль.
Выберите правильное утверждение:
Решение:
Система отсчёта, связанная с землёй, инерциальна. Да, планета движется и вращается, но для всех процессов вблизи планеты этим можно пренебречь. Во всех задачах систему отсчета, связанную с землей можно считать инерциальной.
Поскольку система отсчёта, связанная с землёй инерциальна, любая другая система, которая движется относительно земли равномерно и прямолинейно или покоится — по первому закону Ньютона тоже инерциальна.
Движение аэростата удовлетворяет этому условию, так как оно равномерное и прямолинейное, а равноускоренное движение автомобиля — нет. Аэростат — инерциальная система отсчёта, а автомобиль — неинерциальная.
Ответ: 1.
Инерция покоя
На столе лежит лист бумаги. На него поставили стакан и резко выдернули лист бумаги из-под него. Стакан почти не двинулся.
То, что стакан остался в состоянии покоя, можно объяснить законом инерции, так как «скорость остается постоянной, в том числе равной нулю». В данном случае инерция покоя — это способность тела сохранять состояние полного механического покоя и «сопротивляться» любым внешним воздействиям. То есть та часть закона инерции, в котором скорость равна нулю.
Так, например, если выбивать пыль из ковра, то в ковер-самолет ваш любимый предмет интерьера не превратится — вместе с пылью не улетит.
Инерция движения
В случае с движением мы берем ту часть первого закона Ньютона, в которой скорость постоянна, но не равна нулю. Здесь мы откроем способность тела к движению, которое было вызвано силой, прекратившей своё действие на тело.
Вернемся к самому началу:
Велосипедист наезжает на камень и падает с велосипеда. Благодаря инерции скорость велосипедиста сохраняется, несмотря на то, что сам велосипед не едет дальше.
Наездник слетает с лошади, если та остановилась. Это тоже происходит из-за инерции — скорость наездника остается постоянной, при этом сама лошадь останавливается.
Мир не идеален
К сожалению, а может быть и к счастью, мы не живем в мире, в котором все тела движутся прямолинейно и равномерно. Из-за этого инерция в реальной жизни невозможна, потому что всегда есть трение, сопротивление воздуха и прочие, препятствующие движению, факторы.
Пуля, вылетевшая из ружья, продолжала бы двигаться, сохраняя свою скорость, если бы на неё не действовало другое тело — воздух. Поэтому скорость пули уменьшается.
Велосипедист, перестав работать педалями, смог бы сохранить скорость своего движения, если бы на велосипед не действовало трение. Поэтому, если педали не крутить — скорость велосипедиста уменьшается, и он останавливается.
Какие системы отсчета являются инерциальными и неинерциальными
Система отсчета, движущаяся (относительно звезд) равномерно и прямолинейно (т. е. по инерции), называется инерциальной. Очевидно, что таких систем отсчета — неисчислимое множество, поскольку любая система, движущаяся относительно некоторой инерциальной системы отсчета равномерно и прямолинейно, тоже инерциальна, Системы отсчета, движущиеся (относительно инерциальной системы) с ускорением, называются неинерциальными.
Опыт показывает, что
во всех инерциальных системах отсчета все механические процессы протекают совершенно одинаково (при одинаковых условиях).
Это положение, названное механическим принципом относительности (или принципом относительности Галилея), было сформулировано в 1636 г. Галилеем. Галилей пояснял его на примере механических процессов, совершающихся в каюте корабля, плывущего равномерно и прямолинейно по спокойному морю. Для наблюдателя, находящегося в каюте колебание маятника, падение тел и другие механические процессы протекают точно так же, как и на неподвижном корабле. Поэтому, наблюдая эти процессы, невозможно установить ни величину скорости, ни даже сам факт движения корабля. Чтобы судить о движении корабля относительно какой-либо системы отсчета (например, поверхности еоды), необходимо вести наблюдения и за этой системой (видеть, как удаляются предметы, лежащие на воде, и т. п.).
К началу XX в. выяснилось, что не только механические, но и тепловые, электрические, оптические и все другие процессы и явления природы протекают совершенно одинаково во всех инерциальных системах отсчета. На этом основании Эйнштейн в 1905 г. сформулировал обобщенный принцип относительности, названный впоследствии принципом относительности Эйнштейна:
во всех инерциальных системах отсчета все физические процессы протекают совершенно одинаково (при одинаковых условиях).
Этот принцип наряду с положением о независимости скорости распространения света в вакууме от движения источника света (см. § 20) лег в основу специальной теории относительности, разработанной Эйнштейном.
Законы Ньютона и другие рассмотренные нами законы динамики, выполняются только в инерциальных системах отсчета. В неинерциальных системах отсчета эти законы, вообще говоря, уже несправедливы. Рассмотрим простой пример, поясняющий последнее утверждение.
На совершенно гладкой платформе, движущейся равномерно и прямолинейно, лежит шар массой на этой же платформе находится наблюдатель. Другой наблюдатель стоит на Земле недалеко от места, мимо которого вскоре должна пройти платформа. Очевидно, что оба наблюдателя связаны с инерциальными системами отсчета.
Пусть теперь, в момент прохождения мимо наблюдателя, связанного с Землей, платформа начнет двигаться с ускорением а, т. е. сделается неинерциальной системой отсчета. При этом шар, ранее покоившийся относительно платформы, придет (относительно нее же) в движение с ускорением а, противоположным по направлению и равным по величине, ускорению, приобретенному платформой. Выясним, как выглядит поведение шара с точек зрения каждого из наблюдателей.
Для наблюдателя, связанного с инерциальной системой отсчета — Землей, шар продолжает двигаться равномерно и прямолинейно в полном соответствии с законом инерции (поскольку на него не действуют никакие силы, кроме силы тяжести, уравновешиваемой реакцией опоры).
Наблюдателю, связанному с неинерциальной системой отсчета — платформой, представляется иная картина: шар приходит в движение и приобретает ускорение — а без воздействия силы (поскольку наблюдатель не обнаруживает воздействия на шар каких-либо других тел, сообщающих шару ускорение). Это явно противоречит закону инерции. Не выполняется и второй закон Ньютона: применив его, наблюдатель получил бы, что (сила)
а это невозможно, так как ни
ни а не равны нулю.
Можно, однако, сделать законы динамики применимыми и для описания движений в неинерциальных системах отсчета, если ввести в рассмотрение силы особого рода — силы инерции. Тогда в нашем примере наблюдатель, связанный с платформой, может считать, что шар пришел в движение под действием силы инерции
Введение силы инерции позволяет записывать второй закон Ньютона (и его следствия) в обычной форме (см. § 7); только под действующей силой надо теперь понимать результирующую «обычных» сил и сил инерции
где масса тела, а — его ускорение.
Силы инерции мы назвали силами «особого рода», во-первых, потому, что они действуют только в неинерциальных системах отсчета, и, во-вторых, потому, что для них в отличие от «обычных» сил невозможно указать, действием каких именно других тел (на рассматриваемое тело) они обусловлены. Очевидно, по этой причине к силам инерции невозможно применить третий закон Ньютона (и его следствия); это является третьей особенностью сил инерции.
Невозможность указать отдельные тела, действием которых (на рассматриваемое тело) обусловлены силы инерции, не означает, конечно, что возникновение этих сил вообще не связано с действием каких-либо материальных тел. Имеются серьезные основания предполагать, что силы инерции обусловлены действием всей совокупности тел Вселенной (массой Вселенной в целом).
Дело в том, что между силами инерции и силами тяготения существует большое сходство: и те и другие пропорциональны массе тела, на которое они действуют, и потому ускорение, сообщаемое телу каждой из этих сил, не зависит от массы тела. При определенных условиях эти силы вообще невозможно различить. Пусть, например, где-то в космическом пространстве движется с ускорением (обусловленным работой двигателей) космический корабль. Находящийся в нем космонавт будет при этом испытывать силу, прижимающую его к «полу» (задней по отношению к направлению движения стенке) корабля. Эта сила создаст точно такой же эффект и вызовет у космонавта такие же ощущения, какие вызвала бы соответствующая сила тяготения.
Если космонавт считает, что его корабль движется с ускорением а относительно Вселенной, то он назовет действующую на него силу силой инерции. Если же космонавт будет считать свой корабль неподвижным, а Вселенную — несущейся мимо корабля с таким же ускорением а, то он назовет эту силу силой тяготения. И обе точки зрения будут совершенно равноправными. Никакой эксперимент, выполненный внутри корабля, не сможет доказать правильность одной и ошибочность другой точки зрения.
Из рассмотренного и других аналогичных примеров следует, что ускоренное движение системы отсчета эквивалентно (по своему действию на тела) возникновению соответствующих сил тяготения. Это положение получило название принципа эквивалентности сил тяготения и инерции (принципа эквивалентности Эйнштейна); данный принцип положен в основу общей теории относительности.
Силы инерции возникают не только в прямолинейно движущихся, но и во вращающихся неинерциальных системах отсчета. Пусть, например, на горизонтальной платформе, могущей вращаться вокруг вертикальной оси, лежит тело массой связанное с центром вращения О резиновым шнуром (рис. 18). Если платформа начнет вращаться с угловой скоростью со (и, следовательно, превратится в неинерциальную систему), то благодаря трению тело тоже будет вовлечено во вращение. Вместе с тем оно будет перемещаться в радиальном направлении от центра платформы до тех пор, пока возрастающая сила упругости растягивающегося шнура не остановит это перемещение. Тогда тело начнет вращаться на расстоянии
от центра О.
С точки зрения наблюдателя, связанного с платформой, перемещение шара относительно нее обусловлено некоторой силой Это есть сила инерции, поскольку она не вызвана действием на шар других определенных тел; ее называют центробежной силой инерции. Очевидно, что центробежная сила инерции равна по величине и противоположна по направлению силе упругости растянутого шнура, играющей роль центростремительной силы, которая действует на тело, вращающееся по отношению к инерциальной системе (см. § 13) Поэтому
следовательно, центробежная сила инерции пропорциональна расстоянию тела от оси вращения.
Подчеркнем, что центробежную силу инерции не следует смешивать с «обычной» центробежной силой, упомянутой в конце § 13. Это силы различной природы, приложенные к разным объектам: центробежная сила инерции приложена к телу, а центробежная сила — к связи.
В заключение отметим, что с позиции принципа эквивалентности сил тяготения и инерции простое объяснение получает действие всех центробежных механизмов: насосов, сепараторов и т. п. (см. § 13).
Любой центробежный механизм можно рассматривать как вращающуюся неинерциальную систему, вызывающую появление поля тяготения радиальной конфигурации, которое в ограниченной области значительно превосходит поле земного тяготения. В этом поле более плотные частицы вращающейся среды или частицы, слабо связанные с ней, отходят к ее периферии (как бы идут «ко дну»).