какие системы подвижной радиосвязи исторически появились первыми

Какие системы подвижной радиосвязи исторически появились первыми

В первых профессиональных системах передатчик и приемник проектировались для работы на определенной фиксированной частоте. Каждый радиоканал был закреплен за сравнительно небольшой группой абонентов, которые использовали его как общедоступную линию связи (Рис. 8.35, а). Если число абонентов превышало возможности одного канала, образовывали другую группу, за которой закрепляли другой радиоканал.

какие системы подвижной радиосвязи исторически появились первыми. Смотреть фото какие системы подвижной радиосвязи исторически появились первыми. Смотреть картинку какие системы подвижной радиосвязи исторически появились первыми. Картинка про какие системы подвижной радиосвязи исторически появились первыми. Фото какие системы подвижной радиосвязи исторически появились первыми

Рис. 8.35. Профессиональные (частные) системы подвижной радиосвязи

В системе с общедоступным пучком каналов ( транкинговые системы) (Рис. 8.35, б) всем абонентам сети доступна целая группа каналов. При поступлении вызова за парой абонентов закрепляется один из свободных в этот момент каналов. После отбоя канал освобождается и может быть предоставлен любой другой паре абонентов.

Технически это выполняется:

последовательным поиском радиостанцией свободного канала (например, по специальному маркерному сигналу незанятости). Однако такие системы характеризуются значительным временем установления соединения и могут применяться при небольшом количестве каналов (до 5..8);

специально выделенным общим каналом сигнализации, на который настроены все радиостанции сети в режиме дежурного приема. Такие системы являются наиболее распространенными.

Пропускная способность системы с общедоступным пучком каналов существенно выше, чем системы с закрепленными каналами.

Например, единственный канал при вероятности блокировки (т.е. непредоставления канала из-за его занятости) 10% и средней продолжительности разговора 2,5 мин на одного абонента в ЧНН позволит обслужить не более двух-трех абонентов. Двадцать таких каналов, используемых порознь, позволят обслужить около 50 абонентов. При тех же условиях система с общедоступным пучком каналов, использующая те же 20 каналов, сможет обслужить уже 420 абонентов, т.е. ее пропускная способность возрастает более чем в 8 раз.

Сети профессиональной радиосвязи проектируются по аналогии с вещательными сетями: достаточно мощный передатчик работает через высоко подвешенную антенну, охватывая территорию в пределах прямой видимости радиусом до 40. 50 км. При этом на площади обслуживания в 5. 8 тысяч кв. км абонентам может быть доступно несколько десятков радиоканалов.

На изложенном транкинговом принципе действия в 60-x годах была создана отечественная система подвижной связи «Алтай», которая в модернизированном виде функционирует и по настоящее время в диапазоне 330 МГц. Хотя общие тенденции развития отечественных профессиональных систем подвижной радиосвязи отвечали современному мировому уровню, однако, они разрабатывались в соответствии со стандартами России и не были ориентированы на западные стандарты, где уже наметилась тенденция международной стандартизации и унификации оборудования.

Наиболее распространенным видом транкинговых систем являются системы с выделенным каналом управления, использующие международные стандарты MTP 1327, MTP 1317, MTP 1343 и MTP 1347, разработанные первоначально в Великобритании на диапазоны частот 174..225 МГц и распространенные позже на другие диапазоны.

Общей тенденцией развития профессиональных систем подвижной радиосвязи является переход от аналоговых корпоративных или национальных стандартов к цифровым международным стандартам с обеспечением конфиденциальности связи и роуминга абонентов. Эти тенденции прежде всего связаны с внедрением общеевропейского стандарта на транкинговые системы подвижной радиосвязи TETRA, разработанного в рамках ETSI. Системы стандарта TETRA обеспечивают передачу речевых сообщений в цифровой форме, передачу данных и т.д. TETRA обеспечивает прямую связь абонентов без участия базовых станций. Внедрение систем стандарта TETRA в Европе планируется с 1997 года, первоначально в интересах служб безопасности, полиции и охраны границ.

Однако, эффективность транкинговых систем с радиальной структурой сети оказывается недостаточной для удовлетворения массового спроса на услуги подвижной связи в густонаселенных районах.

Так, для Москвы с ее 10-миллионным населением обеспечение только 0,1% жителей подвижной связью при стандартных условиях качества обслуживания (средняя длительность переговоров 1,5 мин, вероятность блокировки 5%) потребует выделения примерно 250 радиоканалов или при ширине полосы одного канала в 25 кГц соответственно двух полос частот по 6,25 МГц каждая.

Проблему организации подвижной связи для густонаселенных районов удалось решить путем построения сетей подвижной связи по сотовому принципу.

Источник

Профессиональные системы подвижной радиосвязи

В первых профессиональных системах передатчик и приемник проектировались для работы на определенной фиксированной частоте. Каждый радиоканал был закреплен за сравнительно небольшой группой абонентов, которые использовали его как общедоступную линию связи (Рис. 8.35, а). Если число абонентов превышало возможности одного канала, образовывали другую группу, за которой закрепляли другой радиоканал.

какие системы подвижной радиосвязи исторически появились первыми. Смотреть фото какие системы подвижной радиосвязи исторически появились первыми. Смотреть картинку какие системы подвижной радиосвязи исторически появились первыми. Картинка про какие системы подвижной радиосвязи исторически появились первыми. Фото какие системы подвижной радиосвязи исторически появились первыми

Рис. 8.35. Профессиональные (частные) системы подвижной радиосвязи

В системе с общедоступным пучком каналов (транкинговые системы) (Рис. 8.35, б) всем абонентам сети доступна целая группа каналов. При поступлении вызова за парой абонентов закрепляется один из свободных в этот момент каналов. После отбоя канал освобождается и может быть предоставлен любой другой паре абонентов.

Технически это выполняется:

· последовательным поиском радиостанцией свободного канала (например, по специальному маркерному сигналу незанятости). Однако такие системы характеризуются значительным временем установления соединения и могут применяться при небольшом количестве каналов (до 5..8);

· специально выделенным общим каналом сигнализации, на который настроены все радиостанции сети в режиме дежурного приема. Такие системы являются наиболее распространенными.

Пропускная способность системы с общедоступным пучком каналов существенно выше, чем системы с закрепленными каналами.

Например, единственный канал при вероятности блокировки (т.е. непредоставления канала из-за его занятости) 10% и средней продолжительности разговора 2,5 мин на одного абонента в ЧНН позволит обслужить не более двух-трех абонентов. Двадцать таких каналов, используемых порознь, позволят обслужить около 50 абонентов. При тех же условиях система с общедоступным пучком каналов, использующая те же 20 каналов, сможет обслужить уже 420 абонентов, т.е. ее пропускная способность возрастает более чем в 8 раз.

Сети профессиональной радиосвязи проектируются по аналогии с вещательными сетями: достаточно мощный передатчик работает через высоко подвешенную антенну, охватывая территорию в пределах прямой видимости радиусом до 40. 50 км. При этом на площади обслуживания в 5. 8 тысяч кв. км абонентам может быть доступно несколько десятков радиоканалов.

На изложенном транкинговом принципе действия в 60-x годах была создана отечественная система подвижной связи «Алтай», которая в модернизированном виде функционирует и по настоящее время в диапазоне 330 МГц. Хотя общие тенденции развития отечественных профессиональных систем подвижной радиосвязи отвечали современному мировому уровню, однако, они разрабатывались в соответствии со стандартами России и не были ориентированы на западные стандарты, где уже наметилась тенденция международной стандартизации и унификации оборудования.

Наиболее распространенным видом транкинговых систем являются системы с выделенным каналом управления, использующие международные стандарты MTP 1327, MTP 1317, MTP 1343 и MTP 1347, разработанные первоначально в Великобритании на диапазоны частот 174..225 МГц и распространенные позже на другие диапазоны.

Общей тенденцией развития профессиональных систем подвижной радиосвязи является переход от аналоговых корпоративных или национальных стандартов к цифровым международным стандартам с обеспечением конфиденциальности связи и роуминга абонентов. Эти тенденции прежде всего связаны с внедрением общеевропейского стандарта на транкинговые системы подвижной радиосвязи TETRA, разработанного в рамках ETSI. Системы стандарта TETRA обеспечивают передачу речевых сообщений в цифровой форме, передачу данных и т.д. TETRA обеспечивает прямую связь абонентов без участия базовых станций. Внедрение систем стандарта TETRA в Европе планируется с 1997 года, первоначально в интересах служб безопасности, полиции и охраны границ.

Однако, эффективность транкинговых систем с радиальной структурой сети оказывается недостаточной для удовлетворения массового спроса на услуги подвижной связи в густонаселенных районах.

Так, для Москвы с ее 10-миллионным населением обеспечение только 0,1% жителей подвижной связью при стандартных условиях качества обслуживания (средняя длительность переговоров 1,5 мин, вероятность блокировки 5%) потребует выделения примерно 250 радиоканалов или при ширине полосы одного канала в 25 кГц соответственно двух полос частот по 6,25 МГц каждая.

Проблему организации подвижной связи для густонаселенных районов удалось решить путем построения сетей подвижной связи по сотовому принципу.

Сотовые системы

Сотовая система подвижной радиосвязи (ССПС) использует большое число маломощных передатчиков, которые предназначены для обслуживания только сравнительно небольшой зоны, скажем, радиусом в 1. 2 км.

Например, вместо использования единственного передатчика для обслуживания территории Москвы город можно разбить на множество небольших зон покрытия, называемых сотами. Чтобы понять, как это изменит общую картину, предположим, что все имеющиеся в распоряжении частотные каналы могут повторно использоваться в каждой ячейке сотовой структуры. Тогда требуемые для 0,1 % жителей Москвы 250 каналов можно получить, например, разделением обслуживаемой территории радиусом в 50 км на 25 ячеек радиусом по 10 км с организацией в каждой ячейке только 10 радиоканалов с одним и тем же набором частот. Приведенный пример служит только для пояснения сотового принципа.

Расчеты показывают, что из-за недопустимо большого уровня взаимных помех ячейки с одинаковым набором частот необходимо перемежать буферными ячейками с другими наборами частот. Группа ячеек в зоне обслуживания с различными наборами частот называется кластером. На Рис. 8.36 показан образец сотовой структуры с типичной для аналоговых сетей размерностью кластера n=7.

какие системы подвижной радиосвязи исторически появились первыми. Смотреть фото какие системы подвижной радиосвязи исторически появились первыми. Смотреть картинку какие системы подвижной радиосвязи исторически появились первыми. Картинка про какие системы подвижной радиосвязи исторически появились первыми. Фото какие системы подвижной радиосвязи исторически появились первыми

Рис. 8.36. Образец сотовой структуры

Если, например, для обслуживания абонентов в одной ячейке требуется набор из 10 частот, то для создания сотовой структуры с размерностью кластера n=7, обслуживающей сколь угодно большую территорию, необходимо располагать набором из 70 частот.

Основной потенциал сотовой идеи заключается в том, что уровень взаимных помех зависит не от собственно расстояния между ячейками, а от отношения расстояния между ячейками к их радиусу.

Радиус ячейки зависит от мощности передатчика и, определяется разработчиком системы, который в процессе проектирования должен выбрать подходящую размерность кластера. С уменьшением радиуса ячейки возрастает количество базовых станций, приходящихся на 1 кв. км площади обслуживания и на 1 МГц используемой полосы частот.

Конечно, полномасштабное развертывание сотовой сети с самого начала ее ввода в эксплуатацию представляется чрезвычайно дорогостоящим. Обычно ее развертывание начинается с небольшого числа крупных ячеек, которые через некоторое время постепенно трансформируются в большее число более мелких ячеек. Такой способ преобразования называется расщеплением. Когда в некоторой ячейке нагрузка достигает того уровня, при котором существующее в ней число каналов оказывается недостаточным для поддержания установленного качества обслуживании абонентов (т.е. вероятность непредоставления канала при поступлении вызова оказывается больше установленного значения, как правило, до 5%), эта ячейка разделяется на несколько более мелких с пониженной мощностью передатчиков. При этом пропускная способность сети на территории расщепленной ячейки увеличивается в число раз, равное числу вновь образованных ячеек. Эта процедура может повторяться до тех пор, пока сеть не достигнет расчетного значения своей пропускной способности.

Ячейки небольших размеров требуются только в центральной части города со значительной плотностью абонентов. Ближе к окраинам плотность снижается, и размеры ячеек могут увеличиваться. Расщепление ячеек может производиться достаточно гибко как в пространстве, так и во времени. По замыслу разработчиков сотовой системы она должна явиться чрезвычайно удобным средством в руках проектировщиков для возможности повышения пропускной способности именно там и именно в то время, где и когда это необходимо.

Использование сравнительно небольших ячеек создает проблему поддержания непрерывности связи. При движении по произвольному маршруту объект (абонент ССПС) в течение одного сеанса связи может миновать несколько ячеек. В этом случае непрерывность связи обеспечивается способностью системы автоматически передавать связь с объектом тем базовым станциям, в зоне действия которых он оказывается в данный момент.

Благодаря непрерывным измерениям уровней сигналов, поступающих в центр коммутации подвижной связи от базовых станций, ближайших к движущемуся объекту, система может определить момент пересечения объектом границы двух ячеек и переключить разговорный канал из первой ячейки во вторую в течение достаточно малого промежутка времени, не приводящего к нарушению непрерывности разговора. Такая процедура, получившая название эстафетной передачи (хэндовер), требует весьма сложного алгоритма определения именно той ячейки из нескольких соседних, куда перемещается объект, а также быстродействующих алгоритмов и схемотехнических решений, обеспечивающих освобождение канала в первой ячейке и поиск свободного канала с восстановлением по нему связи во второй ячейке.

Реализация описанных основных принципов сотовой архитектуры:

· использование маломощных передатчиков с радиопокрытием небольших по размеру ячеек;

· повторное использование частот в пределах одной зоны обслуживания;

· поэтапное увеличение пропускной способности за счет расщепления ячеек;

привела в начале 80-х годов к созданию в ряде промышленно развитых стран Европы и Северной Америки ССПС, которые положили начало массовому внедрению услуг подвижной связи во всем мире.

Развернутые в 80-x годах ССПС относят к первому поколению. К ним относятся стандарты AMPS (США), HCMTS (Япония), NMT-450 и NMT-900 (Северная Европа), C-450 (Германия), TACS (Великобритания), ETACS (Англия, Лондон), RTMS-101H (Италия) и Radiocom-200 (Франция). Они были рассчитаны в основном на обслуживание абонентов в рамках национальных границ, использовали аналоговую ЧМ для передачи речи и внутриполосную (in-band) сигнализацию в процессе установления соединения между абонентскими терминалами и остальной сетью. Исключение составляла лишь система NMT-450 (NMT-900), которая была введена в эксплуатацию в 1981 году как международная система для четырех стран Северной Европы: Дании, Финляндии, Норвегии и Швеции.

· два конкурирующих североамериканских ADC (D-AMPS) по стандарту TIA IS-54 и CDMA по стандарту TIA IS-95;

Стандарт GSM является наиболее прогрессивным, его основные характеристики подробнее рассматриваются ниже.

Стандарт D-AMPS разрабатывался в США с 1987 года. FCC не смогла выделить отдельную полосу частот в диапазоне 900 МГц для перспективной цифровой ССПС США. Ассоциация промышленности сотовой связи (CTIA) совместно с TIA приняли решение о совмещении в одной полосе частот аналоговой ССПС стандарта AMPS и будущей цифровой ССПС, сохранив используемый в AMPS разнос каналов, равный 30 кГц, при использовании речевого кодека VSELP со скоростью преобразования речи 8 кбит/с. Стандарт TIA IS-54 на ССПС ADC (D-AMPS) был принят в 1990 году. Несмотря на то, что D-AMPS не полностью цифровое решение (используются аналоговые каналы управления), он оказался более прогрессивным, чем AMPS, и в настоящее время более 2 млн. абонентов в 14 странах мира, включая Россию, используют эту технологию.

ССПС, использующая кодовое разделение каналов CDMA, были разработаны фирмой Qualcomm (США) и развиваются фирмой Motorola. На системы CDMA TIA приняла стандарт IS-95. В сентябре 1995 года в Гонконге начата коммерческая эксплуатация первой сети CDMA данного стандарта на оборудовании фирмы Motorola.

Рассмотрим характеристики пан-Европейского стандарта GSM.

Система GSM построена на основе новейшей технологии в виде цифровой системы с программным управлением, совместимой с цифровой телефонной сетью общего пользования интегрального обслуживания (ISDN). В ней использованы:

· система сигнализации SS7;

· принципы построения интеллектуальной сети IN/1.

Элементы этой системы способны контролировать и управлять всеми основными характеристиками сигнала в процессе передачи. Система обладает достаточным «интеллектом» для обнаружения возникшего отклонения в работе, его диагностики, принятия решения и проведения необходимой коррекции.

В ней реализована большая часть возможностей ISDN плюс дополнительные возможности, связанные с особенностями подвижной радиосети: управление по радио, слежение за местоположением подвижного объекта, обеспечение функции эстафетной передачи, защита передаваемой информации и т.п. Инфраструктура сети создает и постоянно обновляют объемные базы данных, содержащие необходимые сведения об абонентах и их местоположении, устраняет все обнаруженные неполадки, модифицирует свою конфигурацию по мере изменения нагрузки и выполняет множество других функций по эксплуатации и обслуживанию сети, тарификации, взаимодействия с другими стационарными и подвижными сетями.

Для системы GSM допустимое отношение мощностей несущей и помех в канале связи составляет 9 дБ, в аналоговых системах этот показатель, как правило, близок к 18 дБ. Выигрыш в 9 дБ объясняется известными преимуществами цифровой обработки сигналов и, в частности, использованием устройств типа:

· речевых кодеков, устойчивых к помехам в канале связи;

· эффективных цифровых модуляторов, благодаря которым основная часть энергии радиосигнала оказывается сосредоточенной в полосе частот канала связи;

· помехоустойчивых кодов в сочетании с процедурой перемежения;

· корректоров, способных обеспечить работу в условиях многолучевого распространения сигналов с предельно допустимой дополнительной задержкой отраженных лучей 16 мкс;

· перестраиваемых синтезаторов частот, позволяющих улучшить работу в условиях многолучевого распространения сигналов.

Системы GSM работают в диапазоне около 900 МГц, который разбит на два поддиапазона шириной по 25 МГц (Рис. 8.36): 890..915 МГц для передачи от портативных устройств к базовой станции и 935..960 МГц для приема, т.е. используется организация дуплексной связи с частотным разделением (FDD). Каждый частотный поддиапазон разбит на 124 частотных канала с разносом между соседними 200 кГц (ширина полосы каждого частотного канала не превышает 200 кГц). Речевой канал системы GSM использует пару частотных каналов с результирующим разносом 45 МГц независимо от абсолютных значений несущих частот в обоих поддиапазонах. Наличие разноса препятствует появлению переходных помех между направлениями приема и передачи.

какие системы подвижной радиосвязи исторически появились первыми. Смотреть фото какие системы подвижной радиосвязи исторически появились первыми. Смотреть картинку какие системы подвижной радиосвязи исторически появились первыми. Картинка про какие системы подвижной радиосвязи исторически появились первыми. Фото какие системы подвижной радиосвязи исторически появились первыми

Рис. 8.36. Временная и частотная структура GSM

какие системы подвижной радиосвязи исторически появились первыми. Смотреть фото какие системы подвижной радиосвязи исторически появились первыми. Смотреть картинку какие системы подвижной радиосвязи исторически появились первыми. Картинка про какие системы подвижной радиосвязи исторически появились первыми. Фото какие системы подвижной радиосвязи исторически появились первыми

Рис. 8.37. Структура КИ GSM

В начале и конце КИ отводятся по 28 мкс на продолжительность переходных процессов, в ходе которых мощность излучения передатчика меняется (возрастает в начале и падает в конце КИ) на 70 дБ. Полезная продолжительность КИ составляет 546,12 мкс и служит для передачи 148 бит.

В одном из КИ, в котором передача не ведется, портативное устройство осуществляет прием сигнала от базовой станции, т.е. используется одна и та же антенна с разделением во времени.

Расстояния между портативным устройством и базовой станцией в пределах соты может достигать 30 км. В результате задержка распространения сигнала может достигать 100 мкс. Такая задержка серьезно влияет на работу базовой станции, поскольку переданный КИ может частично попасть на соседний. Поэтому базовая станция может посылать команды портативному устройству на опережение передачи, чтобы сигнал поступал на базовую станцию в своем КИ.

Также базовая станция в зависимости от расстояния до портативного устройства может осуществлять регулировку излучаемой мощности последнего с целью уменьшения расхода энергоресурса.

Одной из особенностей работы систем сотовой радиосвязи является прием сигналов в условиях многолучевого распространения (на входе приемника действует совокупность сигнала непосредственно пришедшего от передатчика и сигналов, многократно отразившихся от неровностей рельефа, зданий и т.п.). Многолучевое распространение приводит к таким нежелательным явлениям, как растянутая задержка сигнала, релеевские замирания и пр.

Избежать последствий многолучевого распространения позволяет механизм выравнивания сигналов. Он состоит в делении полезной длительности КИ на три части, в свою очередь разделенные битами флагов (см. Рис. 8.37). В середине располагается специальная легко распознаваемая синхропоследовательность, по которой производится выравнивание принятого КИ. До и после синхропоследовательности располагаются по 57 бит информационной нагрузки.

Функция эстафетной передачи в GSM. В отличие от централизованного управления, характерного для систем первого поколения, в системе GSM принят принцип распределенного управления между центром коммутации подвижной связи, базовыми станциями и подвижными терминалами. В течение всего сеанса связи подвижные терминалы измеряют уровни сигналов от соседних базовых станций и результаты измерений сообщают обслуживающей их базовой станции. Последняя определяет необходимость хэндовера и передает информацию о наиболее предпочтительной новой ячейке для обслуживания подвижного объекта системному контроллеру центра коммутации подвижной связи. Благодаря такому алгоритму распределенного управления большая часть работы выполняется не системным контроллером, а базовыми станциями и подвижными терминалами, что позволяет избежать перегрузки центрального звена и упростить процедуру эстафетной передачи.

Система GSM предоставляет пользователям широкий ассортимент услуг, как речевых, так и неречевой природы. Помимо телефонии к речевым услугам относят вызовы спецслужб (полиция, скорая помощь, пожарные и т.п.), как правило, путем набора номера 112, который принят на Европейском континенте в качестве стандарта, и речевую почту.

Стандарт GSM принят в России в качестве федерального. С января 1996 года в Москве и области началась коммерческая эксплуатация ССПС стандарта GSM. Оператором сети является компания «Московские ТелеСистемы» (МТС). Сеть обслуживает более 12 тысяч абонентов и обеспечивает автоматический роуминг со странами Европы.

Работы по созданию единой международной ССПС третьего поколения, получившей название FPLMTS, проводит МСЭ.

Источник

История развития систем подвижной связи

Автор: Пользователь скрыл имя, 14 Февраля 2013 в 13:38, реферат

Описание работы

На протяжении всей своей истории человечество испытывало острую необходимость в средствах быстрой передачи информации на большие расстояния. На заре цивилизации для этого использовались различные примитивные способы – сигнальные костры, барабаны, почтовые голуби и т. д. С развитием науки эти технологии все более совершенствовались – изобретение электричества со временем позволило соединять проводами между собой удаленные на большое расстояние объекты и практически моментально обмениваться между ними достаточно приличными объемами информации.

Содержание

Введение 3
1 Системы наземной подвижной связи 4
2 История развития отдельных видов систем подвижной связи 8
2.1 Пейджинговые системы 8
2.2 Транкинговые системы 9
2.3 Системы абонентского радиодуступа 11
2.4 Сотовые системы 12
2.5 Спутниковая подвижная связь 14
Заключение 16
Список использованных источников 17

Работа содержит 1 файл

Реферат.doc

Министерство транспорта Российской Федерации

Федеральное агентство железнодорожного транспорта

Государственное образовательное учреждение

высшего профессионального образования

Омский государственный университет путей сообщения

Кафедра «История, философия и культурология»

ИСТОРИЯ РАЗВИТИЯ СИСТЕМ ПОДВИЖНОЙ СВЯЗИ

Тематический реферат по дисциплине

«История и философия науки»

Введение

На протяжении всей своей истории человечество испытывало острую необходимость в средствах быстрой передачи информации на большие расстояния. На заре цивилизации для этого использовались различные примитивные способы – сигнальные костры, барабаны, почтовые голуби и т. д. С развитием науки эти технологии все более совершенствовались – изобретение электричества со временем позволило соединять проводами между собой удаленные на большое расстояние объекты и практически моментально обмениваться между ними достаточно приличными объемами информации. Это было очень большим достижением, но местоположение абонентов было строго фиксировано, что иногда создавало большие неудобства.

Таким образом, существовала потребность в разработке новых средств, которые могли бы обеспечить связь с подвижным (мобильным) объектом. Тем самым данный вид связи имел свои особенности и этапы развития, нежели радиосвязь в целом. Цель данной работы – это знакомство с историческими, хронологическими данными этапов развития средств именно подвижной (мобильной) связи. Безусловно, истоки данной истории закономерно совпадают с началом развития радиосвязи в целом, но акцент сделан непосредственно на технологию, если так можно выразиться, мобильной связи.

Основываясь на классификации систем мобильной радиосвязи, предложено рассматривать историю развития систем наземной подвижной радиосвязи, как наиболее распространенной в настоящее время.

1 Системы наземной подвижной связи

Первым шагом к появлению мобильных средств связи было открытие в 1888 году немецким физиком Генрихом Герцем электромагнитных радиоволн и нахождение способа их обнаружения. Немного позже, 7 мая 1895 года русский ученый Александр Степанович Попов на заседании Русского Физико-Химического Общества продемонстрировал прибор, предназначенный для регистрации электромагнитных волн – первый примитивный радиоприемник (рисунок 1). Разработка Александра Степановича основывалась на исследованиях Г. Герца. Также свой огромный вклад в создание радиосвязи внесли исследования Фарадея (явление электромагнитной индукции), Дж. Максвелла (теория электромагнитного поля), Э. Бранли и О. Лоджа (индикатор электромагнитных волн), а также Н.Тесла (огромный объем исследований, в том числе им предложена конструкция антенн) [1].

Рисунок 1 – Регистратор Попова

В последующем было проведено множество исследований, получены десятки патентов на изобретения, но в большинстве своем это касалось, так сказать, фиксированной радиосвязи, т.е. говорить о передвижении (мобильности) объектов не приходилось.

Первую же наземную мобильную связь провел итальянец Гульельмо Маркони в 1901 году, установив радио- приемопередающее устройство на борт парового автомобиля «Торникрофт» и положив тем самым начало развития подвижной радиосвязи (рисунок 2). Установка Маркони работала только с азбукой Морзе, т.е. возможно было передавать только данные (точка-тире), но не голос. Однако говорить о настоящей мобильности было еще рано, размеры устройства были просто огромными, а также неудобство, связанное с тем,что перед тем как автомобиль начинал движение, необходимо было опустить высокую цилиндрическую антенну в горизонтальное положение [3].

В дальнейшем развитие систем подвижной связи осуществлялось по пути создания систем, обслуживающих нужды полиции и муниципальных служб, а также различные производственные нужды.

Рисунок 2 – Установка Гульельмо Маркони

Таким образом, следующее знаковое событие в развитии мобильной связи произошло в 1921 году, когда была в американском Детройте создана первая диспетчерская система телеграфной подвижной связи. Основой этой системы была азбука Морзе, причем связь была односторонней – полицейские диспетчеры вызывали автомобиль по радиосвязи, а полицейские связывались с участком по обычному проводному телефону. Рабочей частотой системы были 2 МГц. Фактически, диспетчерская система телеграфной подвижной связи это ничто иное, как прообраз пейджинговой связи.

Двухсторонняя радиосвязь между диспетчерами и полицейскими автомобилями появилась спустя 12 лет, в 1933 году в Нью-Йорке. Средства подвижной радиосвязи тех лет относились к системам PTT (Push-To-Talk – нажми, чтобы говорить). Данный принцип, до сих пор используется в рациях, а несколько лет назад он пережил второе рождение в средствах мобильной связи – благодаря функции PTT современных мобильных телефонов [1].

Не менее важным событием стало создание при американском Конгрессе в 1934 году Федеральной Комиссии по Коммуникациям (FCC) (рисунок 3), основной функцией которой было распределение радиочастот на территории США [3]. Приоритетом при получении частотного ресурса пользовались спасательные службы, государственные агентства и общественные компании. Далее следовали фирмы, работающие в сфере грузовых и пассажирских перевозок. Изначально, возможность выделения радиочастот частным лицам и компаниям предусмотрена не была, причем это ограничение действовало до окончания Второй Мировой Войны, что стало одной из причин задержки в развитии частной мобильной связи.

На начальном этапе развития систем наземной подвижной связи в них использовались телеграфные режимы работы, а позже – телефонные режимы с применением для передачи сообщений амплитудной модуляции (AM). В 1940 году в США в диапазоне очень высоких частот (ОВЧ) создается первая система подвижной связи с использованием частотной модуляции (ЧМ).

Рисунок 3 – Логотип Федеральной Комиссии по Коммуникациям

Первая сеть подвижной радиосвязи, рассчитанная на частных клиентов, была запущена 17-го июня 1946 г. в американском Сент-Луисе (штат Миссури) совместными усилиями Службы Мобильной Телефонии AT&T и Bell Telephone Laboratories. В качестве рабочей частоты данной системы было выбран диапазон в районе 150 МГц, при этом использовалось 6 каналов, но позднее число каналов было сокращено до 3, из-за помех, вызываемых наложением радиоволн [3]. Однако, существовал ряд проблем: во-первых, аппаратура была очень громоздкой и предназначалась только для установки в автомобиль, вес радиотелефона составлял 40 килограмм без источника питания; во-вторых, ограниченность частотного ресурса, радиотелефоны с близкими по частоте каналами начинали вызывать взаимные помехи, и необходимо было минимум 100 километров между двумя радиосистемами, чтобы стало возможным использовать частоту вновь.

Рисунок 4 – Радиотелефон, установленный в автомобиле

Позднее техническое решение AT&T и Bell Telephone Laboratories оказывается не совсем совершенным, т.к. в 1948 году создается первая полностью автоматическая радиотелефонная система подвижной связи без участия диспетчера в городе Ричмонд штата Индиана.

Описанные выше трудности дальнейшего развития мобильной связи были разрешены позднее благодаря знаменательным событиям, произошедших в 1947 году. А именно, в этот год сотрудником Bell Laboratories Д. Рингом был разработан сотовый принцип организации сети мобильной связи, что позволило решить проблему взаимных помех, и обеспечило повторное использование частотных каналов. В июле 1947 года У. Шокли, У. Браттайн и Дж. Бардин – сотрудники Bell Laboratories, изобретают транзистор. Это в дальнейшем позволило заметно уменьшить вес и размеры мобильных телефонных аппаратов. В последующем мобильная связь получила сильнейший толчок для развития и широкое распространение среди множества пользователей.

В СССР серийный выпуск первых отечественных станций подвижной связи был налажен в 1952 году.

Таким образом, за прошедшие сто лет наземная подвижная связь прошла следующие основные этапы развития:

2 История развития отдельных видов систем подвижной связи

2.1 Пейджинговые системы

Как уже упоминалось ранее, прообразом пейджинговой системы стала диспетчерская система, разработанная для нужды полиции в 1921 году.

Начало развития современных пейджинговых систем (систем поискового радиовызова, ПРВ) общего пользования можно отнести к 1956 году, когда была создана первая система «Multiton». В этой системе, которая для передачи сообщений использовала специально выделенный радиоканал, абонент имел малогабаритный приемник – пейджер, способный из общего потока сообщений, передаваемых по радиоканалу, выделить адресованный ему сигнал. При приеме этого сигнала в зависимости от принятой кодовой комбинации издавался звук определенного тона, услышав который абонент мог, нажав на кнопку, прослушать посланное ему речевое сообщение.

Позже, из-за необходимости улучшить эффективность использования радиоканала, отказались от передачи речевого сообщения. Вызов абонента включал тоновый звуковой сигнал пейджера, который извещал его о необходимости совершить определенные действия (например, позвонить по заранее определенному телефонному номеру). Системы пейджинговой связи, работающие в отдельном выделенном радиоканале, выпускались многими фирмами. Обычно ширина полосы канала составляла 25 кГц, и для передачи сигналов использовалась частотная модуляция. Для работы этих систем выделялись каналы в диапазоне частот от 50 до 900 МГц.

Важной вехой в развитии систем пейджинговой связи явилась разработка в 1976 году протокола POCSAG, принятого в качестве международного. В 1982 году впервые были разработаны пейджеры с дисплеем, на котором абонент мог увидеть посланное ему буквенно-цифровое сообщение. В системах ПРВ, использующих этот код, информация может передаваться со скоростью 512, 1200 либо 2400 бит/с.

Системы пейджинговой связи получили весьма широкое распространение и, с целью экономии частотного ресурса, в 1980 году возникла идея использовать для организации такой связи хорошо развитую сеть станций. Сигналы ПРВ передавались в эфир в составе вещательного сигнала на поднесущей частоте 57 кГц. Эта частота модулировалась с помощью частотной модуляции и была расположена по спектру выше верхней граничной частоты вещательного сигнала. Широкое внедрение таких систем, получивших название RDS (Radio Data System), началось во многих странах мира в 1987 году.

Первая отечественная разработка пейджинговой системы «Луч-1» Воронежским НИИ связи была завершена в 1988 году.

Начиная с 60-х годов создаются национальные и региональные сети ПРВ, охватывающие территории нескольких стран и предоставляющие абонентам услуги во всей зоне обслуживания. В 1969 году создана европейская система ЕВРОСИГНАЛ, которая была внедрена во Франции, Германии и Швейцарии. Позже была создана система ЕВРОПЕЙДЖ, охватившая территории Великобритании, Франции, Германии и Италии.

В 1956 году Motorola выпустила первый в мире пейджер, который благодаря низкой стоимости был доступен самым широким слоям населения, что сделало пейджинговую связь очень популярной. Спустя почти 40 лет, в 1995 году Motorola представила Tango – первый в мире пейджер с двухсторонней связью, т.е. с его помощью которого можно было не только получать сообщения, но отправлять стандартные ответы (рисунок 5) [2].

Рисунок 5 – Пейджер Motorola Tango

В 1992 году создается общеевропейская система ERMES (European Radio Message System), работающая в полосе частот от 169,4 до 169,8 МГц. Эта система обеспечивает общеевропейский роуминг и высокую скорость передачи сигналов (6,25 Kбит/с). Она позволяет создавать сети очень высокой емкости для передачи разных видов сообщений, включая текстовые. Сети ERMES не получили широкого распространение ввиду сложности оборудования.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *