какие случайные величины называются непрерывными
Какие случайные величины называются непрерывными
1. Формирование представление о случайной величине, дискретных и непрерывных случайных величинах.
2. Знакомство с законом распределения дискретной случайной величины, функцией распределения и плотностью распределения непрерывной случайной величины, числовых характеристиках случайных величин.
1. Виды случайных величин.
2. Закон распределения дискретной случайной величины.
3. Функция распределения вероятностей случайной величины.
4. Плотность распределения вероятностей непрерывной случайной величины.
5. Математическое ожидание.
6. Дисперсия и среднеквадратическое отклонение.
1. Виды случайных величин.
Случайной величиной называется такая величина, которая случайно принимает какое-то значение из множества возможных значений.
По множеству возможных значений различают дискретные и непрерывные случайные величины.
Дискретными называются случайные величины, значениями которых являются только отдельные точки числовой оси. (Число их может быть как конечно, так и бесконечно).
Пример: Число родившихся девочек среди ста новорожденных за последний месяц- это дискретная случайная величина, которая может принимать значения 1,2,3,…
Непрерывными называются случайные величины, которые могут принимать все значения из некоторого числового промежутка.
2. Закон распределения дискретной случайной величины.
Закон распределения дискретной случайной величины— это соответствие между возможными значениями случайной величины и их вероятностями.
Закон распределения можно задать таблично, аналитически, графически.
При задании закона распределения таблично, в первую строку таблицы вносятся возможные значения случайно величины, а во вторую- их вероятности.
Пример: Монету подбросили 3 раза. Запишите закон распределения числа выпадения «герба».
Возможные значения данной случайной величины: 0, 1, 2, 3.
Найдем вероятность того, что «герб» не появится (0 раз).
Найдем вероятность того, что «герб» появится 1 раз.
Найдем вероятность того, что «герб» появится 2 раза.
Найдем вероятность того, что «герб» появится 3 раза.
Тогда закон распределения данной дискретной случайной величины можно представить таблицей:
Для наглядности закон распределения дискретной случайной величины можно изобразить графически, для чего в прямоугольной системе координат строят точки с координатами (xi ; pi), а затем соединяют их отрезками прямых. Полученная фигура называется многоугольником распределения.
Однако, такой способ задания (перечисление всех возможных значений случайной величины и их вероятностей) не подходит для непрерывных случайных величин. Составить перечень их возможных значений невозможно.
3. Функция распределения вероятностей случайной величины.
Дадим новый способ задания любых типов случайных величин. С этой целью введем функцию распределения вероятностей случайной величины.
Функцией распределения случайной величины называют функцию F ( x ), определяющую вероятность того, что случайная величина Х в результате испытания примет значение меньшее х, т.е. F ( x ) P ( X x ).
Геометрически это равенство можно истолковать так: F ( x ) –есть вероятность того, что случайная величина примет значение, которое изображается на числовой оси точкой, лежащей левее точки х.
Иногда вместо термина «функция распределения» используется термин «интегральная функция».
Свойства функции распределения:
Следствие 1: Вероятность того, что случайная величина примет значение, заключенное в интервале (а; b ), равна приращению функции распределения на этом интервале:
Пример: Случайная величина Х задана функцией распределения:
Найдите вероятность того, что в результате испытания Х примет значение, принадлежащее интервалу (0; 2).
Следствие: Если возможные значения непрерывной случайной величины распределены на всей числовой оси, то справедливы следующие предельные соотношения:
Рассмотренные выше свойства позволяют представить, как выглядит график функции распределения непрерывной случайной величины.
График расположен в полосе, ограниченной прямыми у=0, у=1 (1 свойство).
4. При возрастании значения х в интервале ( a ; b ), в котором заключены все возможные значения случайной величины, график растет вверх (2 свойство).
5. При ординаты графика равны 0, при ординаты графика равны 1 (3 свойство).
Замечание: График функции распределения дискретной случайной величины имеет ступенчатый вид.
Пример: Дискретная случайная величина Х задана таблицей распределения:
Найдите функцию распределения и постройте ее график.
Итак, функция распределения имеет следующий вид:
4. Плотность распределения вероятностей непрерывной случайной величины.
Непрерывную случайную величину можно также задать, используя другую функцию, которую называют плотностью распределения или плотностью вероятности (дифференциальной функцией).
Плотность распределения вероятностей непрерывной случайной величины Х называют функцию f ( x )- первую производную от функции распределения F ( x ).
Пример: Задана плотность вероятностей случайной величины Х.
Найдите вероятность того, что в результате испытания Х примет значение, принадлежащее интервалу (0,5; 1).
Свойства плотности распределения вероятностей:
Свойство 1: Плотность распределения- неотрицательная функция: f ( x ) > 0.
Часто, для того чтобы характеризовать случайную величину используют числа, которые описывают случайную величину суммарно. Такие числа называются числовыми характеристиками случайной величины. К числу важнейших числовых характеристик относятся математическое ожидание и дисперсия.
5. Математическое ожидание.
Математическое ожидание приближенно равно среднему значению случайной величины. Например, если известно, что математическое ожидание числа выбиваемых очков у первого стрелка больше, чем у второго, то первый стрелок в среднем выбивает больше очков, чем второй, и следовательно стреляет лучше.
Пример: Найдите математическое ожидание, зная закон распределения дискретной случайной величины.
НЕПРЕРЫВНАЯ СЛУЧАЙНАЯ ВЕЛИЧИНА
Непрерывной случайной величиной называется случайная величина, все возможные значения которой целиком заполняют некоторый промежуток на числовой прямой.
Функция распределения непрерывной случайной величины:
Функция не убывает и непрерывна, причем производная функции не имеет разрывов на всей числовой оси, за исключением конечного числа точек.
Вероятность попадания случайной величины Х в интервал a£X
Плотность вероятности непрерывной случайной величины: f(x)=F’(x); xÎR.
Свойства плотности вероятности:
2.
3.
Плотность вероятности: xÎR.
Параметры нормального закона:
— математическое ожидание,
— среднее квадратическое отклонение.
Свойства интегральной функции нормального закона:
4.
5.
Сумма конечного числа независимых величин с нормальным законом распределения имеет нормальный закон распределения.
Равномерный закон распределения случайной величины.
Непрерывная случайная величина Х называется равномерно распределенной в интервале (a;b), если ее плотность распределения в этом интервале постоянна:
Вероятность попадания в заданный интервал (a;b):
Математическое ожидание:
Дисперсия:
Среднее квадратическое отклонение:
Показательный закон распределения случайной величины.
Плотность вероятности:
Интегральная функция:
Вероятность попадания случайной величины в заданный интервал (a;b):
Математическое ожидание:
Дисперсия:
Среднее квадратическое отклонение:
При определенных условиях число событий, произошедших за промежуток времени t, распределено по закону Пуассона с математическим ожиданием а = lt. Длина промежутка t, между произвольными двумя соседними событиями, подчиняется показательному закону:
Пример 4.1. Дана плотность вероятности случайной величины X:
Решение. По определению функция распределения F(x) =
Следовательно, функция распределения принимает вид:
x£1 | ||
F(X)= | 1 5 |
Математическое ожидание случайной величины:
Дисперсия случайной величины:
Пример 4.2. Торговая точка имеет в продаже большое количество различных товаров. Средняя выручка в день составляет 5 д.е., а среднее квадратическое отклонение 0,9 д.е. Составить плотность вероятности и функцию распределения выручки торговой точки. Найти вероятность того, что выручка торговой точки в случайно выбранный день: а) составит от 4 до 7 д.е., б) будет отличаться от средней выручки не более чем на 2 д.е.
Средняя выручка, по теории выборки (математическая статистика), является хорошей оценкой математического ожидания данной случайной величины. Следовательно: М(X) = 5д.е.; s(Х) = 0,9д.е.
Вероятность того, что выручка торговой точки составит от 4 до 7 д.е.:
Вероятность того, что выручка будет отличаться от средней выручки не более чем на 2 д.е.:
Пример 4.3. Автобусы некоторого маршрута идут строго по расписанию с интервалом движения 20 минут. Найти вероятность того, что пассажир, случайно подошедший к остановке, будет ожидать очередной автобус более 15 минут. Найти числовые характеристики полученной случайной величины.
Решение. Х- случайная величина, время ожидания пассажиром очередного автобуса. Случайная величина Х равномерно распределена в интервале (0;20].
a = 0; b = 20; a = 15; b = 20.
Плотность вероятности:
Вероятность ожидания автобуса более 15 минут:
Математическое ожидание:
Дисперсия:
Среднее квадратическое отклонение:
Пример 4.4. Случайная величина Х – время безотказной работы прибора распределена по показательному закону с параметром l = 0,01 1/час. Вышедший из строя прибор немедленно заменяют новым. Найти вероятность того, что неисправность прибора наступит не ранее, чем через 150 часов. Найти вероятность того, что за 200 часов прибор не придется заменять.
Решение. Случайная величина Х – время безотказной работы прибора распределена по показательному закону, следовательно:
Число отказов прибора за время t = 200 часов распределено по закону Пуассона с математическим ожиданием а = lt = 0,01*200 = 2. Вероятность того, что за 200 часов прибор не придется заменять, вычисляется по формуле Пуассона:
Непрерывные случайные величины (НСВ). Плотность распределения НСВ
Скачать лекцию можно по ссылке ниже!
НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ.
Непрерывной называют случайную величину, которая может принимать все значения из некоторого конечного или бесконечного промежутка. Число возможных значений непрерывной случайной величины бесконечно.
Можно дать другое, более строгое, определение НСВ, используя понятие функции распределения. Случайная величина Х называется непрерывной, если ее функция распределения F (x) непрерывна на всей числовой оси.
Помимо функции распределения для непрерывных случайных величин, существует еще один удобный способ задания закона распределения — плотность вероятности.
Пусть функция распределения F (x) данной НСВ Х непрерывна и дифференцируема всюду, кроме, может быть, отдельных точек. Тогда производная f (x) ее функции распределения называется плотностью распределения непрерывной СВ Х (или «плотностью вероятности», или просто «плотностью»):
px;»> » width=»105
» alt=»\[f(x)=F'(x).\]» title=»Rendered by QuickLaTeX.com»/>
Свойства плотности распределения:
График плотности распределения f (x) называется кривой распределения.
Непрерывные случайные величины (НСВ)
Непрерывными случайными величинами называются случайные величины, возможные значения которых непрерывно заполняют некоторый промежуток.
Примеры непрерывных случайных величин:
1) размер (прочность, вес) детали массового производства;
2) время безотказной работы устройства (компьютера, холодильника и т.д.) до момента отказа;
3) ошибка измерительного прибора;
4) возраст или рост человека.
Функцией распределения непрерывной случайной величины называют функцию F(x), определяемую также как и функция распределения дискретной случайной величины, т.е.
.
2. Условие нормировки: .
3. Вероятность попадания непрерывной случайной величины в заданный интервал (а, b) определяется формулой:
.
4. Через известную плотность распределения непрерывной случайной величины можно найти ее функцию распределения по формуле:
Системой двух случайных величин (Х,Y) называется случайная величина, возможные значения которой определяются двумя числами.
Законом распределения системы двух случайных величин называется соотношение, устанавливающее связь между областями возможных значений системы двух случайных величин и вероятностями появления системы в этих областях.
Таблицей распределения системы двух дискретных случайных величин (Х,Y) называется перечень ее возможных значений, т.е. пар чисел и их вероятностей
, где
.
Непрерывная случайная величина, функция распределения и плотность вероятности
Определение непрерывной случайной величины и её связь с вероятностью
Случайной величиной называется переменная, которая может принимать те или иные значения в зависимости от различных обстоятельств, и случайная величина называется непрерывной, если она может принимать любое значение из какого-либо ограниченного или неограниченного интервала. Для непрерывной случайной величины невозможно указать все возможные значения, поэтому обозначают интервалы этих значений, которые связаны с определёнными вероятностями.
Примерами непрерывных случайных величин могут служить: диаметр детали, обтачиваемой до заданного размера, рост человека, дальность полёта снаряда и др.
Так как для непрерывных случайных величин функция F(x), в отличие от дискретных случайных величин, нигде не имеет скачков, то вероятность любого отдельного значения непрерывной случайной величины равна нулю.
Функция распределения непрерывной случайной величины и плотность вероятности
В качестве закона распределения, имеющего смысл только для непрерывных случайных величин, вводится понятие плотности распределения или плотности вероятности. Подойдём к нему путём сравнения смысла функции распределения для непрерывной случайной величины и для дискретной случайной величины.
Итак, функцией распределения случайной величины (как дискретной, так и непрерывной) или интегральной функцией называется функция , которая определяет вероятность, что значение случайной величины X меньше или равно граничному значению х.
Плотностью вероятности f(x) непрерывной случайной величины называется производная её функции распределения:
.
Зная функцию плотности, можно найти вероятность того, что значение непрерывной случайной величины принадлежит закрытому интервалу [a; b]:
вероятность того, что непрерывная случайная величина X примет какое-либо значение из интервала [a; b], равна определённому интегралу от её плотности вероятности в пределах от a до b:
.
При этом общая формула функции F(x) распределения вероятностей непрерывной случайной величины, которой можно пользоваться, если известна функция плотности f(x) :
.
График плотности вероятности непрерывной случайной величины называется её кривой распределения (рис. ниже).
Площадь фигуры (на рисунке заштрихована), ограниченной кривой, прямыми, проведёнными из точек a и b перпендикулярно оси абсцисс, и осью Ох, графически отображает вероятность того, что значение непрерывной случайной величины Х находится в пределах от a до b.
Свойства функции плотности вероятности непрерывной случайной величины
1. Вероятность того, что случайная величина примет какое-либо значение из интервала (и площадь фигуры, которую ограничивают график функции f(x) и ось Ох) равна единице:
2. Функция плотности вероятности не может принимать отрицательные значения:
,
а за пределами существования распределения её значение равно нулю
Плотность распределения f(x), как и функция распределения F(x), является одной из форм закона распределения, но в отличие от функции распределения, она не универсальна: плотность распределения существует только для непрерывных случайных величин.
Упомянем о двух важнейших в практике видах распределения непрерывной случайной величины.
Если функция плотности распределения f(x) непрерывной случайной величины в некотором конечном интервале [a; b] принимает постоянное значение C, а за пределами интервала принимает значение, равное нулю, то такое распределение называется равномерным.
Если график функции плотности распределения симметричен относительно центра, средние значения сосредоточены вблизи центра, а при отдалении от центра собираются более отличающиеся от средних (график функции напоминает разрез колокола), то такое распределение называется нормальным.
Пример 1. Известна функция распределения вероятностей непрерывной случайной величины:
Найти функцию f(x) плотности вероятности непрерывной случайной величины. Построить графики обеих функций. Найти вероятность того, что непрерывная случайная величина примет какое-либо значение в интервале от 4 до 8: .
Решение. Функцию плотности вероятности получаем, находя производную функции распределения вероятностей:
Найдём вероятность того, что непрерывная случайная величина примет какое либо значение в интервале от 4 до 8:
.
Пример 2. Функция плотности вероятности непрерывной случайной величины дана в виде:
Решение. Коэффициент C найдём, пользуясь свойством 1 функции плотности вероятности:
Таким образом, функция плотности вероятности непрерывной случайной величины:
.
Таким образом, полная запись функции распределения вероятностей:
Найдём вероятность того, что непрерывная случайная величина примет какое либо значение в интервале от 0 до 5:
.
Пример 3. Плотность вероятности непрерывной случайной величины X задана равенством , при этом
. Найти коэффициент А, вероятность того, что непрерывная случайная величина X примет какое-либо значение из интервала ]0, 5[, функцию распределения непрерывной случайной величины X.
Решение. По условию приходим к равенству
.
Следовательно, , откуда
. Итак,
.
Теперь находим вероятность того, что непрерывная случайная величина X примет какое-либо значение из интервала ]0, 5[:
Теперь получим функцию распределения данной случайной величины:
Пример 4. Найти плотность вероятности непрерывной случайной величины X, которая принимает только неотрицательные значения, а её функция распределения .
Решение. По определению плотности вероятности получаем
при и
при
, поскольку F(x) для этих значений x постоянна (равна нулю).
Пример 5. Плотность распределения непрерывной случайной величины задана формулой:
(при x > 0 )
1) найти функцию распределения непрерывной случайной величины;
2) найти вероятность того, что непрерывная случайная величина примет значение, лежащее между 1 и 2.
2) вероятность попадания непрерывной случайной величины на участок между 1 и 2 вычислим как приращение функции распределения на этом участке:
Пример 6. Непрерывная случайная величина имеет плотность
при
.
1) найти вероятность попадания непрерывной случайной величины на участок от 0 до π/4;
2) функцию распределения непрерывной случайной величины.
1) находим вероятность:
.
2) находим функцию распределения непрерывной случайной величины:
Пример 7. Плотность распределения непрерывной случайной величины задана формулой
.
Найти вероятность попадания непрерывной случайной величины на участок (-1; +1)
.