какие соединения способны полимеризоваться
4.2.4. Высокомолекулярные соединения. Реакции полимеризации и поликонденсации. Полимеры. Пластмассы, волокна, каучуки.
Высокомолекулярными соединениями (ВМС) называют соединения с молекулярной массой более 10000.
Практически все высокомолекулярные вещества являются полимерами.
Полимеры — это вещества, молекулы которых состоят из огромного числа повторяющихся структурных звеньев, соединенных между собой химическими связями.
Полимеры могут быть получены с помощью реакций, которые можно разделить на два основных типа: это реакции полимеризации и реакции поликонденсации.
Реакции полимеризации
Реакции полимеризации — это реакции образования полимера путем объединения огромного числа молекул низкомолекулярного вещества (мономера).
Количество молекул мономера ( n ), объединяющихся в одну молекулу полимера, называют степенью полимеризации.
В реакцию полимеризации могут вступать соединения с кратными связями в молекулах. Если молекулы мономера одинаковы, то процесс называют гомополимеризацией, а если различны — сополимеризацией.
Примерами реакций гомополимеризации, в частности, является реакция образования полиэтилена из этилена:
Примером реакции сополимеризации является синтез бутадиен-стирольного каучука из бутадиена-1,3 и стирола:
Полимеры, получаемые реакцией полимеризации, и исходные мономеры
Мономер
Получаемый из него полимер
Структурная формула
Варианты названия
Структурная формула
Варианты названия
Реакции поликонденсации
Реакции поликонденсации — это реакции образования полимеров из мономеров, в ходе которых, помимо полимера, побочно образуется также низкомолекулярное вещество (чаще всего вода).
В реакции поликонденсации вступают соединения, в состав молекул которых входят какие-либо функциональные группы. При этом реакции поликонденсации по тому, один используется мономер или больше, аналогично реакциям полимеризации делятся на реакции гомополиконденсации и сополиконденсации.
К реакциям гомополиконденсации относятся:
* образование (в природе) молекул полисахарида (крахмала, целлюлозы) из молекул глюкозы:
* реакция образования капрона из ε-аминокапроновой кислоты:
К реакциям сополиконденсации относятся:
* реакция образования фенолформальдегидной смолы:
* реакция образования лавсана (полиэфирного волокна):
Материалы на основе полимеров
Пластмассы
Пластмассы — материалы на основе полимеров, которые способны под действием нагревания и давления формоваться и сохранять заданную форму после охлаждения.
Помимо высокомолекулярного вещества в состав пластмасс входят также и другие вещества, однако основным компонентом все же является полимер. Благодаря своим свойствам он связывает все компоненты в единую целую массу, в связи с чем его называют связующим.
Пластмассы в зависимости от их отношения к нагреванию делят на термопластичные полимеры (термопласты) и реактопласты.
Термопласты — вид пластмасс, способных многократно плавиться при нагревании и застывать при охлаждении, благодаря чему возможно многоразовое изменение их изначальной формы.
Реактопласты — пластмассы, молекулы которых при нагревании «сшиваются» в единую трехмерную сетчатую структуру, после чего изменить их форму уже нельзя.
Так, например, термопластами являются пластмассы на основе полиэтилена, полипропилена, поливинилхлорида (ПВХ) и т.д.
Реактопластами, в частности, являются пластмассы на основе фенолформальдегидных смол.
Каучуки
Каучуки — высокоэлластичные полимеры, углеродный скелет которых можно представить следующим образом:
Как мы видим, в молекулах каучуков имеются двойные C=C связи, т.е. каучуки являются непредельными соединениями.
Каучуки получают полимеризацией сопряженных диенов, т.е. соединений, у которых две двойные C=C связи, разделены друг от друга одной одинарной С-С связью.
Так например, особо зарекомендовавшими себя мономерами для получения каучуков являются:
В общем виде (с демонстрацией только углеродного скелета) полимеризация таких соединений с образованием каучуков может быть выражена схемой:
Таким образом, исходя из представленной схемы, уравнение полимеризации изопрена будет выглядеть следующим образом:
Весьма интересным является тот факт, что впервые с каучуком познакомились не самые продвинутые в плане прогресса страны, а племена индейцев, у которых промышленность и научно-технический прогресс отсутствовали как таковые. Естественно, индейцы не получали каучук искусственным путем, а пользовались тем, что давала им природа: в местности, где они проживали (Южная Америка), произрастало дерево гевея, сок которого содержит до 40-50% изопренового каучука. По этой причине изопреновый каучук называют также натуральным, однако он может быть получен и синтетическим путем.
Все остальные виды каучука (хлоропреновый, бутадиеновый) в природе не встречаются, поэтому всех их можно охарактеризовать как синтетические.
Однако каучук, не смотря на свои преимущества, имеет и ряд недостатков. Так, например, из-за того что каучук состоит из длинных, химически не связанных между собой молекул, его свойства делают его пригодным для использования только в узком интервале температур. На жаре каучук становится липким, даже немного текучим и неприятно пахнет, а при низких температурах подвержен затвердеванию и растрескиванию.
Технические характеристики каучука могут быть существенно улучшены его вулканизацией. Вулканизацией каучука называют процесс его нагревания с серой, в результате которого отдельные, изначально не связанные друг с другом, молекулы каучука «сшиваются» друг с другом цепочками из атомов серы (полисульфидными «мостиками»). Схему превращения каучуков в резину на примере синтетического бутадиенового каучука можно продемонстрировать следующим образом:
Волокна
Волокнами называют материалы на основе полимеров линейного строения, пригодные для изготовления нитей, жгутов, текстильных материалов.
Классификация волокон по их происхождению
Искусственные волокна (вискозу, ацетатное волокно) получают химической обработкой уже существующих природных волокон (хлопка и льна).
Синтетические волокна получаются преимущественно реакциями поликонденсации (лавсан, капрон, нейлон).
Что такое полимеризация?
Слово «полимеризация» в переводе с древнегреческого означает состоящее из множества частей.
В наше время полимеризацией называется процесс, в результате которого образуется полимер (высокомолекулярное соединение). Процесс протекает в результате присоединения молекул, имеющих малую молекулярную массу к активным центрам в возникающей молекуле полимера, причем этот процесс многократно повторяется.
Звено, которое повторяется называют мономерным или структурным.
Если рассмотреть молекулярный состав мономера и полимера, то он примерно, одинаковый. Как правило мономерами являются соединения, которые имеют способность открываться, вставать реакционноспособными и образовывать новые связи с другими соединениями, это обеспечивает рост цепи. Такими соединениями являются молекулы, содержащие кратные связи или ароматическое кольцо.
Немного истории
Процесс полимеризации был открыт учеными в середине 19 века. В это же время были получены первые мономеры, способные полимеризоваться – это стирол, изопрен и т.п. Но открытие процесса было условным, так как полное представление, что это за процесс, какие реакции и по какому механизму протекают было получено лишь в двадцатые годы 20 века благодаря Российским ученым. А в 1922 году химик Штаудингер представил доказательства, что полимеры – это соединения, которые состоят из больших молекул, связь между атомами которых обусловлена ковалентными связями.
Полимерная классификация
Есть несколько признаков, которые могут лежать в основе классификации.
Если в реакции «создания длинной цепи» принимает участие только один мономер, то такой процесс синтеза носит название «гомополимеризацией».
Если же в реакции принимают участвуют два мономера, то ее принято называть «сополимеризация».
Рост цепи, в ходе протекания реакции полимеризации проходит с присоединением мономера к активному центру. Если данный центр является радикальным, то и реакция полимеризации будет радикальной. Если активным центром выступает ион – то реакция ионная. Она в свою очередь делиться по типу иона на катионную и анионную.
Также в дополнении существует стереоспецифическая полимеризация. Для нее характерно получение полимеров с упорядоченной структурой.
Еще полимеризацию можно классифицировать по агрегатному состоянию веществ:
При ступенчатой полимеризации протекает реакция между двумя молекулами мономера, поэтому макроцепь образуется через стадии формирования димеров, тримеров и т.п. Реакция роста полимера протекает медленно.
При цепной полимеризации рост происходит в результате взаимодействия мономера и активного центра, расположенного на конце цепи. Полимеры, полученные по данному типу полимеризации имеют большую молекулярную массу.
В нашем научном мире принято под полимеризацией понимать как раз цепной тип.
По ЮПАК выделяют четыре вида:
Описание механизма цепного типа полимеризации
Цепная полимеризация протекает через четыре основные стадии:
Промышленная полимеризация
В промышленном процессе полимеризации ее проводят четырьмя основными способами: объемным методом, в растворе, в суспензии или в эмульсии.
Наибольшее распространение получила объёмная полимеризация. Особенно это касается процессов, в результате которых необходимо получить конечный продукт в твердой фазе. Данный метод синтеза позволяет получать продукт, содержащий минимальное количество примесей. Как и любой другой способ получения, объемная полимеризация не лишена минусов.
Если полимеризация протекает в растворе, то проблемы с перемешиванием не возникают, реактор не пачкается. Но, с другой стороны, эффективность синтеза низкая, требуется дополнительно стадия выделение полимера. Плюс, существует проблемы с организацией производства, так как применяемые растворители огнеопасны и токсичны.
В суспензированной полимеризации применяется смесь с низкой вязкостью, в ней теплоперенос протекает более эффективно. Но, к сожалению, данное производство сложно провести в крупнотоннажном размере. А еще существует проблема, связанная с тем, что требуются большие затраты на утилизацию отработанной воды.
Эмульсированная полимеризация дает возможность получить конечный продукт в виде эмульсии (латекс). Данный вид полимеризации имеет преимущества: низкую степень вязкости и хорошее распределение тепла. А минусами процесса является необходимость выделения полимера, наличие загрязняющих продукт примесей.
Открытие процесса полимеризации, понимание протекания ее реакций произвело революцию во всем мире. Полимеризация позволила получить пластик, синтетические ткани, сверхпрочные, огнеупорные материалы, медицинское оборудование и множество «искусственных» органов, тканей, что позволило спасти жизнь миллионов людей.
Продукты полимеризации применяются плотно вошли в нашу жизнь с 20 века. Теперь они окружают нас во всем – одежде, быте, работе. Во всех сферах жизни применяются высокомолекулярные соединения: корпуса телефонов и бытовой техники, строительные материалы, лаки и краски, одежда, спецодежда, парники, пленки и многое-многое другое. Полимеры сделали нашу жизнь комфортабельнее, безопаснее, но и мы не должны забывать, что несмотря на то, что в природе существуют «врожденные», созданные ею самой полимеры, но искусственно созданное вещество, попадая в землю, воду может принести вред окружающей среде. От пакетов погибают рыбы, от сжигания пластика отравляется воздух, отравления почвы приводит к тому, что на ней произрастают «отравленные» растения, которые используют в пищу животные и люди. Поэтому, пользуясь полимерами, всегда нужно помнить о правильности их утилизации, чтобы сохранить окружающий мир для наших детей. Сейчас данному вопросу экологической безопасности уделяется особое внимание. Спустя два века человечество стало плотно задумываться о том, как безопасно избавиться, от искусственно созданного. Все больше технологий утилизации полимеров разрабатывается, была введена программа разделения отходов, сдача отдельно особо опасных. Мы все должны заботиться об окружающем мире и беречь его.
Высокомолекулярные соединения. Реакции полимеризации и поликонденсации
Содержание:
Число n показывает, из скольких мономеров состоит полимер, и называется степенью полимеризации. Молекулярная масса иногда достигает нескольких миллионов.
Высокомолекулярные соединения классифицируются по характеру мономеров:
Полимеры получают с помощью:
Реакции полимеризации
Реакции полимеризации заключаются в объединении большого количества низкомолекулярных соединений, количество которых определяется степенью полимеризации. Общее уравнение реакции:
Самой распространенной реакций полимеризации является реакция получения полиэтилена:
реакции полимеризации вступают непредельные соединения. Это могут быть молекулы одного мономера, либо разных. В первой ситуации реакцию называют гомополимеризацией, во второй – сополимеризацией.
I. Гомополимеризация
К этим реакциям относят получение полиэтилена, полипропилена поливинилхлорида и т.д. Например, получение полипропилена из пропена под действием ультрафиолетовых лучей:
II. Сополимеризация
К этим реакциям относят получение сополимера этилена и пропилена:
Полимеры, которые получают в результате реакций полимеризации
Формула
Название
Реакции поликонденсации
I. Гомополиконденсация
К данным реакциям относят получение полимера из одного мономера с выделением конденсата. Например, получение полисахарида из глюкозы – этот процесс происходит в природе.
Синтетическое волокно получают в промышленности из аминоэнантовой кислоты под воздействием температуры, давления и катализатора в виде молекулярного азота.
II. Сополиконденсация
К данным реакциям относят получение полимера из нескольких мономеров с выделением конденсата. Например, получение фенолформальдегидной смолы из фенола и формальдегида в щелочной или подкисленной среде.
С помощью реакций сополиконденсации в промышленности получают полиэфиры, полиамины, полиакрил и т.д.
Характеристика полимеров
Полимеры – это соединения, которые имеют особые свойства и множество классификаций.
По способу получения высокомолекулярные вещества делятся на:
Также по форме макромолекул:
А еще по свойствам и применению:
Все полимеры активно используются в отраслях жизнедеятельности человека.
Пластик (пластические массы) – полезные материалы, которые способны под воздействием температур или давления плавиться и при застывании оставлять заданную форму. Этот процесс сопровождается переходом из вязкотекучего в стеклообразное состояние. Главный компонент пластмассы – полимер, а остальные части – это наполнители, пластификаторы, красители и т.д.
Эластомеры – это высокомолекулярные соединения, которые обладают высокоэластичными свойствами. Каучуки используют для изготовления автомобильных шин, промышленных товаров и медицинских препаратов. Натуральный каучук получают из латекса (млечный сок каучуконосных растений). Получают по методу С.В. Лебедева с помощью полимеризации дивинила при действии металлического натрия.
Волокна – это высокомолекулярные соединения, для которых характерна строгая упорядоченность молекул и используется в изготовлении нитей. Существует три типа волокон, которые разделяются еще на несколько подтипов.
Полимеры – это соединения, с помощью которых человечество способно изготавливать высокопрочные материалы и довольствоваться благами технологий.
Полимеры
Высокомолекулярные соединения. Реакции полимеризации и поликонденсации. Полимеры. Пластмассы, волокна, каучуки.
Высокомолекулярные вещества, состоящие из больших молекул цепного строения, называются полимерами (от греч. «поли» — много, «мерос» — часть). |
…-CH2-CH2-CH2-CH2-CH2-CH2-CH2-… или (-CH2—CH2-)n
Молекула полимера называется макромолекулой (от греч. «макрос» — большой, длинный). Молекулярная масса макромолекул достигает десятков — сотен тысяч (и даже миллионов) атомных единиц.
Соединения, из которых образуются полимеры, называются мономерами.
Группа атомов, многократно повторяющаяся в цепной макромолекуле, называется ее структурным звеном.
Мономеры – низкомолекулярные вещества, из которых образуются полимеры. |
Степень полимеризации – число, показывающее количество элементарных звеньев в молекуле полимера.
Степень полимеризации обычно обозначается индексом «n» за скобками, включающими в себя структурное (мономерное) звено: (–CH2–CH2–)n.
Классификация полимеров
Полимеры, макромолекулы которых построены строго определенным способом, называют регулярными.
Полимер называется стереорегулярным, если заместители R в основной цепи макромолекул (–CH2–CHR–)n расположены упорядоченно.
Стереорегулярные полимеры обладают гораздо лучшими свойствами – пластичностью, прочностью и теплостойкостью; они способны кристаллизоваться, в отличие от нерегулярных.
Классификация по структуре
По структуре полимеры делятся на: линейные, разветвленные и пространственные.
Линейные | Разветвленные | Пространственные |
Состоят из последовательности повторяющихся звеньев с большим отношением длины молекулы к ее поперечному размеру. Целлюлоза, полиэтилен низкого давления, капрон | Макромолекулы разветвленных имеют боковые ответвления от цепи, называемой главной или основной Химические связи имеются и между цепями, образуя пространственную структуру Резина, фенолформальдегидные смолы |
Линейные — макромолекулы состоят из последовательности повторяющихся звеньев с большим отношением длины молекулы к ее поперечному размеру (целлюлоза, полиэтилен низкого давления, капрон).
Разветвленные — макромолекулы которых имеют боковые ответвления от цепи, называемой главной или основной (крахмал).
Сетчатые (пространственные) — химические связи имеются и между цепями (резина, фенолформальдегидные смолы).
Классификация по происхождению
По способу получения полимеры делятся на: природные, синтетические и искусственные.
Природные волокна | Синтетические волокна | Искусственные |
Непосредственно существуют в природе Природные полимеры непосредственно существуют в природе (крахмал, целлюлоза и др.). Синтетические полимеры получают полностью химическим путем в реакциях полимеризации и поликонденсации (полиэтилен, полихлорвинил, фенол-формальдегидные смолы, метилметакрилат и т.д.). Не имеют аналогов в природе. Искусственные – получают модификацией натуральных полимеров (вискоза –модифицированная целлюлоза, резина –модификация натурального каучука). Классификация по химическому характеруПо химическому характеру и составу полимеры и химические волокна бывают: полиэфирные, полиамидные, элементоорганические (например, кремнийорганические полимеры). Найлон, капрон | Содержат атомы других хим. элементов (кремний и др.). Кремнийорганические полимеры |
Элементоорганические полимеры — содержат атомы других химических элементов (помимо С, Н, О, N).
Классификация по способу получения
Полимеры получают либо реакциями полимеризации, либо поликонденсацией.
Полимеризация | Поликонденсация |
Это присоединение одних молекул к другим за счет разрыва кратных связей. Побочные продукты, как правило, не образуются. Полиэтилен, полипропилен и др. | Образование полимера происходит за счет реакции замещения. При этом образуется низкомолекулярный побочный продукт. Фенолформальдегидная смола, капрон |
Полимеризация — процесс образования высокомолекулярного вещества(полимера) путём многократного присоединения молекул мономера к активным центрам в растущей молекуле полимера. |
Поликонденсация – процесс образования высокомолекулярных соединений, протекающий по механизму замещения и сопровождающийся выделением побочных низкомолекулярных продуктов (обычно это вода). |
Свойства полимеров
По свойствам полимеры можно разделить на: термореактивные, термопластичные и эластомеры.
Термореактивные | Термопластичные | Эластомеры |
Неплавкие и неэластичные материалы. Фенолформальдегидные смолы, полиуретан | Меняют форму при нагревании и сохраняют её. Полиэтилен, полистирол, поливинилхлорид | Эластичные вещества при разных температурах. Натуральный каучук, полихлоропрен |
Термореактивные полимеры — пластмассы, переработка которых в изделия сопровождается необратимой химической реакцией, приводящей к образованию неплавкого и нерастворимого материала.
Термопластичные полимеры — меняют форму в нагретом состоянии и сохраняют её после охлаждения.
Эластомеры – обладают высокоэластичными свойствами в широком интервале температур.
Полимеризация и поликонденсация
Полимеризация
Степень полимеризации — это число, показывающее сколько молекул мономера соединилось в макромолекулу.
Степень полимеризации обычно обозначается индексом «n» за скобками, включающими в себя структурное (мономерное) звено: (–CH2–CH2–)n
Характерные признаки полимеризации. Катализаторами полимеризации могут быть: металлический натрий, пероксиды, кислород, металлоорганические соединения, комплексные соединения. Процесс образования высокомолекулярных соединений при совместной полимеризации двух или более различных мономеров называют сополимеризацией. Важнейшие синтетические полимеры Изображение с портала orgchem.ru Важнейшие синтетические полимеры, получаемые реакцией полимеризации, и области их применения:
Поликонденсация
|