какие спектры имеют газы

Спектр.

СПЕКТРЫ

Спектры испускания

Совокупность частот (или длин волн), которые содержатся в излучении какого-либо вещества, называют спектром испускания. Спектры испускания бывают трех видов:

какие спектры имеют газы. Смотреть фото какие спектры имеют газы. Смотреть картинку какие спектры имеют газы. Картинка про какие спектры имеют газы. Фото какие спектры имеют газы

Линейчатый это спектр, испускаемый газами, парами малой плотности в атомарном состоянии. Состоит из отдельных линий разного цвета (длины волны, частоты), имеющих разные расположения. Каждый атом излучает набор электромагнитных волн определенных частот. Поэтому каждый химический элемент имеет свой спектр.

какие спектры имеют газы. Смотреть фото какие спектры имеют газы. Смотреть картинку какие спектры имеют газы. Картинка про какие спектры имеют газы. Фото какие спектры имеют газы

Полосатый это спектр, который испускается газом в молекулярном состоянии.

Линейчатые и полосатые спектры можно получить путем нагрева вещества или пропускания электрического тока.

Спектры поглощения

Спектры поглощения получают, пропуская свет от источника, дающего сплошной спектр, через вещество, атомы которого находятся в невозбужденном состоянии.

Спектр поглощения — это совокупность частот, поглощаемых данным веществом.

какие спектры имеют газы. Смотреть фото какие спектры имеют газы. Смотреть картинку какие спектры имеют газы. Картинка про какие спектры имеют газы. Фото какие спектры имеют газы

Согласно закону Кирхгофа вещество поглощает те линии спектра, которые и испускает, являясь источником света.

Спектральный анализ

Исследование спектров испускания и поглощения позволяет установить качественный состав вещества. Количественное содержание элемента в соединении определяется путем измерения яркости спектральных линий. Метод определения качественного и количественного состава вещества по его спектру называется спектральным анализом. Зная длины волн, испускаемых различными парами, можно установить наличие тех или иных элементов в веществе.

Этот метод очень чувствителен. Отдельные линии в спектрах различных элементов могут совпадать, но в целом спектр каждого элемента является его индивидуальной характеристикой. Спектральный анализ сыграл большую роль в науке. С его помощью был изучен состав Солнца и звезд.

В спектре Солнца (1814) были открыты фраунгоферовы темные линии.

Солнце — раскаленный газовый шар (Т ≈ 6000 °С), испускающий сплошной спектр. Солнечные лучи проходят через атмосферу Солнца, где Т ≈ 2000— 3000 °С.

Корона поглощает из сплошного спектра определенные частоты, а мы на Земле принимаем солнечный спектр поглощения. По нему можно определить, какие элементы присутствуют в короне Солнца.

Он помог обнаружить все земные элементы, а также неизвестный элемент, который назвали гелий. Через 26 лет (1894) открыли гелий на Земле. Благодаря спектральному анализу открыто 25 элементов.

Благодаря сравнительной простоте и универсальности спектральный анализ является основным методом контроля состава вещества в металлургии и машиностроении. С помощью спектрального анализа определяют химический состав руд и минералов.

Спектральный анализ можно производить как по спектрам испускания, так и по спектрам поглощения.

Состав сложных смесей анализируется по молекулярному спектру.

Источник

Полосатые и линейчатые спектры

Если солнечный свет проходит через стеклянную призму либо дифракционную решетку, тогда появляется хорошо известный всем непрерывный спектр (рисунок 1 ).

какие спектры имеют газы. Смотреть фото какие спектры имеют газы. Смотреть картинку какие спектры имеют газы. Картинка про какие спектры имеют газы. Фото какие спектры имеют газы

Рисунок 1 . Непрерывный спектр

Спектр называют непрерывным, поскольку в нем есть все длины волн видимого диапазона, начиная от красной границы и заканчивая фиолетовой. Для нас непрерывный спектр предстает в виде разноцветной сплошной полосы.

Непрерывный спектр существует не только в солнечном излучении, но и, к примеру, в свете электрической лампы. Как оказалось, любое твердое и жидкое тело (и даже плотный газ), нагретое до высокой температуры, дает излучение непрерывного спектра.

Ситуация меняется при наблюдении свечения разреженных газов. Спектр перестает быть непрерывным, так как в нем возникают разрывы, которые увеличиваются по мере разрежения газа. В предельном случае чрезмерно разреженного атомарного газа спектр превращается в линейчатый, то есть состоящий из отдельных довольно тонких линий.

Рассмотрим 2 вида линейчатых спектров излучения: испускания и поглощения.

Спектр испускания

какие спектры имеют газы. Смотреть фото какие спектры имеют газы. Смотреть картинку какие спектры имеют газы. Картинка про какие спектры имеют газы. Фото какие спектры имеют газы

Рисунок 2 . Линейчатый спектр испускания

Данный линейчатый спектр, который образован тонкими изолированными цветными линиями, называют спектром испускания.

Всякий атомарный разреженный газ издает свет с линейчатым спектром. Кроме того, для всякого химического элемента спектр испускания уникальный, поскольку играет роль «удостоверения личности» данного элемента. Набор линий спектра испускания однозначно говорит, какой химический элемент перед нами.

Так как газ разрежен и атомы слабо взаимодействуют друг с другом, делаем заключение, что свет излучают атомы сами по себе. Поэтому атом характеризуется дискретным, строго определенным набором длин волн испускаемого света. Каждый химический элемент, как мы уже отметили, имеет свой набор.

Спектр поглощения

Атомы испускают свет, переходя из возбужденного состояния в основное. Однако вещество может не только испускать, но и поглощать свет. Атом, поглощий свет, совершает обратный процесс – преобразуется из основного состояния в возбужденное.

Вновь рассмотрим разреженный атомарный газ, но уже в холодном состоянии (то есть при довольно низкой температуре). Свечения газа происходить не будет, поскольку в не нагретом состоянии газ не излучает свет, атомов в возбужденном состоянии оказывается для этого очень мало.

какие спектры имеют газы. Смотреть фото какие спектры имеют газы. Смотреть картинку какие спектры имеют газы. Картинка про какие спектры имеют газы. Фото какие спектры имеют газы

Рисунок 3 . Линейчатый спектр поглощения

На фоне непрерывного спектра ниспадающего света возникают темные линии, образующие так называемый спектр поглощения.

Откуда эти линии появляются?

Под воздействием ниспадающего света атомы газа преобразуются в возбужденное состояние. Причем для возбуждения атомов пригодны не любые длины волн, а только некоторые, строго определенные для этой разновидности газа. Как раз эти длины волн газ и «забирает себе» из света.

Необходимо отметить, что газ изымает из непрерывного спектра точно те самые длины волн, которые издает сам! Темные линии в спектре поглощения газа точно соответствуют ярким линиям его спектра излучения. На рисунке 4 сопоставляются спектры испускания и поглощения разреженных паров натрия.

какие спектры имеют газы. Смотреть фото какие спектры имеют газы. Смотреть картинку какие спектры имеют газы. Картинка про какие спектры имеют газы. Фото какие спектры имеют газы

Совпадение линий впечатляет, не так ли?

Рассматривая спектры поглощения и испускания, ученые-физики XIX в. сделали вывод, что атом – это делимая частица и имеет некоторую внутреннюю структуру. На чем-то же должен работать механизм излучения и поглощения света внутри атома!

Помимо этого, уникальность атомных спектров означает то, что данный механизм различается у атомов различных химических элементов. Значит, атомы различных химических элементов должны отличаться по своей внутренней структуре.

Спектральный анализ

Применение линейчатых спектров как уникальных «паспортов» химических элементов заложено в спектральном анализе – методе исследования химического состава вещества по его спектру.

Идея спектрального анализа несложная: спектр излучения анализируемого вещества сопоставляется с эталонными спектрами химических элементов, после чего делается заключение о наличии или отсутствии того или иного химического элемента в этом веществе. При определенных обстоятельствах методом спектрального анализа определяют качественный и количественный состав химического элемента.

В конце наблюдения разных спектров появились новые химические элементы.

Первыми такими элементами были цезий и рубидий. Они были названы по цвету линий своего спектра (в спектре цезия ярко выражены 2 линии небесно-синего цвета, по-латыни называемого “caesius”; рубидий, в свою очередь, испускает 2 характерные линии рубинового цвета).

Нужно отметить, что спектральный анализ излучения Солнца и звёзд показал: все входящие в их состав элементы имеются и на планете Земля. Таким образом, оказалось, что все объекты нашей Вселенной собраны из одного и того же химического набора.

Источник

Как сказал.

Информация в чистом виде ‒ это не знание. Настоящий источник знания ‒ это опыт.

Альберт Эйнштейн

Вопросы к экзамену

Для всех групп технического профиля

какие спектры имеют газы. Смотреть фото какие спектры имеют газы. Смотреть картинку какие спектры имеют газы. Картинка про какие спектры имеют газы. Фото какие спектры имеют газыСписок лекций по физике за 1,2 семестр

Я учу детей тому, как надо учиться

Часто сталкиваюсь с тем, что дети не верят в то, что могут учиться и научиться, считают, что учиться очень трудно.

Урок 52. Виды спектров. Различные виды электромагнитных излучений, их свойства.

Совокупность монохроматических компонент в излучении называется спектром.

Спектры излучения

Спектральный состав излучения веществ весьма разнообразен. Но, несмотря на это, все спектры, как показывает опыт, можно разделить на три типа.

Непрерывные спектры

Непрерывный спектр представлет собой сплошную разноцветную полосу.

Белый свет имеет непрерывный спектр. Солнечный спектр или спектр дугового фонаря является непрерывным. Это означает, что в спектре представлены волны всех длин. В спектре нет разрывов, и на экране спектрографа можно видеть сплошную разноцветную полосу.

какие спектры имеют газы. Смотреть фото какие спектры имеют газы. Смотреть картинку какие спектры имеют газы. Картинка про какие спектры имеют газы. Фото какие спектры имеют газы

Непрерывные (или сплошные) спектры, как показывает опыт, дают тела, находящиеся в твердом или жидком состоянии, а также сильно сжатые газы. Для получения непрерывного спектра нужно нагреть тело до высокой температуры. Непрерывный спектр дает также высокотемпературная плазма. Электромагнитные волны излучаются плазмой в основном при столкновении электронов с ионами.

Характер непрерывного спектра и сам факт его существования определяются не только свойствами отдельных излучающих атомов, но и в сильной степени зависят от взаимодействия атомов друг с другом.

Излучение источников, в которых свет испускается атомами вещества, имеет дискретный спектр. Они делятся на:

какие спектры имеют газы. Смотреть фото какие спектры имеют газы. Смотреть картинку какие спектры имеют газы. Картинка про какие спектры имеют газы. Фото какие спектры имеют газы

какие спектры имеют газы. Смотреть фото какие спектры имеют газы. Смотреть картинку какие спектры имеют газы. Картинка про какие спектры имеют газы. Фото какие спектры имеют газы

Линейчатые спектры

Линейчатый спектр состоит изотдельных цветных линий различной яркости, разделенных широкими темными полосами.

Внесем в бледное пламя газовой горелки кусочек асбеста, смоченного раствором обыкновенной поваренной соли. При наблюдении пламени в спектроскоп на фоне едва различимого непрерывного спектра пламени вспыхнет яркая желтая линия. Эту желтую линию дают пары натрия, которые образуются при расщеплении молекул поваренной соли в пламени. На рисунке приведены также спектры водорода и гелия. Такие спектры называются линейчатыми. Наличие линейчатого спектра означает, что вещество излучает свет только вполне определенных длин волн (точнее, в определенных очень узких спектральных интервалах).

какие спектры имеют газы. Смотреть фото какие спектры имеют газы. Смотреть картинку какие спектры имеют газы. Картинка про какие спектры имеют газы. Фото какие спектры имеют газы

Линейчатые спектры дают все вещества в газообразном атомарном (но не молекулярном) состоянии. В этом случае свет излучают атомы, которые практически не взаимодействуют друг с другом. Это самый фундаментальный, основной тип спектров.

Изолированные атомы излучают строго определенные длины волн.

Обычно для наблюдения линейчатых спектров используют свечение паров вещества в пламени или свечение газового разряда в трубке, наполненной исследуемым газом.

При увеличении плотности атомарного газа отдельные спектральные линии расширяются, и, наконец, при очень большом сжатии газа, когда взаимодействие атомов становится существенным, эти линии перекрывают друг друга, образуя непрерывный спектр.

Полосатые спектры

Полосатый спектр состоит из отдельных полос, разделенных темными промежутками.

С помощью очень хорошего спектрального аппарата можно обнаружить, что каждая полоса представляет собой совокупность большого числа очень тесно расположенных линий. В отличие от линейчатых спектров полосатые спектры создаются не атомами, а молекулами, не связанными или слабо связанными друг с другом.

Для наблюдения молекулярных спектров так же, как и для наблюдения линейчатых спектров, обычно используют свечение паров в пламени или свечение газового разряда.

Спектры поглощения

Все вещества, атомы которых находятся в возбужденном состоянии, излучают световые волны, энергия которых определенным образом распределена по длинам волн. Поглощение света веществом также зависит от длины волны. Так, красное стекло пропускает волны, соответствующие красному свету, и поглощает все остальные.

Если пропускать белый свет сквозь холодный, неизлучающий газ, то на фоне непрерывного спектра источника появляются темные линии. Это будет спектр поглощения.

какие спектры имеют газы. Смотреть фото какие спектры имеют газы. Смотреть картинку какие спектры имеют газы. Картинка про какие спектры имеют газы. Фото какие спектры имеют газы

Спектр поглощения представляет собой темные линии на фоне непрерывного спектра источника.

Газ поглощает наиболее интенсивно свет как раз тех длин волн, которые он испускает в сильно нагретом состоянии. Темные линии на фоне непрерывного спектра — это линии поглощения, образующие в совокупности спектр поглощения.

Существуют непрерывные, линейчатые и полосатые спектры поглощения.

Различные виды электромагнитных излучений, их свойства и практические применения.

какие спектры имеют газы. Смотреть фото какие спектры имеют газы. Смотреть картинку какие спектры имеют газы. Картинка про какие спектры имеют газы. Фото какие спектры имеют газы

Шкала электромагнитных волн. Границы между различными диапазонами условны

Постоянный ток – частота ν = 0 – 10 Гц.

Атмосферные помехи и переменный ток – частота ν = 10 – 10 4 Гц

Частота ν =10 4 – 10 11 Гц

Получают с помощью колебательных контуров.

Радиоволны различных частот и с различными длинами волн по разному поглощаются и отражаются средами, проявляют свойства дифракции и интерференции.

Радиосвязь, телевидение, радиолокация.

Частота ν =3·10 11 – 4·10 14 Гц

Излучаются атомами и молекулами вещества.

Получают изображения предметов в темноте, приборах ночного видения, в тумане. Используют в криминалистике, в физиотерапии,. в промышленности для сушки окрашенных изделий, стен зданий, древесины, фруктов.

Часть электромагнитного излучения, воспринимаемая глазом (от красного до фиолетового).

Частота ν =4·10 14 – 8·10 14 Гц

Отражается, преломляется, воздействует на глаз, способно к явлениям дисперсии, интерференции, дифракции.

Частота ν =8·10 14 – 3·10 15 Гц

Источники: газоразрядные лампы с трубками из кварца(кварцевые лампы).

Излучается всеми твердыми телами, у которых t > 1000°С, а также светящимися парами ртути.

В медицине, в косметологии (солярий, загар), в промышленности.

Частота ν =3·10 15 – 3·10 19 Гц

Излучаются при резком торможении электронов, движущихся с большим ускорением.

Получают при помощи рентгеновской трубки: электроны в вакуумной трубке ускоряются электрическим полем при высоком напряжении, достигая анода, при соударении резко тормозятся. При торможении электроны движутся с ускорением и излучают электромагнитные волны с малой длиной (от 100 до 0,01 нм).

В медицине (диагностика заболеваний внутренних органов), в промышленности (контроль внутренней структуры различных изделий, сварных швов).

Гамма – излучение (γ – излучение).

Частота ν =3·10 20 Гц и выше

Источники: атомное ядро (ядерные реакции).

В медицине, в производстве (γ – дефектоскопия).

Источник

Физика. 11 класс

§ 32. Излучение и поглощение света атомом. Спектры испускания и поглощения

Модель атома Бора позволяет описать процессы излучения и поглощения света атомом. Как это происходит? Как фотон «появляется на свет»? Что меняется в атоме после поглощения фотона?

Частота излучения при этом:

Подчеркнем, что наряду с прямым переходом атом может переходить из возбужденного состояния в основное поэтапно, через промежуточные состояния. При этом излучаются соответствующие промежуточным переходам кванты света. Набор таких частот образует линейчатый спектр излучения атома.

Подобные переходы дают линейчатый спектр поглощения атома.

Подчеркнем, что частоты переходов с испусканием и поглощением, происходящие между одними и теми же энергетическими уровнями, совпадают.

Таким образом, спектры атомов позволяют определять изменения энергии атома при испускании или поглощении ими излучения.

Спектры, полученные от самосветящихся тел, называются спектрами испускания. Они бывают трех типов: линейчатые, полосатые и сплошные.

Линейчатые спектры имеют все вещества в газообразном атомарном состоянии. Обычно (например, при нормальных условиях) атомы газа находятся в основном состоянии и не излучают света. Если такой газ нагревается, некоторые атомы переходят на более высокие энергетические уровни. Именно эти атомы при переходе в более низкие энергетические состояния и испускают фотоны. В результате атомарные спектры состоят из отдельных узких линий различного цвета, разделенных темными промежутками (рис. 199).

Изучение линейчатых спектров показало, что каждый химический элемент обладает своим строго индивидуальным спектром. Такие спектры отличаются друг от друга цветом отдельных светящихся линий, их положением и числом.

Полосатые спектры имеют газы, состоящие из молекул. Для объяснения молекулярных спектров необходимо принимать во внимание большую сложность структуры молекул. В молекулах, кроме движения электронов, происходят колебательное движение ядер около положения равновесия и вращательное движение молекулы как целого. Согласно квантовой механике энергия всех видов движения может принимать только определенные дискретные значения (квантуется). Полная энергия молекулы определяется тремя видами ее внутренних движений. Электронному, колебательному и вращательному движениям молекулы соответствуют три типа уровней энергии: электронные, колебательные и вращательные. При соединении атомов в молекулы каждый атомный уровень превращается в ряд близких уровней, соответствующих колебательным и вращательным движениям. Так как расстояние между этими уровнями очень мало, особенно в случае вращательных уровней (характерное расстояние между уровнями составляет эВ), то в результате переходов между этими уровнями возникает множество очень близких спектральных линий.

В таких спектрах в отличие от атомных спектров совокупность тесно расположенных спектральных линий образуют полосы, разделенные темными промежутками (рис. 200). Спектры молекул можно использовать для идентификации молекул и их структуры.

Непрерывные (сплошные) спектры имеют нагретые тела, находящиеся в твердом и жидком состоянии, а также газы при высоком давлении и плазма. Вследствие интенсивного взаимодействия между молекулами индивидуальные черты, присущие отдельным частицам, в таких спектрах неразличимы. В них представлены все длины волн, нет темных промежутков и на экране видна сплошная разноцветная полоса (рис. 201).

Прозрачные вещества поглощают часть падающего на них излучения, и в спектре, полученном после прохождения белого света через такие вещества, появляются темные линии, или полосы поглощения. Такой спектр называется спектром поглощения (рис. 202).

Так, вещество в газообразном состоянии поглощает наиболее сильно свет тех длин волн, которые оно испускает в нагретом состоянии.

Это означает, что темные линии в спектре поглощения будут находиться как раз в тех местах, где находятся светящиеся линии в спектре испускания данного химического элемента. Эти строго установленные закономерности в линейчатых спектрах дают возможность обнаружить те или иные элементы в данном веществе.

Для определения качественного и количественного состава вещества применяется метод, основанный на получении и исследовании его спектров. Этот метод называется спектральным анализом. Это самый быстрый и простой способ определения состава различных химических соединений.

Спектр поглощения атома водорода при нормальных условиях содержит только одну серию линий, частоты которых находятся в ультрафиолетовой области.

Наиболее изученным спектром поглощения является спектр Солнца. Его сплошной спектр содержит значительное количество черных линий. Эти линии являются линиями поглощения, возникающими при прохождении света через газовую оболочку Солнца и атмосферу Земли. Они получили название фраунгоферовых линий, так как Фраунгофер впервые наблюдал спектр Солнца и установил, что закономерность их расположения не случайна и линии поглощения (темные линии) появляются всегда только на определенных местах.

Основатели спектрального анализа немецкие физики Роберт Бунзен и Густав Кирхгоф, исследуя спектры паров соединений щелочных металлов лития, натрия и калия, обнаружили новые элементы — рубидий и цезий, названные так по цвету наиболее ярких линий в их спектрах. У рубидия — красная линия, у цезия — синяя.
Спектральный анализ базируется на двух основных положениях:
1) каждый химический элемент или химическое соединение характеризуется определенным спектром;
2) интенсивность линий и полос в спектре зависит от концентрации того или иного элемента в веществе.

По спектрам определяют, из каких химических элементов состоит вещество и в каких количествах.

Белорусский физик академик Михаил Александрович Ельяшевич разработал основы теории колебаний многоатомных молекул и их колебательных спектров. Он внес значительный вклад в теорию спектров редкоземельных элементов и низкотемпературной плазмы.

Источник

Линейчатые спектры

теория по физике 🧲 оптика

Если пропустить солнечный свет через стеклянную призму или дифракционную решётку, то на экране получится хорошо известный нам спектр. Спектр, который вы видите ниже, называется непрерывным спектром. Он представляет собой сплошную полосу, состоящую из разных цветов, плавно переходящих друг в друга.

какие спектры имеют газы. Смотреть фото какие спектры имеют газы. Смотреть картинку какие спектры имеют газы. Картинка про какие спектры имеют газы. Фото какие спектры имеют газы

Непрерывный (сплошной) спектр — разновидность спектра, в которой присутствуют все длины волн видимого диапазона (от красной границы до фиолетовой).

Излучения, обладающие непрерывным спектром:

Пример №1. Будет ли излучать свет в непрерывном спектре спираль работающей электроплиты?

В данном случае да, поскольку спирать — твердое тело, нагретое до высокой температуры.

Линейчатый спектр и его виды

Картина резко меняется, когда мы наблюдаем свечение, излучаемое разреженными газами. Спектр перестает быть непрерывным: в нём появляются разрывы, которые увеличиваются по мере разрежения газа. В предельном случае чрезвычайно разреженного атомарного газа спектр становится линейчатым.

Линейчатый спектр — спектр, который состоит из отдельных достаточно тонких линий.

Линейчатый спектр бывает двух видов:

Спектр испускания

Предположим, что газ состоит из атомов некоторого химического элемента и разрежен настолько, что атомы почти не взаимодействуют друг с другом. Раскладывая в спектр излучение такого газа (нагретого до очень высокой температуры), мы сможем наблюдать такую картину, как на картинке ниже.

какие спектры имеют газы. Смотреть фото какие спектры имеют газы. Смотреть картинку какие спектры имеют газы. Картинка про какие спектры имеют газы. Фото какие спектры имеют газы

Спектр испускания — линейчатый спектр, который состоит из тонких изолированных разноцветных линий, соответствующих тем длинам волн света, который излучается атомами.

Любой атомарный разреженный газ излучает свет с линейчатым спектром. Но наибольшую важность имеет то, что для любого химического элемента спектр испускания является уникальным. Поэтому по нему можно устанавливать, какой химический элемент находится перед нами. Он является своего рода идентификатором.

Поскольку газ разрежен и атомы мало взаимодействуют друг с другом, мы можем сделать следующий вывод:

Свет излучают атомы сами по себе. Следовательно, каждый атом характеризуется дискретным, строго определённым набором длин волн излучаемого света. У каждого химического элемента этот набор свой.

Спектр поглощения

Атомы излучают свет в процессе перехода из возбуждённого состояния в основное. Но вещество может не только излучать, но и поглощать свет. При поглощении света атом совершает обратный процесс — он переходит из основного состояния в возбуждённое.

Снова рассмотрим разреженный атомарный газ, но теперь в охлажденном состоянии (при довольно низкой температуре). Свечения газа в этом случае мы не увидим. В не нагретом состоянии газ не излучает свечение, так как атомов в возбуждённом состоянии оказывается для этого слишком мало.

Если сквозь охлажденный газ пропустить свет с непрерывным спектром, мы увидим следующую картину (см. рисунок ниже).

какие спектры имеют газы. Смотреть фото какие спектры имеют газы. Смотреть картинку какие спектры имеют газы. Картинка про какие спектры имеют газы. Фото какие спектры имеют газы

Спектр поглощения — темные линии на фоне непрерывного спектра, соответствующие тем длинам волн света, которые поглощаются атомами и излучаются впоследствии при сильном нагревании.

Объясним, откуда берутся темные линии. Под действием падающего света газовые атомы переходят в возбуждённое состояние. При этом оказывается, что для возбуждения атомов нужны не любые длины волн, а лишь некоторые, строго определённые для данного вида газа. Именно эти длины волн газ поглощает из падающего на него света.

Внимание! Газ поглощает те длины волн, которые излучает сам. Поэтому, цветные линии на спектре испускания соответствуют темным линиям на спектре поглощения. Если их сложить, можно получить непрерывный спектр.

На рисунке ниже сопоставлены спектры испускания и поглощения разреженных паров натрия.

какие спектры имеют газы. Смотреть фото какие спектры имеют газы. Смотреть картинку какие спектры имеют газы. Картинка про какие спектры имеют газы. Фото какие спектры имеют газы

Глядя на спектры испускания и поглощения, ученые XIX века пришли к выводу, что атом не является неделимой частицей и обладает некоторой внутренней структурой. Ведь что-то внутри атома должно обеспечивать процессы излучения и поглощения света.

Кроме того, уникальность атомных спектров говорит о том, что этот механизм различен у атомов разных химических элементов. Поэтому атомы разных химических элементов должны отличаться по своему внутреннему устройству.

Спектральный анализ

Использование линейчатых спектров в качестве идентификаторов химических элементов лежит в основе спектрального анализа.

Спектральный анализ — метода исследования химического состава вещества по его спектру.

Идея спектрального анализа заключается в следующем. Спектр излучения исследуемого вещества сопоставляется с эталонными спектрами химических элементов. Затем делается вывод о присутствии или отсутствии различных химических элементов в исследуемом образце. При определённых условиях посредством спектрального анализа можно определить химический состав не только качественно, но и количественно.

В результате наблюдения различных спектров были открыты новые химические элементы. Первыми из таких элементов были цезий и рубидий. Названия эти элементы получили по цвету линий своего спектра. Так, в спектре цезия больше всего выражены две линии небесно-синего цвета, который на латинском языке звучит как caesius. Рубидий же даёт две отчетливые линии рубинового цвета.

В 1868 году в спектре солнечного света были обнаружены линии, не соответствующие ни одному из известных химических элементов. Этот элемент был назван гелием (от греческого гелиос — солнце). Впоследствии гелий был найден в атмосфере нашей планеты. Спектральный анализ излучения Солнца и других звезд показал, что все входящие в их состав входят элементы имеются и на Земле. Таким образом, оказалось, что все объекты Вселенной собраны из одного и того же набора элементов.

Пример №2. Какую картинку можно получить, если провести спектральный анализ вещества, состоящего из двух химических элементов?

Спектры испускания и спектры поглощения будут накладываться друг на друга. В итоге можно будет получить спектр испускания, в котором будут присутствовать все длины волн, соответствующие тем, что испускаются первым и вторым химическим элементом. В спектре поглощения эти же длины волн будут отсутствовать.

какие спектры имеют газы. Смотреть фото какие спектры имеют газы. Смотреть картинку какие спектры имеют газы. Картинка про какие спектры имеют газы. Фото какие спектры имеют газыНа рисунке приведены спектр поглощения неизвестного газа и спектры поглощения атомарных паров известных элементов. По виду спектров можно утверждать, что неизвестный газ содержит атомы

а) азота (N), магния (Mg) и другого неизвестного вещества

в) только магния (Mg)

г) только магния (Mg) и азота (N)

Алгоритм решения

Решение

Если спектр поглощения неизвестного газа содержит все линии, которые есть на спектре известного элемента, то этот газ содержит этот элемент.

Видно, что спектр поглощения неизвестного газа включает в себя все линии, которые есть в спектре поглощения магния. Следовательно, этот газ содержит магний.

Видно, что спектр поглощения неизвестного газа включает в себя все линии, которые есть в спектре поглощения азота. Следовательно, этот газ также содержит азот.

Но кроме линий, соответствующих азоту и магнию, на спектре поглощения газа наблюдаются другие линии. Следовательно, газ содержит как минимум еще один элемент.

pазбирался: Алиса Никитина | обсудить разбор | оценить

какие спектры имеют газы. Смотреть фото какие спектры имеют газы. Смотреть картинку какие спектры имеют газы. Картинка про какие спектры имеют газы. Фото какие спектры имеют газыНа рисунке приведены спектр поглощения разреженных атомарных паров неизвестного вещества (в середине) и спектры поглощения паров известных элементов (вверху и внизу). По анализу спектров можно утверждать, что неизвестное вещество содержит

а) только натрий (Na) и водород (Н)

б) только водород (Н) и гелий (Не)

в) водород (Н), гелий (Не) и натрий (Na)

г) натрий (Na), водород (H) и другие элементы, но не гелий (He)

Алгоритм решения

Решение

Если спектр поглощения неизвестного газа содержит все линии, которые есть на спектре известного элемента, то этот газ содержит данный элемент.

Видно, что спектр поглощения неизвестного вещества включает в себя все линии, которые есть в спектре поглощения водорода и натрия. Но линий, соответствующих спектру поглощения гелия, в нем нет. Следовательно, это вещество содержит водород, натрий, но не содержит гелий.

Кроме линий, соответствующих водороду и натрию, на спектре поглощения вещества наблюдаются другие линии. Следовательно, оно содержит как минимум еще один элемент.

pазбирался: Алиса Никитина | обсудить разбор | оценить

какие спектры имеют газы. Смотреть фото какие спектры имеют газы. Смотреть картинку какие спектры имеют газы. Картинка про какие спектры имеют газы. Фото какие спектры имеют газыНа рисунках А, Б и В приведены спектры излучения паров кальция Ca, стронция Sr и неизвестного образца.

Можно утверждать, что в неизвестном образце

а) не содержится стронция

б) не содержится кальция

в) содержатся кальций и ещё какие-то элементы

г) содержится только кальций

Алгоритм решения

Решение

Если спектр излучения неизвестного образца содержит все линии, которые есть на спектре излучения известного элемента, то этот образец содержит данный элемент.

Видно, что спектр излучения неизвестного образца включает в себя все линии, которые есть в спектре излучения стронция. Но линий, соответствующих спектру излучения кальция, в нем нет. Следовательно, этот образец не содержит кальций.

Кроме линий, соответствующих стронцию, на спектре излучения неизвестного образца наблюдаются другие линии. Следовательно, он содержит как минимум еще один элемент.

Из всех перечисленных утверждений верным является только одно — образец не содержит кальция.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

какие спектры имеют газы. Смотреть фото какие спектры имеют газы. Смотреть картинку какие спектры имеют газы. Картинка про какие спектры имеют газы. Фото какие спектры имеют газы