какие структуры участвуют в аппарате веретена деления

Какие структуры участвуют в аппарате веретена деления

• Веретено представляет собой комплекс, состоящий из микротрубочек и связанных с ними моторных белков. Организация микротрубочек обладает высоким уровнем поляризации

• Микротрубочки веретена представляют собой очень динамичную структуру. Одни проявляют динамическую нестабильность, для других характерна текучесть субъединиц

• Сила, необходимая для сборки веретена, генерируется при взаимодействии микротрубочек с моторными белками

Образование и функционирование веретена зависят от динамических свойств микротрубочек и от работы связанных с ними белковых моторов. Хотя микротрубочки образуют основные структурные элементы веретена, их организация и движение хромосом обеспечиваются белковыми моторами. Одни моторы непосредственно участвуют в сборке веретена и в связывании его компонентов в определенную структуру, а другие обеспечивают присоединение хромосом к веретену и генерируют силу, необходимую для их перемещения.

Несмотря на то что традиционно веретено рассматривается как структура, состоящая из микротрубочек, правильнее считать ее комплексом микротрубочек, белковых моторов и других белков.

Хотя моторы играют существенную роль в генерации силы, необходимой для функционирования веретена, микротрубочки представляют собой нечто большее, чем просто неподвижную структуру, вдоль которой они движутся. Во время митоза микротрубочки ведут себя как высокодинамичная структура, и это их свойство играет важную роль при сборке веретена и расхождении хромосом.

какие структуры участвуют в аппарате веретена деления. Смотреть фото какие структуры участвуют в аппарате веретена деления. Смотреть картинку какие структуры участвуют в аппарате веретена деления. Картинка про какие структуры участвуют в аппарате веретена деления. Фото какие структуры участвуют в аппарате веретена деленияВ веретене микротрубочки организованы в соответствии со своей полярностью.
Все минус-концы локализованы, поблизости от одной из двух центросом, а плюс-концы расположены на расстоянии от них.
В центре веретена микротрубочки от двух центросом перекрываются,
что обеспечивает расположение микротрубочек противоположной полярности (антипараллельные микротрубочки) близко друг к другу.

В пределах веретена микротрубочки организованы в соответствии с полярностью. Два конца микротрубочки различаются по составу и структуре. Это обусловливает ее структурную «полярность»; микротрубочка как бы указывает то или иное направление. В каждом полуверетене и связанной с ним звезде микротрубочки расположены с одинаковой полярностью: их минус-концы находятся на полюсах, а плюс-концы, на некотором от них расстояниии.

В месте пересечения двух поляризованных пучков микротрубочки перекрываются, создавая область в центре веретена, в которой соседние микротрубочки имеют противоположную полярность. Одинаковая ориентация микротрубочек в каждом полуверетене необходима для нормального функционирования их моторов при делении. Если бы полярность микротрубочек в пределах каждого полуверетена была произвольной, то молекулы каждого типа моторов просто мешали бы друг другу, делая движение хаотичным или просто невозможным.

Динамические свойства микротрубочек играют важную роль во всех фазах митоза. Исследования, проведенные на культуре клеток позвоночных и с использованием экстрактов из яйцеклеток лягушки Xenopus laevis, показали, что в каждом веретене микротрубочки характеризуются динамической нестабильностью и являются более короткими и гораздо более динамичными, чем в интерфазных клетках. Некоторые различия можно объяснить возрастанием частоты катастроф в митозе, когда плюс-концы микротрубочек из состояния роста или полимеризации переходят в состояние укорочения или разрушения. Частично это также объясняется снижением частоты наступления спасений, при которых процесс деполимеризации или укорочения микротрубочек обратно переходит в процесс их полимеризации или роста.

Это усиление динамики происходит в клетках, вступающих в митоз, поскольку белки, связанные с микротрубочками и обычно препятствующие катастрофе, заингибированы, в то время как другие, стимулирующие рост микротрубочек, активируются. Баланс между двумя противоположно направленными процессами поддерживается основной киназой, регулирующей митоз, комплексом циклин B/CDK1, которая активируется во время разрушения ядерной оболочки. Как будет показано ниже, усиление динамики микротрубочек в клетках, вступающих в митоз, играет основную роль в сборке веретена.

После образования веретена начинает проявляться еще один тип динамики микротрубочек. В это время микротрубочки обнаруживают текучесть субъединиц. Это интересное явление заключается в том, что субъединицы тубулина присоединяются к плюс-концу микротрубочки и затем продвигаются по ней к минус-концу, на котором высвобождаются. Как следует из рисунков ниже, текучесть характерна для всех микротрубочек веретена, однако особенно она проявляется у микротрубочек нитей кинетохора. Происхождение этого явления не вполне понятно, но, возможно, оно связано с взаимодействием плюс- и минус-концов микротрубочек веретена с другими его компонентами (например, с белковыми моторами). Даже в то время, когда у микротрубочек веретена наблюдается текучесть, астральные микротрубочки продолжают проявлять динамическую нестабильность.

Хотя значение явления текучести неизвестно, возможно, оно играет роль в перемещении хромосом и в поддержании баланса сил в веретене, с тем чтобы две его половины оставались расположенными симметрично.

С системой микротрубочек взаимодействуют много различных типов белковых моторов. В митозе участвует цитоплазматический мотор динеин, осуществляющий транспорт к минус-концу, и моторы группы кинезинов (большая часть которых движется в направлении плюс-конца). Веретено имеет сложную организацию, и моторы настолько тесно связаны с его формированием и функцией, что только в делении клеток высших организмов участвует более 15 представителей семейства кинезинов.

Белковые моторы расположены по всему веретену. Они находятся на кинетохорах, на плече хромосом, на полюсах и на микротрубочках между полюсами и хромосомами. Многие типы моторов располагаются только в определенных местах, другие занимают несколько мест. Например, цитоплазматический динеин обнаружен в кинетохорах и на полюсах, а также в клеточном кортексе, где он взаимодействует с астральными микротрубочками. В то же время кинезин-подобный белковый мотор CENP-E находится в кинетохоре, а хромокинезины только на плечах хромосом.

В митозе белковые моторы выполняют несколько основных функций. Одни из них, например динеин, связываются со структурами, включая кинетохоры и плазматическую мембрану, и транспортируют их вдоль микротрубочки (хотя в случае плазматической мембраны движется микротрубочка). Другие имеют множественные домены, организованные таким образом, что мотор может связываться сразу с двумя микротрубочками, и скреплять их между собой. В зависимости от структуры моторов микротрубочки в пучке могут обладать той же самой или противоположной полярностью. Если мотор связывается с микротрубочками противоположной полярности, он будет пытаться двигаться (скользить) по ним до тех пор, пока они перекрываются. Примером такого типа моторов является представитель кинезинов Eg5, который может связываться с обоими концами антипараллельных микротрубочек.

Наоборот, если мотор устроен так, что он связан с двумя микротрубочками с одинаковой полярностью, то в результате образуется структура с такой же полярностью, расположенная таким образом, что микротрубочки образуют фигуру, напоминающую звезду. Прочие кинезин-подобные белки не перемещаются по микротрубочкам, а способствуют разборке их плюс-концов. Наглядным примером такого белка является кинезин, связанный с митотической центромерой (МСАК), который находится на центромере каждой хромосомы. В состав веретена входят моторы с перечисленными выше основными свойствами, которые определенным образом расположены относительно друг друга. Эти же моторы генерируют усилия для движения хромосом.

Не всегда ясно, каким образом моторы обеспечивают функционирование веретена. В ряде случаев, например, они располагаются таким образом, что могут мешать друг другу. Однако, независимо от деталей строения веретена, очевидно, что его образования и функционирования необходимы множественные сбалансированные усилия. Эти усилия обеспечиваются моторами, которые расположены на каркасе динамических микротрубочек веретена.

какие структуры участвуют в аппарате веретена деления. Смотреть фото какие структуры участвуют в аппарате веретена деления. Смотреть картинку какие структуры участвуют в аппарате веретена деления. Картинка про какие структуры участвуют в аппарате веретена деления. Фото какие структуры участвуют в аппарате веретена деленияСубъединицы тубулина постоянно включаются в микротрубочки со стороны кинетохоров и продвигаются к полюсам, где происходит их высвобождение.
Таким образом, они постоянно мигрируют от кинетохоров к полюсам вдоль микротрубочек нити кинетохора.
В течение метафазы длина кинетохорной микротрубочки остается постоянной, пока скорость сборки субъединиц на плюс-конце соответствует их разборке на минус-конце.
Если сборка субъединиц со стороны кинетохора снижается, а на полюсе скорость их разборки не изменяется, то кинетохор будет двигаться к полюсу.
Таким образом, текучесть субъединиц микротрубочек представляет собой возможный способ движения хромосомы.
какие структуры участвуют в аппарате веретена деления. Смотреть фото какие структуры участвуют в аппарате веретена деления. Смотреть картинку какие структуры участвуют в аппарате веретена деления. Картинка про какие структуры участвуют в аппарате веретена деления. Фото какие структуры участвуют в аппарате веретена деленияПервый видеокадр, на котором представлено митотическое веретено клетки, часть тубулина которого содержит флуоресцирующий зонд (флуоресцирует зеленым).
Кинетохоры выделены оранжевыми стрелками. На видео показан поток зеленых точек кинетохорной нити во всем веретене.
какие структуры участвуют в аппарате веретена деления. Смотреть фото какие структуры участвуют в аппарате веретена деления. Смотреть картинку какие структуры участвуют в аппарате веретена деления. Картинка про какие структуры участвуют в аппарате веретена деления. Фото какие структуры участвуют в аппарате веретена деленияВ образовании веретена участвуют молекулярные моторы, которые перемещаются по микротрубочкам.
Веретено формируется за счет специфических взаимодействий между этими моторами и микротрубочками.
Эти взаимодействия обеспечивают также его подвижность и являются источниками силы.
Стрелками указано направление движения моторов.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Источник

Какие структуры участвуют в аппарате веретена деления

• Хромосомы разделяются посредством митотического веретена

• Веретено представляет собой симметричную биполярную структуру, состоящую из микротрубочек, расположенных между двумя полюсами. На каждом полюсе находится центросома

• Центросомы прикрепляются к веретену за счет взаимодействия своих кинетохоров с микротрубочками

Веретено представляет собой сложную динамическую структуру, которая быстро образуется в начале процесса деления и при его окончании так же быстро разрушается. Веретено необходимо для митоза и служит для выполнения двух отдельных функций: (1) обеспечение разделения реплицированных хромосом по дочерним ядрам при делении ядра (кариокинез) и (2) управление процессом деления цитоплазмы (цитокинез).

Если заблокировать образование веретена (например, обработав клетки различными химическими соединениями), то хромосомы конденсируются, но не движутся, как это обычно происходит в митозе, и процесс деления останавливается. Во многом веретено представляет собой род биологического мотора, который превращает химическую энергию в механическую работу, необходимую для перемещения хромосом и деления клетки. Функции веретена отражаются в его строении. Симметричная структура с двумя полюсами необходима для успешного прохождения митоза.

Действительно, она отражает принцип парности клеточного деления, при котором одна клетка и реплицированная ДНК делятся на две отдельных дочерних клетки.

какие структуры участвуют в аппарате веретена деления. Смотреть фото какие структуры участвуют в аппарате веретена деления. Смотреть картинку какие структуры участвуют в аппарате веретена деления. Картинка про какие структуры участвуют в аппарате веретена деления. Фото какие структуры участвуют в аппарате веретена деленияМетафазное веретено в живой клетке тритона, видимое в фазовоконтрастном и поляризационном микроскопе.
Показана часть такой же клетки с веретеном в той же ориентации после иммунофлуоресцентного окрашивания микротрубочек (зеленым), хромосом (синим) и кератиновых филаментов (красным).
Отметим, что веретено не видно в фазовом контрасте, но видно в поляризованном свете. Микротрубочки веретена наиболее отчетливо видны после иммунофлуоресцентного окрашивания.

Веретено можно увидеть с помощью различных методов. Основной структурный элемент веретена — микротрубочки, слишком малы для того, чтобы их можно было видеть с помощью светового микроскопа (т. е. из-за недостаточного разрешения). Поэтому, хотя в клетках высших организмов часто можно наблюдать с помощью обычного светового микроскопа конденсированные хромосомы, веретена при этом не видно. Однако во многих случаях можно сделать вывод о наличии веретена по косвенному признаку, поскольку эта структура вытесняет видимые клеточные органеллы. При этом, как показано на рисунке ниже, пространство, занимаемое веретеном, по сравнению с окружающей цитоплазмой кажется более прозрачным. Хотя вначале исследователи считали, что веретено состоит из волокон, до начала 1950-х гг. это предположение не было подтверждено прямыми наблюдениями.

К этому времени усовершенствования техники поляризационной световой микроскопии позволили увидеть веретено на препаратах клеток. Типичная фотография веретена, полученная с помощью светового микроскопа, представлена на рисунке ниже. Структура приобрела черную окраску из-за взаимодействия поляризованного света с микротрубочками. В течение 1970-х гг. была разработана техника с использованием флуоресцентных зондов, которая позволила наблюдать компоненты веретена в трехмерном пространстве даже в живой клетке. Эта техника позволяет прослеживать положения одного или нескольких специфических белков веретена в ходе митоза. Одним из таких белков почти всегда является тубулин, поскольку он обеспечивает визуализацию микротрубочек.

При наблюдении в электронном микроскопе веретено типичной клетки млекопитающих состоит из трех структурных компонентов. Как показано на рисунке ниже, в каждом из двух полярных участков находится центросома. Эта красивая органелла включает пару небольших, интенсивно окрашенных структур, называемых центриолями.

Они окружены более или менее плотным диффузным материалом. Между центросомами расположены хромосомы, которые в большинстве клеток являются самыми крупными структурами веретена. Хромосомы состоят из компактных, плотно скрученных и сильно базофильных фибрилл хроматина диаметром 25 нм. Каждая хромосома содержит две небольших структуры, называемых кинетохоры (от греч. kineto — подвижный; chora — пространство). Кинетохоры прикрепляются к противоположным сторонам своей центромеры. Между полюсами веретена проходит плотный пучок расположенных параллельно друг другу микротрубочек.

На рисунке ниже это видно наиболее отчетливо. Один из концов микротрубочек веретена обычно расположен на самом полюсе или рядом с ним. Другой находится в области веретена в свободном состоянии или связан с кинетохором. Микротрубочки растут от каждого полюса, что делает веретено симметричной структурой, образованной двумя параллельными и перекрывающимися пучками микротрубочек. Каждый из этих пучков называется полуверетено. У большинства позвоночных полуверетено состоит из 600-750 микротрубочек, 30-40% которых заканчиваются на кинетохорах.

В каждом полуверетене, наряду с основными микротрубочками, из каждого полюса выходят другие микротрубочки. Эти микротрубочки распространяются во всех направлениях, образуя радиальные структуры, которые называются звездами (астерами) и располагаются в центре каждого полюса. Так же как и микротрубочки веретена, все астральные микротрубочки одним концом ориентированы на полюс, а другим на отдаленную точку в цитоплазме. В митозе астральные звезды обладают несколькими функциями. Наряду с позиционированием веретена в клетке, которое определяет плоскость цитокинеза, они также участвуют в отделении полюсов (центросом) при образовании веретена в анафазе В.

Критическую роль в митозе также играют два кинетохора каждой хромосомы. Их роль в перемещении хромосом обнаружилась очень давно, поскольку оказалось, что фрагменты хромосом, не содержащие кинетохора, не способны к направленному движению. Особенно важно, каким образом располагаются кинетохоры по отношению друг к другу. Поскольку они расположены на противоположных сторонах центромеры, то обращены к противоположным полюсам веретена, что позволяет реплицированным хромосомам присоединяться к обоим полюсам. Наличие такой позиционной взаимосвязи между двумя кинетохорами существенно для сегрегации двух хроматид в разные ядра. При образовании веретена каждый кинетохор связывается с концами множества микротрубочек, исходящих из одного полюса, и образует пучок, называемый кинетохорным пучком, который проходит между кинетохором и полюсом.

Нити кинетохора и сами кинетохоры не являются всего лишь транспортной системой канатов, позволяющих хроматидам продвигаться к полюсам. Скорее всего, они играют более важную активную роль, не только определяя направление движения хромосомы, но и генерируя усилия, необходимые для этого движения.

Для того чтобы понять молекулярные механизмы митоза, необходимо ответить на следующие кардинальные вопросы. Каким образом формируется веретено и как обеспечивается его биполярная структура? Каким образом генерируются усилия, обеспечивающие движение хромосом и как это движение регулируется? Как обеспечивается точность процесса сегрегации хромосом? Каким образом после сегрегации хромосом происходит разделение цитоплазмы с образованием двух дочерних клеток?

какие структуры участвуют в аппарате веретена деления. Смотреть фото какие структуры участвуют в аппарате веретена деления. Смотреть картинку какие структуры участвуют в аппарате веретена деления. Картинка про какие структуры участвуют в аппарате веретена деления. Фото какие структуры участвуют в аппарате веретена деленияЭлектронная микрофотография, демонстрирующая основные структурные элементы митотического веретена.
Крупные пучки микротрубочек соединяют каждую центросому с кинетохорами на хромосомах.
В центре фотографии кинетохоры, помеченные стрелками, иллюстрируют, что два кинетохора на хромосоме обращены к противоположным полюсам веретена.
какие структуры участвуют в аппарате веретена деления. Смотреть фото какие структуры участвуют в аппарате веретена деления. Смотреть картинку какие структуры участвуют в аппарате веретена деления. Картинка про какие структуры участвуют в аппарате веретена деления. Фото какие структуры участвуют в аппарате веретена деленияНа основной фотографии помещено изображение центросомы в электронном микросокопе.
Две центриоли расположены под прямым углом друг к другу, так, что одна выглядит как круг, а другая как прямоугольник.
Вокруг первой центриоли находится скопление гранулярного материала
(сравните область, примыкающую к центриоли, с более удаленными частями цитоплазмы,
которые окрашены менее интенсивно и где заметно присутствие многих мембранных везикул).
какие структуры участвуют в аппарате веретена деления. Смотреть фото какие структуры участвуют в аппарате веретена деления. Смотреть картинку какие структуры участвуют в аппарате веретена деления. Картинка про какие структуры участвуют в аппарате веретена деления. Фото какие структуры участвуют в аппарате веретена деленияНити кинетохора, прикрепленные к сестринским хроматидам.
Окрашивание иммунофлуоресцентным методом (слева) и фотография, сделанная в электронном микроскопе (в центре и справа).
какие структуры участвуют в аппарате веретена деления. Смотреть фото какие структуры участвуют в аппарате веретена деления. Смотреть картинку какие структуры участвуют в аппарате веретена деления. Картинка про какие структуры участвуют в аппарате веретена деления. Фото какие структуры участвуют в аппарате веретена деленияПоследовательность событий мейоза включает два клеточных деления.
При первом делении происходит разделение гомологичных хромосом,
при втором разделяются индивидуальные хроматиды (каждой хромосомы).
При митозе происходит только разделение хроматид.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Источник

Митоз и мейоз: понятие, фазы, отличия

Наши клетки постоянно растут и воспроизводят самих себя. Репродуктивная функция может осуществляться двумя способами, о которых мы расскажем в этой статье. Вы узнаете, как возникают новые клетки в процессе митоза и мейоза.

какие структуры участвуют в аппарате веретена деления. Смотреть фото какие структуры участвуют в аппарате веретена деления. Смотреть картинку какие структуры участвуют в аппарате веретена деления. Картинка про какие структуры участвуют в аппарате веретена деления. Фото какие структуры участвуют в аппарате веретена деления

Что такое митоз

Первый способ деления соматической клетки — митоз. Материнская клетка разделяется на дочерние клетки, которые практически идентичны родительским с точки зрения генетической информации. Наследственная информация и количество хромосом у дочерних клеток такие же, как у родительской.

какие структуры участвуют в аппарате веретена деления. Смотреть фото какие структуры участвуют в аппарате веретена деления. Смотреть картинку какие структуры участвуют в аппарате веретена деления. Картинка про какие структуры участвуют в аппарате веретена деления. Фото какие структуры участвуют в аппарате веретена деления

Митоз — это одна из фаз жизненного цикла клетки и механизм нормального роста тканей. Большую часть клеточного цикла занимает интерфаза, в течение которой протекает повседневная клеточная деятельность. Во время интерфазы происходит:

Во время интерфазы идёт активный синтез и накопление необходимых для деления клетки веществ. Интерфаза делится на три подфазы:

После стадии G2 клетка вступает в следующую фазу деления, а именно — сам митоз. Тут есть четыре подфазы: профаза, метафаза, анафаза, телофаза.

В схемах деления гаплоидный набор хромосом обозначают буквой n, а набор молекул ДНК (то есть хроматид) — буквой с. Перед буквами указывают число гаплоидных наборов: 1n2с — гаплоидный набор удвоенных хромосом, 2n2с — диплоидный набор одиночных хромосом, 2n4с — диплоидный набор удвоенных хромосом.

Пример. В клетках человека гаплоидный набор составляют 23 хромосомы. Значит, запись 2n2с означает 46 хромосом и 46 хроматид, а 2n4с — 46 хромосом и 92 хроматиды.

какие структуры участвуют в аппарате веретена деления. Смотреть фото какие структуры участвуют в аппарате веретена деления. Смотреть картинку какие структуры участвуют в аппарате веретена деления. Картинка про какие структуры участвуют в аппарате веретена деления. Фото какие структуры участвуют в аппарате веретена деления

Рассмотрим подробнее фазы митоза:

Многие клетки вступают в фазу G0 после митоза и находятся в ней всю жизнь до гибели. Обычно это высокоспециализированные клетки, которые не могут совмещать эффективное выполнение своих функций и размножение. Например, в фазе G0 находится большинство нейронов головного мозга.

Биологическое значение митоза — образование генетически одинаковых дочерних клеток с тем же набором хромосом, что был у материнской клетки. Сохраняется преемственность в ряду клеточных поколений.

какие структуры участвуют в аппарате веретена деления. Смотреть фото какие структуры участвуют в аппарате веретена деления. Смотреть картинку какие структуры участвуют в аппарате веретена деления. Картинка про какие структуры участвуют в аппарате веретена деления. Фото какие структуры участвуют в аппарате веретена деления

Что такое мейоз

Второй способ деления эукариотической клетки — мейоз. Это процесс деления клетки, во время которого получаются дочерние клетки — гаметы. У мужчин это сперматозоид, а у женщин яйцеклетка. Гаметы получают только половину генетической информации родительской клетки. Число хромосом уменьшается в два раза.

какие структуры участвуют в аппарате веретена деления. Смотреть фото какие структуры участвуют в аппарате веретена деления. Смотреть картинку какие структуры участвуют в аппарате веретена деления. Картинка про какие структуры участвуют в аппарате веретена деления. Фото какие структуры участвуют в аппарате веретена деления

Затем гаметы могут объединяться, образуя новую клетку, сочетающую генетическую информацию обеих клеток-родителей — зиготу. Процесс слияния половых клеток называется оплодотворением. Если зигота совершит цепь митозов, сформируется новый организм.

По промокоду BIO92021 вы получите бесплатный доступ к курсу биологии 9 класса, по промокоду BIO10112021 бесплатный доступ к курсу биологии 10 класса. Выберите нужный раздел и изучайте биологию вместе с домашней онлайн-школой «Фоксфорда»!

Каждая гамета человека содержит 23 хромосомы — гаплоидный набор (n). Когда гаметы объединяются, получается зигота с 46 хромосомами — диплоидный набор (2n).

Во время мейоза одна клетка с 46 хромосомами делится дважды. Первое деление называется мейоз I, второе деление называется мейоз II. Интерфаза между двумя этапами деления мейоза настолько кратковременна, что практически незаметна, и в ней не происходит удвоение ДНК. В результате образуются четыре дочерние клетки, каждая с 23 хромосомами.

Мейоз I подразделяется на четыре фазы, аналогичные фазам митоза:

какие структуры участвуют в аппарате веретена деления. Смотреть фото какие структуры участвуют в аппарате веретена деления. Смотреть картинку какие структуры участвуют в аппарате веретена деления. Картинка про какие структуры участвуют в аппарате веретена деления. Фото какие структуры участвуют в аппарате веретена деления

Мейоз II подразделяется на четыре такие же фазы:

какие структуры участвуют в аппарате веретена деления. Смотреть фото какие структуры участвуют в аппарате веретена деления. Смотреть картинку какие структуры участвуют в аппарате веретена деления. Картинка про какие структуры участвуют в аппарате веретена деления. Фото какие структуры участвуют в аппарате веретена деления

Биологическое значение мейоза — образование гаплоидных клеток, отличающихся генетически друг от друга: половых клеток (гамет) у животных и спор у растений.

Источник

Какие структуры участвуют в аппарате веретена деления

• Изменения в центросомах и в цитоплазме в начале митоза приводят к образованию вокруг каждой центросомы астральных структур, состоящих из коротких высокодинамичных микротрубочек

• Образование митотического веретена инициируется взаимодействием между астральными структурами, образованными двумя центросомами

• Разделение центросом зависит от белковых моторов микротрубочек

• Путь образования веретена зависит оттого, произошло расхождение центросом до или после разрыва оболочки ядра

По мере продвижения клетки из интерфазы в митоз, структура микротрубочек проходит через ряд быстрых и глубоких изменений. В цитоплазме происходит разборка длинных микротрубочек, типичных для интерфазной клетки, и каждая из двух центросом нуклеирует плотную радиальную структуру, состоящую из коротких микротрубочек (звезду, или звездчатую структуру).

Как показано на рисунке ниже, в конце концов две эти звездчатые структуры своими микротрубочками участвуют в образовании веретена. В начале митоза происходят изменения количества и распределения микротрубочек, которое определяется разными процессами, в том числе изменениями центросомы.

Незадолго до того как клетка коммитируется к митозу, меняются обе центросомы. Они становятся способны к нуклеации гораздо большего числа микротрубочек, чем в течение интерфазы. Как только это происходит, связанные с центросомой белки становятся более фосфорилированными, в центросомах возрастает содержание у-тубулина, и происходит расширение области перицентриолярного материала. Остается неясным, каким образом происходит процесс «созревания». Вероятно, в нем участвуют специфические киназы, которые активируются по мере перехода клетки из фазы G2 в митоз, включая главную регуляторную киназу митоза.

какие структуры участвуют в аппарате веретена деления. Смотреть фото какие структуры участвуют в аппарате веретена деления. Смотреть картинку какие структуры участвуют в аппарате веретена деления. Картинка про какие структуры участвуют в аппарате веретена деления. Фото какие структуры участвуют в аппарате веретена деленияДля превращения одной структуры в другую требуется всего несколько минут.
Микротрубочки флуоресцируют зеленым цветом, хромосомы синим, а промежуточные филаменты — красным.

Примерно в то же время из-за изменения условий в цитоплазме происходит дестабилизация микротрубочек. Это приводит к замещению сети, состоящей из длинных интерфазных микротрубочек, двумя звездчатыми структурами, состоящими из коротких микротрубочек и образующимися на центросомах, как описано выше. В результате, к началу прометафазы общая длина микротрубочек в клетке уменьшается, и скорость, с которой образуются новые и разрушаются старые микротрубочки (т. е. оборот микротрубочек), увеличивается.

Это означает, что, как только начинается разрушение ядерной оболочки, область, окружающая ядро, постоянно зондируется большим количеством крайне динамичных микротрубочек, растущих от каждой звездчатой структуры. Как мы увидим далее, столь динамичный характер обеспечивает связывание звездчатых структур с хромосомами.

Как показано на рисунке ниже, образуется «однополюсное» полуверетено; оно сохраняется до тех пор, пока нс разойдутся две центросомы, после чего образуется двухполюсное веретено. Расхождение центросом после разрушения оболочки ядра включает эффект двух сил: одна их толкает за счет ки-незиноподобного белка Eg5, который взаимодействует с примыкающими микротрубочками противоположной полярности, расположенными между двумя центросомами. Вторая сила тянет центросомы за счет цитоплазматического динеина, закрепленного на периферии клетки (т. е. в ее кортексе).

В отсутствие препятствий эти две силы раздвигают центросомы до тех пор, пока не разойдутся две звездчатые структуры. Однако расхождение центросом ограничивается существованием других моторов, которые связаны со звездчатыми структурами, а также образованием нитей кинетохора на сестринских кинетохорах.

Веретено образуется другим способом, если две звездчатые структуры уже разошлись и произошло разрушение ядерной оболочки. При этом расхождение звездчатых структур происходит без участия Eg5, который оказывается недоступным, поскольку находится в ядре. Вместо него с микротрубочками, отходящими из каждой центросомы, взаимодействует цитоплазматический динеин, и когда укрепилась связь между двумя центросомами, он способен обеспечить их расхождение. В этом случае динеин локализован в клеточном кортексе и на поверхности ядерной оболочки. Актиновые филаменты определяют направление, по которому расходятся две центросомы, взаимодействуя с миозином, расположенным или в самих центросомах или вдоль микротрубочек

Когда расхождение двух звездчатых структур происходит до разрушения ядерной оболочки, то часто в области, где перекрываются микротрубочки, образуется первичное веретено. Однако до разрушения ядерной оболочки эта структура является неустойчивой, и микротрубочки центросом могут разойтись настолько далеко, что не будут перекрываться. Это объясняется тем, что для устойчивости веретена необходимы белки, которые находятся в интерфазном ядре, и выходят в цитоплазму только после разрушения оболочки ядра. В результате во многих клетках, находящихся в поздней профазе, две центросомы и звездчатые структуры расположены в противоположных участках ядра и не взаимодействуют между собой.

В таких клетках веретено образуется лишь после того, как кинетохоры станут доступными для микротрубочек и смогут связать две звездчатых структуры.

какие структуры участвуют в аппарате веретена деления. Смотреть фото какие структуры участвуют в аппарате веретена деления. Смотреть картинку какие структуры участвуют в аппарате веретена деления. Картинка про какие структуры участвуют в аппарате веретена деления. Фото какие структуры участвуют в аппарате веретена деленияКадр видеофильма, иллюстрирующий изменение организации микротрубочек в митотические структуры. какие структуры участвуют в аппарате веретена деления. Смотреть фото какие структуры участвуют в аппарате веретена деления. Смотреть картинку какие структуры участвуют в аппарате веретена деления. Картинка про какие структуры участвуют в аппарате веретена деления. Фото какие структуры участвуют в аппарате веретена деленияДва механизма образования веретена различаются на этапе расхождения центросом по отношению к процессу разрушения ядерной оболочки.
Способность клетки к образованию веретена, независимо от того, когда расходятся центросомы, подчеркивает необычайно гибкий характер процесса его формирования.
какие структуры участвуют в аппарате веретена деления. Смотреть фото какие структуры участвуют в аппарате веретена деления. Смотреть картинку какие структуры участвуют в аппарате веретена деления. Картинка про какие структуры участвуют в аппарате веретена деления. Фото какие структуры участвуют в аппарате веретена деленияСлева представлено монополярное веретено, образующееся в клетке кенгуровой крысы,
при блокировании процесса расхождения центросом (вид сбоку).
Хромосомы (флуоресцируют оранжевым цветом) присоединены к одному из полюсов.
Видны толстые нити кинетохоров. Для сравнения на врезке показано обычное биполярное веретено.
Справа показано аналогичное монополярное веретено в клетке человека (вид спереди).
В центре находятся центросомы (флуоресцируют синим цветом).
какие структуры участвуют в аппарате веретена деления. Смотреть фото какие структуры участвуют в аппарате веретена деления. Смотреть картинку какие структуры участвуют в аппарате веретена деления. Картинка про какие структуры участвуют в аппарате веретена деления. Фото какие структуры участвуют в аппарате веретена деленияПроцесс образования веретена начинается, как только произошел разрыв оболочки ядра.
Вначале обе центросомы примыкают друг к другу. Белки Eg5 и HSET представляют собой моторы микротрубочек и входят в семейство кинезинов.
Однако Eg5 движется к плюс-концу микротрубочки, a HSET — к ее минус-концу.
Длина веретена определяется балансом усилий, развиваемых тремя моторами.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *