какие существуют математические модели
Виды математических моделей
В зависимости от того, какими средствами, при каких условиях и по отношению к каким объектам познания реализуется способность моделей отображать действительность, возникает их большое разнообразие, а вместе с ним — классификации. Путем обобщения существующих классификаций выделим базовые модели по применяемому математическому аппарату, на основе которых получают развитие специальные модели (рисунок 8.1).
Математические модели отображают изучаемые объекты (процессы, системы) в виде явных функциональных соотношений: алгебраических равенств и неравенств, интегральных и дифференциальных, конечно-разностных и других математических выражений (закон распределения случайной величины, регрессионные модели и т.д.), а также отношений математической логики.
В зависимости от двух фундаментальных признаков построения математической модели — вида описания причинно-следственных связей и изменений их во времени — различают детерминистические и стохастические, статические и динамические модели (рисунок 8.2).
Цель схемы, представленной на рисунке, — отобразить следующие особенности:
1) математические модели могут быть и детерминистическими, и стохастическими;
2) детерминистические и стохастические модели могут быть и статическими, и динамическими.
Математическая модель называется детерминистической (детерминированной), если все ее параметры и переменные являются однозначно определяемыми величинами, а также выполняется условие полной определенности ин формации. В противном случае, в условиях неопределенности информации, когда параметры и переменные модели — случайные величины, модель называется стохастической (вероятностной).
Рисунок 8.2 – Классы математических моделей
Модель называется динамической, если как минимум одна переменная изменяется по периодам времени, и статической, если принимается гипотеза, что переменные не изменяются по периодам времени.
На основе статистических данных могут строиться не только балансовые, но и корреляционно-регрессионные модели.
Корреляционно-регрессионные модели получают при исследовании влияния целого комплекса факторов на величину того или иного признака путем применения статистического аппарата. При этом ставится задача не только установить корреляционную связь, но и выразить эту связь аналитически, то есть подобрать уравнения, описывающие данную корреляционную зависимость (уравнение регрессии).
Для нахождения численного значения параметров уравнения регрессии пользуются методом наименьших квадратов. Суть этого метода состоит в том, чтобы выбрать такую линию, при которой сумма квадратов отклонений от нее ординат Y отдельных точек была бы наименьшей.
Корреляционно-регрессионные модели часто используются при исследовании явлений, когда возникает необходимость установить зависимость между соответствующими характеристиками в двух и более рядах. При этом преимущественно используется парная и множественная линейная регрессия вида
В результате применения метода наименьших квадратов устанавливаются значения параметров a или a1, a2, …, an и b, а затем выполняются оценки точности аппроксимации и значимости полученного уравнения регрессии.
В особую группу выделяют графоаналитические модели. Они используют различные графические изображения и поэтому обладают хорошей наглядностью.
Сетевые модели нашли широкое применение в управлении производством работ. Сетевые модели (графики) отражают последовательность выполнения работ и продолжительность каждой работы (рисунок 8.3).
Сетевые модели позволяют найти так называемый критический путь и оптимизировать график производства работ по времени при ограничениях на другие ресурсы.
Сетевые модели могут быть детерминированными и стохастическими. В последнем случае продолжительности выполнения работ задаются законами распределения случайных величин.
Оптимизационные модели служат для определения оптимальной траектории достижения системой поставленной цели при наложении некоторых ограничений на управление ее поведениям и движением. В этом случае оптимизационные модели описывают различного рода задачи нахождения экстремума некоторой целевой функции (критерия оптимизации).
Для выявления оптимального способа достижения цели управления в условиях ограниченных ресурсов – технических, материальных, трудовых и финансовых – применяют методы исследования операций. К ним относятся методы математического программирования (линейное и нелинейное, целочисленное, динамическое и стохастическое программирование), аналитические и вероятностно-статистические методы, сетевые методы, методы теории массового обслуживания, теории игр (теории конфликтных ситуаций) и др.
Оптимизационные модели применяются для объемного и календарного планирования, управления запасами, распределения ресурсов и работ, замены, параметризации и стандартизации оборудования, распределения потоков товарных поставок на транспортной сети и других задач управления.
Одним из основных достижений теории исследования операций считается типизация моделей управления и методов решения задач. Например, для решения транспортной задачи, в зависимости от ее размерности, разработаны типовые методы — метод Фогеля, метод потенциалов, симплекс-метод. Также при решении задачи управления запасами, в зависимости от ее постановки, могут использоваться аналитические и вероятностно-статистические методы, методы динамического и стохастического программирования.
В управлении особое значение придается сетевым методам планирования. Эти методы позволили найти новый и весьма удобный язык для описания, моделирования и анализа сложных многоэтапных работ и проектов. В исследовании операций значительное место отводится совершенствованию управления сложными системами с применением методов теории массового обслуживания (см. раздел8.3) и аппарата марковских процессов.
Модели марковских случайных процессов — система дифференциальных уравнений, описывающих функционирование системы или ее процессов в виде множества упорядоченных состояний на некоторой траектории поведения системы. Этот класс моделей широко используется при математическом моделировании функционирования сложных систем.
Модели теории игр служат для выбора оптимальной стратегии в условиях ограниченной случайной информации или полной неопределенности.
Игра — математическая модель реальной конфликтной ситуации, разрешение которой ведется по определенным правилам, алгоритмам, описывающим некоторую стратегию поведения лица, принимающего решение в условиях неопределенности.
Различают «игры с природой» и «игры с противником». Исходя из ситуации определяются методы и критерии оценки принятия решений. Так, при «играх с природой» применяют критерии: Лапласа, максиминный (критерий Вальда) и минимаксный, Гурвица и Сэвиджа и ряд других алгоритмических правил. При «играх с противником» для принятия решений используются платежные матрицы, максиминный и минимаксный критерии, а также специальные математические преобразования в связи с тем, что лицу, принимающему решение, противостоит недоброжелательный противник.
Рассмотренные типы математических моделей не охватывают всего их возможного многообразия, а лишь характеризуют отдельные виды в зависимости от принятого аспекта классификации. В.А.Кардашем была предпринята попытка создания системы классификации моделей по четырем аспектам детализации (рисунок 8.4).
Временной аспект | |||
статические | динамические | ||
Социальный, организационный, технологический аспекты | Однокритериальные модели | Детерминированные | Стохастический аспект |
Стохастические | |||
Модели, учитывающие взаимодействие интересов | Детерминированные | ||
Стохастические | |||
А | В | А | В |
Пространственный аспект |
С развитием вычислительных средств одним из распространенных методов принятия решений выступает деловая игра, представляющая собой численный эксперимент с активным участием человека. Существуют сотни деловых игр. Они применяются для изучения целого ряда проблем управления, экономики, теории организации, психологии, финансов и торговли.
Дата добавления: 2014-12-27 ; просмотров: 19925 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Математическая модель
Процесс построения и изучения математических моделей называется математическим моделированием.
Все естественные и общественные науки, использующие математический аппарат, по сути, занимаются математическим моделированием: заменяют объект исследования его математической моделью и затем изучают последнюю. Связь математической модели с реальностью осуществляется с помощью цепочки гипотез, идеализаций и упрощений. С помощью математических методов описывается, как правило, идеальный объект или процесс, построенный на этапе содержательного моделирования. Математическая модель позволяет предсказать поведение реального объекта.
Связанные понятия
Упоминания в литературе
Связанные понятия (продолжение)
Принципами механики называются исходные положения, отражающие столь общие закономерности механических явлений, что из них как следствия можно получить все уравнения, определяющие движение механической системы (или условия её равновесия). В ходе развития механики был установлен ряд таких принципов, каждый из которых может быть положен в основу механики, что объясняется многообразием свойств и закономерностей механических явлений. Эти принципы подразделяют на невариационные и вариационные.
Метод ренормализационной группы (также часто называемый методом ренормгруппы, методом РГ) в квантовой теории поля — итеративный метод перенормировки, в котором переход от областей с меньшей энергией к областям с большей вызван изменением масштаба рассмотрения системы.
Комплекс задач о взаимодействии многих тел достаточно обширный и является одним из базовых, далеко не полностью разрешённых, разделов механики. В рамках ньютоновской концепции проблема ветвится на.
Математическая модель
Математическое моделирование — это процесс построения и изучения математических моделей.
Все естественные и общественные науки, использующие математический аппарат, по сути занимаются математическим моделированием: заменяют объект его математической моделью и затем изучают последнюю. Связь математической модели с реальностью осуществляется с помощью цепочки гипотез, идеализаций и упрощений. С помощью математических методов описывается, как правило, идеальный объект, построенный на этапе содержательного моделирования.
Содержание
Определения
Никакое определение не может в полном объёме охватить реально существующую деятельность по математическому моделированию. Несмотря на это, определения полезны тем, что в них делается попытка выделить наиболее существенные черты.
Определение модели по А. А. Ляпунову: Моделирование — это опосредованное практическое или теоретическое исследование объекта, при котором непосредственно изучается не сам интересующий нас объект, а некоторая вспомогательная искусственная или естественная система (модель):
По учебнику Советова и Яковлева [3] : «модель (лат. modulus — мера) — это объект-заместитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала». (с. 6) «Замещение одного объекта другим с целью получения информации о важнейших свойствах объекта-оригинала с помощью объекта-модели называется моделированием». (с. 6) «Под математическим моделированием будем понимать процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью, и исследование этой модели, позволяющее получать характеристики рассматриваемого реального объекта. Вид математической модели зависит как от природы реального объекта, так и задач исследования объекта и требуемой достоверности и точности решения этой задачи».
По монографии Мышкиса [5] : «Перейдем к общему определению. Пусть мы собираемся исследовать некоторую совокупность свойств реального объекта
с помощью математики (здесь термин объект понимается в наиболее широком смысле: объектом может служить не только то, что обычно именуется этим словом, но и любая ситуация, явление, процесс и т. д.). Для этого мы выбираем (как говорят, строим) „математический объект“
— систему уравнений, или арифметических соотношений, или геометрических фигур, или комбинацию того и другого и т. д.,— исследование которого средствами математики и должно ответить на поставленные вопросы о свойствах
. В этих условиях
называется математической моделью объекта
относительно совокупности
его свойств». (с.8)
По Севостьянову А. Г. [6] : «Математической моделью называется совокупность математических соотношений, уравнений, неравенств и т.п., описывающих основные закономерности, присущие изучаемому процессу, объекту или системе».
Несколько менее общее определение математической модели, основанное на идеализации «вход — выход — состояние», заимствованной из теории автоматов, даёт Wiktionary: «Абстрактное математическое представление процесса, устройства или теоретической идеи; оно использует набор переменных, чтобы представлять входы, выходы и внутренние состояния, а также множества уравнений и неравенств для описания их взаимодействия». [7]
Наконец, наиболее лаконичное определение математической модели: «Уравнение, выражающее идею». [8]
Классификация моделей
Формальная классификация моделей
Формальная классификация моделей основывается на классификации используемых математических средств. Часто строится в форме дихотомий. Например, один из популярных наборов дихотомий [9] :
и так далее. Каждая построенная модель является линейной или нелинейной, детерминированной или стохастической, … Естественно, что возможны и смешанные типы: в одном отношении сосредоточенные (по части параметров), в другом — распределённые модели и т. д.
Классификация по способу представления объекта
Наряду с формальной классификацией, модели различаются по способу представления объекта:
Структурные модели представляют объект как систему со своим устройством и механизмом функционирования. Функциональные модели не используют таких представлений и отражают только внешне воспринимаемое поведение (функционирование) объекта. В их предельном выражении они называются также моделями «чёрного ящика». [13] Возможны также комбинированные типы моделей, которые иногда называют моделями «серого ящика».
Содержательные и формальные модели
Содержательная классификация моделей
В работе Р. Пайерлса [18] дана классификация математических моделей, используемых в физике и, шире, в естественных науках. В книге А. Н. Горбаня и Р. Г. Хлебопроса [19] эта классификация проанализирована и расширена. Эта классификация сфокусирована, в первую очередь, на этапе построения содержательной модели.
Тип 1: Гипотеза (такое могло бы быть)
Эти модели «представляют собой пробное описание явления, причем автор либо верит в его возможность, либо считает даже его истинным». По Р. Пайерлсу это, например, модель Солнечной системы по Птолемею и модель Коперника (усовершенствованная Кеплером), модель атома Резерфорда и модель Большого Взрыва.
Никакая гипотеза в науке не бывает доказана раз и навсегда. Очень чётко это сформулировал Ричард Фейнман:
«У нас всегда есть возможность опровергнуть теорию, но, обратите внимание, мы никогда не можем доказать, что она правильна. Предположим, что вы выдвинули удачную гипотезу, рассчитали, к чему это ведет, и выяснили, что все ее следствия подтверждаются экспериментально. Значит ли это, что ваша теория правильна? Нет, просто-напросто это значит, что вам не удалось ее опровергнуть». [20]
Если модель первого типа построена, то это означает, что она временно признаётся за истину и можно сконцентрироваться на других проблемах. Однако это не может быть точкой в исследованиях, но только вре́менной паузой: статус модели первого типа может быть только вре́менным.
Тип 2: Феноменологическая модель (ведем себя так, как если бы…)
Феноменологическая модель содержит механизм для описания явления. Однако этот механизм недостаточно убедителен, не может быть достаточно подтверждён имеющимися данными или плохо согласуется с имеющимися теориями и накопленным знанием об объекте. Поэтому феноменологические модели имеют статус вре́менных решений. Считается, что ответ всё ещё неизвестен и необходимо продолжить поиск «истинных механизмов». Ко второму типу Пайерлс относит, например, модели теплорода и кварковую модель элементарных частиц.
Роль модели в исследовании может меняться со временем, может случиться так, что новые данные и теории подтвердят феноменологические модели и те будут повышены до статуса гипотезы. Аналогично, новое знание может постепенно прийти в противоречие с моделями-гипотезами первого типа и те могут быть переведены во второй. Так, кварковая модель постепенно переходит в разряд гипотез; атомизм в физике возник как временное решение, но с ходом истории перешёл в первый тип. А вот модели эфира, проделали путь от типа 1 к типу 2, а сейчас находятся вне науки.
Идея упрощения очень популярна при построении моделей. Но упрощение бывает разным. Пайерлс выделяет три типа упрощений в моделировании.
Тип 3: Приближение (что-то считаем очень большим или очень малым)
Если можно построить уравнения, описывающие исследуемую систему, то это не значит, что их можно решить даже с помощью компьютера. Общепринятый прием в этом случае — использование приближений (моделей типа 3). Среди них модели линейного отклика. Уравнения заменяются линейными. Стандартный пример — закон Ома.
Если мы используем модель идеального газа для описания достаточно разреженных газов, то это — модель типа 3 (приближение). При более высоких плотностях газа тоже полезно представлять себе более простую ситуацию с идеальным газом для качественного понимания и оценок, но тогда это уже тип 4.
Тип 4: Упрощение (опустим для ясности некоторые детали)
В модели типа 4 отбрасываются детали, которые могут заметно и не всегда контролируемо повлиять на результат. Одни и те же уравнения могут служить моделью типа 3 (приближение) или 4 (опустим для ясности некоторые детали) — это зависит от явления, для изучения которого используется модель. Так, если модели линейного отклика применяются при отсутствии более сложных моделей (то есть не производится линеаризация нелинейных уравнений, а просто ищутся линейные уравнения, описываюшие объект), то это уже феноменологические линейные модели, и относятся они к следующему типу 4 (все нелинейные детали «для ясности» опускаем).
Примеры: применение модели идеального газа к неидеальному, уравнение состояния Ван-дер-Ваальса, большинство моделей физики твердого тела, жидкостей и ядерной физики. Путь от микроописания к свойствам тел (или сред), состоящих из большого числа частиц, очень длинен. Приходится отбрасывать многие детали. Это приводит к моделям 4-го типа.
Тип 5: Эвристическая модель (количественного подтверждения нет, но модель способствует более глубокому проникновению в суть дела)
Эвристическая модель сохраняет лишь качественное подобие реальности и даёт предсказания только «по порядку величины». Типичный пример — приближение средней длины свободного пробега в кинетической теории. Оно даёт простые формулы для коэффициентов вязкости, диффузии, теплопроводности, согласующиеся с реальностью по порядку величины.
Но при построении новой физики далеко не сразу получается модель, дающая хотя бы качественное описание объекта — модель пятого типа. В этом случае часто используют модель по аналогии, отражающую действительность хоть в какой-нибудь черте.
Тип 6: Аналогия (учтём только некоторые особенности)
Р. Пайерлс приводит историю использования аналогий в первой статье В. Гейзенберга о природе ядерных сил. «Это произошло после открытия нейтрона, и хотя сам В. Гейзенберг понимал, что можно описывать ядра состоящими из нейтронов и протонов, он не мог все же избавиться от мысли, что нейтрон должен в конечном счете состоять из протона и электрона. При этом возникала аналогия между взаимодействием в системе нейтрон — протон и взаимодействием атома водорода и протоном. Эта-то аналогия и привела его к заключению, что должны существовать обменные силы взаимодействия между нейтроном и протоном, которые аналогичны обменным силам в системе , обусловленным переходом электрона между двумя протонами. … Позднее было все-таки доказано существование обменных сил взаимодействия между нейтроном и протоном, хотя ими не исчерпывалось полностью взаимодействие между двумя частицами… Но, следуя все той же аналогии, В. Гейзенберг пришёл к заключению об отсутствии ядерных сил взаимодействия между двумя протонами и к постулированию отталкивания между двумя нейтронами. Оба последних вывода находятся в противоречии с данными более поздних исследований».
Тип 7: Мысленный эксперимент (главное состоит в опровержении возможности)
А. Эйнштейн был одним из великих мастеров мысленного эксперимента. Вот один из его экспериментов. Он был придуман в юности и, в конце концов, привел к построению специальной теории относительности. Предположим, что в классической физике мы движемся за световой волной со скоростью света. Мы будем наблюдать периодически меняющееся в пространстве и постоянное во времени электромагнитное поле. Согласно уравнениям Максвелла, этого быть не может. Отсюда юный Эйнштейн заключил: либо законы природы меняются при смене системы отсчета, либо скорость света не зависит от системы отсчета. Он выбрал второй — более красивый вариант. Другой знаменитый мысленный эксперимент Эйнштейна — Парадокс Эйнштейна — Подольского — Розена.
А вот и тип 8, широко распространенный в математических моделях биологических систем.
Тип 8: Демонстрация возможности (главное — показать внутреннюю непротиворечивость возможности)
Это тоже мысленные эксперименты с воображаемыми сущностями, демонстрирующие, что предполагаемое явление согласуется с базовыми принципам и внутренне непротиворечиво. В этом основное отличие от моделей типа 7, которые вскрывают скрытые противоречия.
Один из самых знаменитых таких экспериментов — геометрия Лобачевского (Лобачевский называл её «воображаемой геометрией»). Другой пример — массовое производство формально — кинетических моделей химических и биологических колебаний, автоволн и др. Парадокс Эйнштейна — Подольского — Розена был задуман как модель 7 типа, для демонстрации противоречивости квантовой механики. Совершенно незапланированным образом он со временем превратился в модель 8 типа — демонстрацию возможности квантовой телепортации информации.
В основе содержательной классификации — этапы, предшествующие математическому анализу и вычислениям. Восемь типов моделей по Р. Пайерлсу суть восемь типов исследовательских позиций при моделировании.
Пример
Рассмотрим механическую систему, состоящую из пружины, закрепленной с одного конца, и груза массой , прикрепленного к свободному концу пружины. Будем считать, что груз может двигаться только в направлении оси пружины (например, движение происходит вдоль стержня). Построим математическую модель этой системы. Будем описывать состояние системы расстоянием
от центра груза до его положения равновесия. Опишем взаимодействие пружины и груза с помощью закона Гука (
) после чего воспользуемся вторым законом Ньютона, чтобы выразить его в форме дифференциального уравнения:
где означает вторую производную от
по времени:
.
Полученное уравнение описывает математическую модель рассмотренной физической системы. Эта модель называется «гармоническим осциллятором».
По формальной классификации эта модель линейная, детерминисткая, динамическая, сосредоточенная, непрерывная. В процессе её построения мы сделали множество допущений (об отсутствии внешних сил, отсутствии трения, малости отклонений и т. д.), которые в реальности могут не выполняться.
По отношению к реальности это, чаще всего, модель типа 4 упрощение («опустим для ясности некоторые детали»), поскольку опущены некоторые существенные универсальные особенности (например, диссипация). В некотором приближении (скажем, пока отклонение груза от равновесия невелико, при малом трении, в течение не слишком большого времени и при соблюдении некоторых других условий), такая модель достаточно хорошо описывает реальную механическую систему, поскольку отброшенные факторы оказывают пренебрежимо малое влияние на её поведение. Однако модель можно уточнить, приняв во внимание какие-то из этих факторов. Это приведет к новой модели, с более широкой (хотя и снова ограниченной) областью применимости.
Впрочем, при уточнении модели сложность её математического исследования может существенно возрасти и сделать модель фактически бесполезной. Зачастую более простая модель позволяет лучше и глубже исследовать реальную систему, чем более сложная (и, формально, «более правильная»).
Если применять модель гармонического осциллятора к объектам, далёким от физики, её содержательный статус может быть другим. Например, при приложении этой модели к биологическим популяциям, её следует отнести, скорее всего, к типу 6 аналогия («учтём только некоторые особенности»).
Жёсткие и мягкие модели
Гармонический осциллятор — пример так называемой «жёсткой» модели. Она получена в результате сильной идеализации реальной физической системы. Для решения вопроса о её применимости необходимо понять, насколько существенными являются факторы, которыми мы пренебрегли. Иными словами, нужно исследовать «мягкую» модель, получающуюся малым возмущением «жёсткой». Она может задаваться, например, следующим уравнением:
Здесь — некоторая функция, в которой может учитываться сила трения или зависимость коэффициента жёсткости пружины от степени её растяжения,
— некоторый малый параметр. Явный вид функции
нас в данный момент не интересует. Если мы докажем, что поведение мягкой модели принципиально не отличается от поведения жёсткой (вне зависимости от явного вида возмущающих факторов, если они достаточно малы), задача сведется к исследованию жёсткой модели. В противном случае применение результатов, полученных при изучении жёсткой модели, потребует дополнительных исследований. Например, решением уравнения гармонического осциллятора являются функции вида
, то есть колебания с постоянной амплитудой. Следует ли из этого, что реальный осциллятор будет бесконечно долго колебаться с постоянной амплитудой? Нет, поскольку рассматривая систему со сколь угодно малым трением (всегда присутствующим в реальной системе), мы получим затухающие колебания. Поведение системы качественно изменилось.
Если система сохраняет свое качественное поведение при малом возмущении, говорят, что она структурно устойчива. Гармонический осциллятор — пример структурно-неустойчивой (негрубой) системы. [21] Тем не менее, эту модель можно применять для изучения процессов на ограниченных промежутках времени.
Универсальность моделей
Важнейшие математические модели обычно обладают важным свойством универсальности: принципиально разные реальные явления могут описываться одной и той же математической моделью. Скажем, гармонический осциллятор описывает не только поведение груза на пружине, но и другие колебательные процессы, зачастую имеющие совершенно иную природу: малые колебания маятника, колебания уровня жидкости в -образном сосуде или изменение силы тока в колебательном контуре. Таким образом, изучая одну математическую модель, мы изучаем сразу целый класс описываемых ею явлений. Именно этот изоморфизм законов, выражаемых математическими моделями в различных сегментах научного знания, подвиг Людвига фон Берталанфи на создание «Общей теории систем».
Прямая и обратная задачи математического моделирования
Существует множество задач, связанных с математическим моделированием. Во-первых, надо придумать основную схему моделируемого объекта, воспроизвести его в рамках идеализаций данной науки. Так, вагон поезда превращается в систему пластин и более сложных тел из разных материалов, каждый материал задается как его стандартная механическая идеализация (плотность, модули упругости, стандартные прочностные характеристики), после чего составляются уравнения, по дороге какие-то детали отбрасываются, как несущественные, производятся расчёты, сравниваются с измерениями, модель уточняется, и так далее. Однако для разработки технологий математического моделирования полезно разобрать этот процесс на основные составные элементы.
Традиционно выделяют два основных класса задач, связанных с математическими моделями: прямые и обратные.
В простейшем случае (одно уравнение осциллятора, например) прямая задача очень проста и сводится к явному решению этого уравнения.
Обратная задача: известно множество возможных моделей, надо выбрать конкретную модель на основании дополнительных данных об объекте. Чаще всего, структура модели известна, и необходимо определить некоторые неизвестные параметры. Дополнительная информация может состоять в дополнительных эмпирических данных, или в требованиях к объекту (задача проектирования). Дополнительные данные могут поступать независимо от процесса решения обратной задачи (пассивное наблюдение) или быть результатом специально планируемого в ходе решения эксперимента (активное наблюдение).
Одним из первых примеров виртуозного решения обратной задачи с максимально полным использованием доступных данных был построенный И. Ньютоном метод восстановления сил трения по наблюдаемым затухающим колебаниям.
Компьютерные системы моделирования
Для поддержки математического моделирования разработаны системы компьютерной математики, например, Maple, Mathematica, Mathcad, MATLAB, VisSim и др. [24] Они позволяют создавать формальные и блочные модели как простых, так и сложных процессов и устройств и легко менять параметры моделей в ходе моделирования. Блочные модели представлены блоками (чаще всего графическими), набор и соединение которых задаются диаграммой модели.
Дополнительные примеры
Модель Мальтуса
Скорость роста пропорциональна текущему размеру популяции. Она описывается дифференциальным уравнением
где — некоторый параметр, определяемый разностью между рождаемостью и смертностью. Решением этого уравнения является экспоненциальная функция
. Если рождаемость превосходит смертность (
0″ border=»0″ />), размер популяции неограниченно и очень быстро возрастает. Понятно, что в действительности этого не может происходить из-за ограниченности ресурсов. При достижении некоторого критического объёма популяции модель перестает быть адекватной, поскольку не учитывает ограниченность ресурсов. Уточнением модели Мальтуса может служить логистическая модель, которая описывается дифференциальным уравнением Ферхюльста
где — «равновесный» размер популяции, при котором рождаемость в точности компенсируется смертностью. Размер популяции в такой модели стремится к равновесному значению
, причем такое поведение структурно устойчиво.
Система хищник-жертва
Допустим, что на некоторой территории обитают два вида животных: кролики (питающиеся растениями) и лисы (питающиеся кроликами). Пусть число кроликов , число лис
. Используя модель Мальтуса с необходимыми поправками, учитывающими поедание кроликов лисами, приходим к следующей системе, носящей имя модели Лотки — Вольтерра:
Эта система имеет равновесное состояние, когда число кроликов и лис постоянно. Отклонение от этого состояния приводит к колебаниям численности кроликов и лис, аналогичным колебаниям гармонического осциллятора. Как и в случае гармонического осциллятора, это поведение не является структурно устойчивым: малое изменение модели (например, учитывающее ограниченность ресурсов, необходимых кроликам) может привести к качественному изменению поведения. Например, равновесное состояние может стать устойчивым, и колебания численности будут затухать. Возможна и противоположная ситуация, когда любое малое отклонение от положения равновесия приведет к катастрофическим последствиям, вплоть до полного вымирания одного из видов. На вопрос о том, какой из этих сценариев реализуется, модель Вольтерра — Лотки ответа не дает: здесь требуются дополнительные исследования.
Примечания
Литература
См. также
Ссылки
МАТЕМАТИЧЕСКАЯ МОДЕЛЬ — МАТЕМАТИЧЕСКАЯ МОДЕЛЬ, система уравнений и концепций, используемых для описания и прогнозирования данного феномена или поведения объекта. Математические модели находят как практическое, так и теоретическое применение (иногда одновременно).… … Научно-технический энциклопедический словарь
Математическая модель — 7. Математическая модель Модель Система соотношений между параметром оптимизации и факторами, а также ограничениями, накладываемыми на них Источник: РДМУ 109 77: Методические указания. Методика … Словарь-справочник терминов нормативно-технической документации
Математическая модель — приближённое описание какого либо класса явлений внешнего мира, выраженное с помощью математической символики. М. м. мощный метод познания внешнего мира, а также прогнозирования и управления. Анализ М. м. позволяет проникнуть в сущность… … Большая советская энциклопедия
математическая модель — matematinis modelis statusas T sritis automatika atitikmenys: angl. mathematical model vok. mathematisches Modell, n rus. математическая модель, f pranc. modèle mathématique, m … Automatikos terminų žodynas
математическая модель — matematinis modelis statusas T sritis fizika atitikmenys: angl. mathematical model vok. mathematisches Modell, n rus. математическая модель, f pranc. modèle mathématique, m … Fizikos terminų žodynas
математическая модель — Модель, находящаяся в отношении математического подобия к моделируемому объекту … Политехнический терминологический толковый словарь
МАТЕМАТИЧЕСКАЯ МОДЕЛЬ — приближенное описание какого либо класса явлений внешнего мира, выраженное с помощью математич. символики. М. м. мощный метод познания внешнего мира, а также прогнозирования и управления. Анализ М. м. позволяет проникнуть в сущность изучаемых… … Математическая энциклопедия
МАТЕМАТИЧЕСКАЯ МОДЕЛЬ — Любая модель или теория, выраженная в формальных математических терминах и, следовательно, позволяющая де лать точные количественные предсказания … Толковый словарь по психологии
Математическая модель — приближенное описание с помощью математической символики какого либо класса явлений внешнего мира … Начала современного естествознания