какие существуют механизмы терморегуляции у холоднокровных организмов при повышенной температуре

Какие существуют механизмы терморегуляции у холоднокровных организмов при повышенной температуре

Наряду с эндогенными процессами для поддержания нормальной температуры тела важнейшим механизмом является изменение характера поведения, или поведенческая терморегуляция.

Для холоднокровных животных этот механизм является определяющим. Поддерживающими постоянную температуру факторами являются изменение позы, поиск укрытия, по возможности выбор более теплой или холодной среды и т. п. Человек для поддержания оптимальной температуры тела нередко прибегает к усиленным мышечным движениям, особенно для согревания на холоде. При ходьбе теплопродукция увеличивается в 2 раза, а при беге или интенсивной работе — в 4—5 раз. Повышение температуры тела при этом даже на несколько десятых градуса способствует ускорению окислительных процессов, в частности — окислению продуктов белкового катаболизма. Кроме того, для человека не менее важными факторами поддержания оптимальной температуры тела является ношение одежды, соответствующей температуре окружающей среды, и оборудование жилища (утепление жилища зимой и использование кондиционеров в жаркое время года).

Регуляция температуры тела. Восприятие организмом температурных воздействий (терморецепция).

какие существуют механизмы терморегуляции у холоднокровных организмов при повышенной температуре. Смотреть фото какие существуют механизмы терморегуляции у холоднокровных организмов при повышенной температуре. Смотреть картинку какие существуют механизмы терморегуляции у холоднокровных организмов при повышенной температуре. Картинка про какие существуют механизмы терморегуляции у холоднокровных организмов при повышенной температуре. Фото какие существуют механизмы терморегуляции у холоднокровных организмов при повышенной температуре

Изменение температуры внутренней среды («ядра») и поверхностных отделов («оболочки») тела человека воспринимается организмом с помощью терморецепторов. Температурная рецепция осуществляется окончаниями тонких чувствительных нервных волокон типа С и А (8), которые представлены в коже, слизистых оболочках, мышцах, сосудах, во внутренних органах (периферические терморецепторы). Холодо- и теплочувствительные нейроны располагаются в медиальной преоптической области переднего гипоталамуса (центральные терморецепторы).

Восприятие температурных раздражений из внешней среды и формирование температурных ощущений у человека осуществляется с помощью терморецепторов кожи и слизистых оболочек, среди которых имеются холодовые рецепторы (повышают частоту передачи нервных импульсов по афферентным нервным волокнам к терморегуляторному центру при их охлаждении и снижают эту частоту при их нагревании) и тепловые рецепторы (реагируют на изменение температуры тела противоположным образом). В коже и на слизистых оболочках человека больше холодовых рецепторов (около 250 000), чем тепловых (около 30 000). Кроме того, холодовые рецепторы кожи расположены более поверхностно, на глубине 0,17 мм, а тепловые — более глубоко, на глубине 0,3 мм. Эта особенность расположения терморецепторов обусловливает более раннее восприятие организмом человека холода, чем тепла. Другая особенность терморецепторов — их неравномерное распределение в коже по площади, что определяет различный уровень чувствительности к холоду и теплу разных участков тела. Наибольшей чувствительностью обладает кожа лица, наименьшей — кожа нижних конечностей.

Афферентный поток нервных импульсов от периферических терморецепторов поступает через задние корешки спинного мозга к вставочным нейронам задних рогов. Затем по спиноталамическому тракту этот поток импульсов достигает передних ядер таламуса и далее проводится в сомато-сенсорную кору больших полушарий головного мозга. Поступление нервных импульсов от периферических терморецепторов в соматосенсорную кору обеспечивает возникновение и топическую локализацию субъективных температурных ощущений, таких как «тепло», «холодно», «прохладно», «жарко», «температурный комфорт» или «дискомфорт». На их основе формируются поведенческие терморегуляторные реакции. Значительная часть афферентных импульсов от периферических рецепторов кожи и внутренних органов поступает из спинного мозга по волокнам спиноталамическо-го тракта к нейронам гипоталамического центра терморегуляции.

Источник

Нарушение терморегуляции организма

Общие сведения

Расстройство терморегуляции это нарушение постоянства температуры тела, вызванные дисфункцией ЦНС. Температурный гомеостаз считается одной из основных функций гипоталамуса, который содержит специализированные термочувствительные нейроны.

От гипоталамуса начинаются вегетативные пути, которые при необходимости могут обеспечивать увеличение теплопродукции, вызывая мышечную дрожь или рассеяние излишнего тепла.

При поражении гипоталамуса, а также следующих от него к стволу мозга или спинному мозгу путей возникают расстройства терморегуляции в виде гипертермии или гипотермии.

Теплоотдача организмом во внешнюю среду зависит от температуры окружающей среды, от количества влаги (пота), выделяемой организмом вследствие затрат тепла на испарение, от тяжести выполняемой работы и физического состояния человека.

При высокой температуре воздуха и облучении кровеносные сосуды поверхности тела расширяются, при этом происходит перемещение крови: главного аккумулятора тепла в организме, к периферии (поверхности тела). Вследствие такого перераспределения крови теплоотдача с поверхности тела значительно увеличивается.

Нарушения терморегуляции организма могут возникать при:

повреждении центрального или периферического звена системы терморегуляции;

кровоизлияниях и опухолях в области гипоталамуса;

при травмах, сопровождающихся повреждением соответствующих проводящих путей.

Нарушение терморегуляции сопутствует многим системным заболеваниям, обычно проявляясь повышением температуры тела или лихорадкой. Повышение температуры тела является настолько надежным индикатором заболевания, что наиболее часто используемой в клинике процедурой стала термометрия.

Изменения температуры можно выявить даже при отсутствии явного фебрилитета. Они проявляются в виде покраснения, побледнения, потоотделения, дрожи, ненормальных ощущений тепла или холода, а также могут состоять из неустойчивых колебаний темпе­ратуры тела в пределах нормы у больных с постельным режимом.

При физической работе времен­но нарушается баланс между теплопродукцией и теплоотдачей с последующим быстрым восстановлением нормальной температуры в состоянии покоя за счет длительной активации механизмов теплоотдачи.

Фактически, при длительной физической нагрузке расширение сосудов кожи в ответ на повышение темпера­туры сердцевины организма прекращается для того, чтобы сохранить эту темпе­ратуру.

Нарушение терморегуляции при лихорадке

При лихорадке адаптационная способность снижается, так как по дости­жении стабильной температуры тела теплопродукция становится равной тепло­отдаче, однако и та, и другая находятся на уровне выше исходного. Кровоток в периферических сосудах кожи играет более важную роль в регуляции теплопродукции и теплоотдачи, чем потоотделение.

При лихорадке температура тела, определяемая терморецепторами, низкая, поэтому организм реагирует на нее как на охлаждение.

Дрожь приводит к увеличению теплопродукции, а сужение сосу­дов кожи — к уменьшению теплоотдачи. Эти процессы позволяют объяснить возникающие в начале лихорадки ощущения холода или озноба. И наоборот, при удалении причины лихорадки температура снижается до нормальной, и боль­ной ощущает жар. Компенсаторными реакциями в данном случае являются:

рас­ширение сосудов кожи;

При высокой температуре окружающей среды развиваются четыре клинических синдрома:

тепловая травма при напряжении;

Каждое из этих состояний можно отдифференцировать на основании различных клинических проявлений, однако между ними есть много общего и эти состояния можно рассматривать как разновидности синдромов одного и того же происхождения.

Симптомокомплекс теплового поражения развивается при высокой тем­пературе (более 32°С) и при высокой относительной влажности воздуха (более 60%). Наиболее уязвимы люди пожилого возраста, лица, страдающие психи­ческими заболеваниями, алкоголизмом, принимающие антипсихотические, моче­гонные, антихолинергические препараты, а также люди, находящиеся в помеще­ниях с плохой вентиляцией.

Источник

Теплокровность: предпосылки и следствия

какие существуют механизмы терморегуляции у холоднокровных организмов при повышенной температуре. Смотреть фото какие существуют механизмы терморегуляции у холоднокровных организмов при повышенной температуре. Смотреть картинку какие существуют механизмы терморегуляции у холоднокровных организмов при повышенной температуре. Картинка про какие существуют механизмы терморегуляции у холоднокровных организмов при повышенной температуре. Фото какие существуют механизмы терморегуляции у холоднокровных организмов при повышенной температуре

Возникновение теплокровности — одно из значительных и загадочных событий в эволюции позвоночных животных. Теплокровные животные, обладая более высоким уровнем аэробного метаболизма по сравнению с холоднокровными, в меньшей степени зависят от температуры окружающей среды. Однако, теплокровность — это дорогая адаптация, т.к. она требует значительных затрат энергии. Какие условия необходимы были для того, чтобы такая дорогостоящая адаптация, как теплокровность, стала выгодной и, следовательно, начала поддерживаться естественным отбором?

Гомойотермия («теплокровность») — это способность животного неопределенно долгое время сохранять заданную (в частном случае, — постоянную) температуру в «ядре» своего тела независимо от колебаний температуры среды в достаточно широком диапазоне.

Гомойотермия поддерживается эндотермически, т.е. за счет метаболического тепла, образуемого как побочный результат необходимых физиологических процессов и активности, или как результат специальной терморегуляционной теплопродукции. У пойкилотермных животных, в отличие от гомойотермных, температура тела пассивно следует за изменением температуры среды, но может быть ей не равна как благодаря использованию солнечных лучей или нагретых предметов («эктотермия»), так и применению испарительного охлаждения.

Гомойотермия — ярко выраженный ароморфоз — прогрессивное эволюционное изменение строения, приводящее к общему повышению уровня организации организмов (Северцов,1925).

Происхождение и пути возникновения гомойотермии — в течение многих десятилетий широко обсуждаемая проблема (Северцов,1925; Будыко, 1982; Дольник, 2003, Гаврилов, 2006, 2012; Bennett, Ruben, 1979; Barrick, Showers, 1994; Fricke, Rogers, 2000; Seebacher, 2003; Amiot et al., 2006; Eagle et al., 2010, 2011 и др.). За время дискуссии были неоднократно предложены почти все мыслимые гипотезы происхождения гомойотермии. Однако всегда было ясно, что в основе своей это проблема биоэнергетическая. В данном сообщении я предлагаю рассмотреть еще несколько гипотез с точки зрения экологической энергетики современных животных.

Высокая и относительно постоянная температура внутренней среды дает то преимущество, что скорости химических реакций в организме высоки и могут не зависеть от внешней температуры. Млекопитающие и птицы имеют много более высокий уровень аэробного метаболизма, который может обеспечивать такие поведенческие проявления, которые невозможны дня низших позвоночных. Кроме этого их гомойотермное состояние, высокая и стабильная температура тела дает им возможность избегать замедляющего влияния низких температур на метаболическое обеспечение поведения и уровень метаболизма. Поэтому реактивность гомойотермных животных, их локомоторная активность, возможность выполнить определенные действия (полететь, прыгнуть, пробежать) и скорость усвоения пищи, во-первых, выше, чем у пойкилотермных, а, во-вторых, постоянна и пассивно не зависит от внешних условий.

Гомойотермия — очень дорогая адаптация, т.к. для ее обеспечения необходимо потреблять и расходовать энергию.

При активности образуется много тепла и очень быстро возрастает температура тела, что губительно, так как при высокой температуре денатурируются белки.

Из-за большого времени разогрева у крупных животных факультативная эндотермия, т.е та, которой предположительно обладали динозавры, была невыгодна, а теплопроводность покровов рептилий так велика, что не может обеспечить сохранение эндогенного тепла в покое при любой температуре тела.

Следовательно, надо иметь совершенные системы отдачи тепла, чтобы обеспечивать равновесие между теплопродукцией и теплоотдачей.

Основная термодинамическая проблема при активности у пойкилотермных животных — это рассеивание тепла, вырабатываемого при активности и вообще при работе. Для этого необходимы эффективные механизмы отдачи тепла — развитая кровеносная система и способность управлять теплоизоляцией покровов.

Отсюда — следующая предпосылка формирования гомойотермии. Чтобы увеличить продолжительность активности, нужно создавать механизмы отдачи избыточного тепла.

Интенсивности метаболизма и, соответственно, скорости поглощения кислорода у птиц и млекопитающих и в состоянии покоя, и в состоянии активности в 10–12 раз выше таковых у пойкилотермных животных соответствующей массы, но, по-видимому, достигаются у птиц и млекопитающих разными способами. Млекопитающие, развивавшие аэробный метаболизм, произошли в триасе, когда содержание кислорода в атмосфере было приблизительно на 50% ниже современного уровня и даже уровня в юре (Яншин, 1997; Иванов, 2000). Резкое понижение общей массы и процентного содержания кислорода в триасе было связано с широким распространением в это время аридных условий на материках (Яншин, 1997). В этих условиях они избавились от ядер в эритроцитах (получив безъядерные и двояковогнутые, у которых площадь поверхности заключенного и количество заключённого в них гемоглобина больше), что позволяет иметь более тонкие капилляры, а двояковогнутость обеспечивает большую поверхность обмена. Птицы, которые произошли от более совершенных рептилий, устроили себе мощную респираторную и кровеносную системы, и, так как они произошли в то время, когда содержание кислорода в атмосфере Земли приближалось к современному уровню, им не понадобилось избавляться от ядер в эритроцитах.

Возникновение гомойотермных животных, у которых, в первую очередь, интенсифицируется аэробный метаболизм для увеличения активности, происходит в раннем и среднем мезозое, но вплоть до середины мела не происходит их истинного расцвета. Начало расцвета птиц и млекопитающих коррелирует с появлением покрытосеменных растений и связанной с ними фауны беспозвоночных. Связано ли это с каналом энергии для удовлетворения высоких потребностей в пище гомойотермных животных? Почему судьбы млекопитающих и динозавров, которые произошли в триасе, столь различны? Гомойотермия, являясь ярко выраженным ароморфозом, более 100 млн лет «тлела» в недрах биосферы, дожидаясь своего часа.

Динозавры уже в юре достигли огромного разнообразия, сохраняясь до середины и конца мела. А расцвет млекопитающих — это только самый конец мела и кайнозой. Произошло ли это из-за отсутствия достаточной кормовой базы для млекопитающих — что сомнительно, ведь огромное разнообразие тех же динозавров представляло для хищных млекопитающих неисчерпаемую кормовую базу, да и фауна беспозвоночных была достаточно разнообразна в это время. Могли ли биосферные условия вплоть до середины мела не позволять в полной мере использовать преимущества гомойотермии? Почему только с появлением покрытосеменных растений и связанной с ними фауны беспозвоночных наступает заметный расцвет фауны млекопитающих?

Трудно допустить, что гомойотермные млекопитающие, обладающие на порядок большей мощностью и возникшие в одно время с динозаврами, не смогли завоевать достойное место в биоценозах. Возможны следующие варианты объяснения этого парадокса.

Динозавры обладали истинной гомойотермией (эндотермией). Это значит, что наряду с высокой температурой тела обладали и высоким аэробным метаболизмом. Никаких достоверных доказательств этому нет. Но если все-таки это допустить, тогда они действительно составляли конкуренцию, в первую очередь, млекопитающим. Первые ночные и мелкие млекопитающие легко могли быть вытеснены гомойотермными динозаврами из магистральных ниш. Поэтому попытки «измерить» температуру тела динозавров или найти доказательства их высокого метаболизма следует продолжать. Но вероятность, что у динозавров был высокий аэробный метаболизм, с моей точки зрения, ничтожна.

Второй вариант — гомойотермность первых млекопитающих и выгоды высокой активности и выносливости долгое время не позволяли в полной мере использовать эти преимущества из-за связанного с ними высокого потребления энергии и невозможности канализировать необходимые источники пищи. В условиях, существовавших в триасе и юре с преобладанием мезофитной растительности и малой продуктивностью сообществ, гомойотермия птиц и млекопитающих не могла предоставить им экологические ниши с нужным потоком энергии, не говоря уже о возможности увеличить разнообразие. Естественный отбор позволил животным с высоким энергетическим метаболизмом увеличить разнообразие и численность только тогда, когда эти (гомойотермные) животные могли удовлетворять свои возросшие во много раз потребности в пищевых ресурсах. Произошло это в середине мела, с появлением покрытосеменных растений и увеличением фауны беспозвоночных, связанных с ними. Именно в середине мелового периода наступает глобальный кризис наземных биоценозов (Расницын, 1988). Как пишет В. В. Жерихин (1980), «…позднемеловые насекомые отличаются от раннемеловых очень резко, причем уже сеноманские фауны вполне типичны для позднего мела и сохраняют лишь отдельные архаичные черты. По-видимому, эта смена, самая быстрая и резкая в истории насекомых вообще, связана с экспансией покрытосеменных в конце раннего мела». Приблизительно с этого времени началась экологическая экспансия птиц и млекопитающих, выражавшаяся в их адаптивной радиации. Распространение покрытосеменных растений и насекомых как пищевых ресурсов, способных удовлетворить гомойотермных, но не большинство рептилий, приспособленных к питанию предшествующей мезофитной флорой и фауной, способствовало экологической экспансии гомойотермных. Птицы и млекопитающие вытеснили рептилий из магистральных ниш, освоили различные местообитания и быстро вышли в крупные размерные классы (млекопитающие — 8 размерных порядков, птицы — 6). Этому способствовало и постепенное понижение температуры на Земле в это время.

Следующий вариант — триасовые и юрские млекопитающие и птицы, ископаемые останки которых представлены фрагментами, еще не были животными с развитой гомойотермией. Возможно, что диагностические морфологические признаки, по которым они были отнесены к млекопитающим недостаточны, чтобы свидетельствовать об истинной гомойотермии. Они были «пробными попытками» биосферы создать животных с развитой аэробной мощностью и с постоянным (базальным) уровнем метаболизма, обеспечивающим мгновенный переход к активности. Я считаю, что только в мелу и произошли животные с истинной гомойотермией — эндотермией (три подкласса млекопитающих и настоящие птицы).

Еще один вариант — это комбинация двух последних. Они, в принципе, не противоречат друг другу. Первые птицы и млекопитающие, по-видимому, действительно не обладали совершенной эндотермией. Но они сразу стали совершенствовать аэробное окисление и, следовательно, нуждались в большем количестве пищи, и с появление покрытосеменных растений — ее стало достаточно.

Морфофизиологическую основу гомойотермии обеспечило эволюционное развитие систем, связанных с циркуляцией крови, дыханием, и с развитием термоизоляции покровов тела. Все эти системы позволили менять теплоотдачу без интенсификации испарения и развить гомойотермию с обязательным образованием базальной метаболической мощности. Базальная метаболическая мощность обеспечивает поддержание гомойотермии, но ее происхождение связано не с терморегуляционными проблемами, а с необходимостью поддерживать высокий уровень активности. Терморегуляция, как, собственно, и сама гомойотермия, — побочные продукты увеличения аэробной мощности в процессе формирования гомойотермных животных.

В отличие от собственно гомойотермии, которая не может развиваться постепенно, усиление аэробного метаболизма для активности могло развиваться постепенно, т.к. оно дает преимущество на всех этапах его увеличения.

Хотелось бы подчеркнуть, что до настоящего времени из рептилий дожили в основном затаивающиеся хищники и лишь небольшое количество растительноядных форм (в основном в мелком размерном классе), почти все они приурочены к «теплым» местообитаниям. В то же время, гомойотермные животные, расходующие на свое существование на порядок больше энергии и потребляющие соответственное количество пищи, завоевали практически всю пригодную для жизни часть биосферы, канализировали новые потоки энергии и вытеснили рептилий из магистральных ниш. Освоение умеренных и высоких широт в кайнозое осуществили птицы и млекопитающие.

Экологическая экспансия птиц и млекопитающих привела их к всесветному распространению от Антарктиды (пингвины) до Арктики (белые медведи), не говоря о водных млекопитающих.

Разнообразные адаптации млекопитающих и птиц способствовали освоению не только суши, но также пресных и морских водоемов, грунта, воздуха. Они обеспечили необычайно широкое по сравнению с другими позвоночными использование пищевых ресурсов — спектр питания млекопитающих и птиц разнообразнее состава кормов других наземных и водных позвоночных, что увеличивает значение млекопитающих в биосфере и их роль в различных биоценозах.

Источник

Терморегуляция организма

какие существуют механизмы терморегуляции у холоднокровных организмов при повышенной температуре. Смотреть фото какие существуют механизмы терморегуляции у холоднокровных организмов при повышенной температуре. Смотреть картинку какие существуют механизмы терморегуляции у холоднокровных организмов при повышенной температуре. Картинка про какие существуют механизмы терморегуляции у холоднокровных организмов при повышенной температуре. Фото какие существуют механизмы терморегуляции у холоднокровных организмов при повышенной температуре

какие существуют механизмы терморегуляции у холоднокровных организмов при повышенной температуре. Смотреть фото какие существуют механизмы терморегуляции у холоднокровных организмов при повышенной температуре. Смотреть картинку какие существуют механизмы терморегуляции у холоднокровных организмов при повышенной температуре. Картинка про какие существуют механизмы терморегуляции у холоднокровных организмов при повышенной температуре. Фото какие существуют механизмы терморегуляции у холоднокровных организмов при повышенной температуре

какие существуют механизмы терморегуляции у холоднокровных организмов при повышенной температуре. Смотреть фото какие существуют механизмы терморегуляции у холоднокровных организмов при повышенной температуре. Смотреть картинку какие существуют механизмы терморегуляции у холоднокровных организмов при повышенной температуре. Картинка про какие существуют механизмы терморегуляции у холоднокровных организмов при повышенной температуре. Фото какие существуют механизмы терморегуляции у холоднокровных организмов при повышенной температуре

Автор, редактор и медицинский эксперт – Климович Элина Валерьевна.

Терморегуляция – это сложный физиологический процесс, который обеспечивает поддержание постоянной температуры тела и внутренней среды организма на уровне, необходимом для нормальной жизнедеятельности.

Механизмы терморегуляции

В процессе терморегуляции задействованы нервные и гуморальные (происходящие в жидких средах тела – крови, лимфе и т. д.) механизмы. Колебания температуры окружающей среды распознают специальные терморецепторы. Их существует два вида: тепловые и холодовые. От терморецепторов сигнал по проводящим путям поступает в головной мозг и активирует в нем центр температурной регуляции, находящийся в области гипоталамуса. Возбуждение разных отделов этого структурного образования приводит к изменению процессов теплообмена. Центр терморегуляции в мозге можно «выключить» при помощи некоторых физических веществ. В этом случае тело человека утратит способность поддерживать постоянную температуру.

За счет каких процессов осуществляется терморегуляция

Стабильность температуры тела и внутренней среды организма обеспечивается благодаря двум взаимно противоположным по своей сути процессам.

Информация в данной статье носит справочный характер и не заменяет профессиональной консультации врача. Для постановки диагноза и назначения лечения обратитесь к квалифицированному специалисту.

Источник

Лихорадка

Каковы, основные механизмы развития лихорадки?

Лихорадка представляет собой повышение температуры тела, обусловленное нарушением и перестройкой процессов терморегуляции. Появление лихорадки связано с образованием в организме больного специфических веществ (пирогенов), изменяющих функциональную активность центров терморегуляции. Чаще всего в роли пирогенов выступают различные патогенные бактерии и вирусы, а также продукты их распада. Поэтому лихорадка является ведущим симптомом многих инфекционных заболеваний.

В каких случаях у больного может наблюдаться лихорадка?

Лихорадочные реакции могут наблюдаться и при воспалениях неинфекционной природы (асептических), которые вызываются механическими, химическими и физическими повреждениями. Лихорадкой сопровождается также и некроз тканей, развивающийся в результате нарушения кровообращения, например, при инфаркте миокарда. Лихорадочные состояния наблюдаются при злокачественных опухолях, некоторых эндокринных заболеваниях, протекающих с повышением обмена веществ (тиреотоксикоз), аллергических реакциях, нарушении функций центральной нервной системы (термоневрозах) т. д.

Во многих случаях (с учетом природы лихорадки, возраста больных, сопутствующих заболеваний) лихорадка может играть крайне неблагоприятную роль в течении заболеваний и их исходе. Поэтому терапия лихорадки в каждой конкретной ситуации требует индивидуального и дифференцированного подхода.

От каких факторов зависит выраженность лихорадочной реакции?

Выраженность лихорадочной реакции зависит не только от вызвавшего ее заболевания, но и в немалой степени от реактивности организма. Так, у пожилых людей, ослабленных больных некоторые воспалительные заболевания, например острая пневмония, могут протекать без выраженной лихорадки. Кроме того, больные субъективно по-разному переносят повышение температуры.

Что представляет собой пиротерапия?

Искусственно вызванное повышение температуры тела (пиротерапия) используется иногда в лечебных целях, в частности, при ряде вялотекущих инфекций.

Как разделяется лихорадка по степени повышения температуры?

Как разделяется лихорадка по длительности течения?

По длительности течения различают мимолетную (продолжительностью несколько часов), острую (до 15 дней), подострую (15-45 дней) и хроническую (свыше 45 дней) лихорадку.

Какие типы температурных кривых выделяют в клинической практике?

При длительном течении лихорадочного заболевания можно наблюдать различные типы лихорадки, или типы температурных кривых. Это постоянная, ремитирующая, гектическая, извращенная и неправильная лихорадка.

В зависимости от форм температурных кривых различают возвратную лихорадку с четким чередованием лихорадочных и безлихорадочных периодов и волнообразную лихорадку, которая характеризуется постепенным возрастанием, а затем таким же плавным снижением температуры тела.

По скорости снижения температуры различают критическое и литическое падение температуры.

Что представляет собой постоянная лихорадка?

Постоянная лихорадка, встречающаяся, например, при крупозной пневмонии, отличается тем, что суточные колебания температуры при ней не превышают 1 °С.

Что представляет собой ремитирующая и перемежающаяся лихорадка?

При ремитирующей, или послабляющей, лихорадке суточные колебания температуры превышают 1 °С, причем периоды нормальной температуры, например, утром, отсутствуют.

Перемежающаяся лихорадка также характеризуется суточными колебаниям температуры свыше 1 °С, однако в утренние часы отмечается ее снижение до нормального уровня.

Что характерно для гектической лихорадки?

Гектическая, или истощающая, лихорадка, наблюдающаяся, например, при сепсисе, отличается резким подъемом и быстрым спадом температуры до нормальных значений, так что суточные колебания температуры достигают 4-5 °С. У некоторых больных такие температурные скачки («свечи») возникают несколько раз на протяжении суток, значительно ухудшая состояние пациентов.

Что такое извращенная и неправильная лихорадка?

Неправильная лихорадка характеризуется отсутствием закономерностей колебаний в течение суток.

Какой уход необходим больному в период повышения температуры?

В первой стадии лихорадки, когда наблюдается увеличение температуры, у больного наблюдаются мышечная дрожь, головная боль, недомогание. В этот период больного необходимо согреть, уложить в постель и внимательно наблюдать за состоянием различных органов и систем организма.

Какой уход необходим больному в период постоянно повышенной температуры?

Каковы особенности ухода за больным в стадии снижения температуры?

Что представляет собой лизис и кризис температурящего больного?

Медленное падение температуры, которое происходит в течение нескольких дней носит название лизиса. Быстрое, часто в течение 5-8 часов, падение температуры от высоких значений (39-40 °С) до нормальных и даже субнормальных значений называется кризисом.

В чем состоит опасность кризиса для больного?

Как осуществляется уход за больным в период кризиса?

Критическое падение температуры тела требует от медицинских работников принятия соответствующих мер: введения препаратов, возбуждающих дыхательный и сосудодвигательный центр (кордиамин, кофеин, камфара), способствующих усилению сердечных сокращений и повышению артериального давления (адреналин, норадреналин, мезатон, сердечные гликозиды, кортикостероидные гормоны и др.).

Больного обкладывают грелками, согревают, дают ему крепкий горячий чай или кофе, своевременно меняют нательное к постельное белье.

Соблюдение всех требований ухода за лихорадящими больными, постоянное наблюдение за их состоянием, прежде всего за функциями органов дыхания и кровообращения, позволяют вовремя предотвратить развитие тяжелых осложнений и способствуют скорейшему выздоровлению больных.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *