какие существуют системы геолокации

Навигационные спутниковые системы мира

какие существуют системы геолокации. Смотреть фото какие существуют системы геолокации. Смотреть картинку какие существуют системы геолокации. Картинка про какие существуют системы геолокации. Фото какие существуют системы геолокации

В 2006 году Индия также приняла решение о создании собственной навигационной системы IRNSS. Бюджет программы около 15 млрд. рупий. На геосинхронные орбиты планируется вывести семь спутников. Работы по развертыванию индийской системы ведет государственная компания ISRO. Все аппаратные средства системы будут разрабатываться только индийскими компаниями.

Китай, желающий занять ведущую позицию на геополитической карте мира, разработал собственную спутниковую навигационную систему «Бэйдоу» (Beidou). В сентябре 2012 года два спутника, входящие в эту систему, были успешно запущены с космодрома Сичан. Они пополнили список 15 космических аппаратов, выведенных китайскими специалистами на околоземную орбиту в рамках создания полноценной спутниковой навигационной системы.

Реализация программы началась китайскими разработчиками еще в 2000 году с запуска двух спутников. Уже в 2011 году на орбите находилось 11 спутников, и система вошла в стадию экспериментальной эксплуатации.

Развертывание собственной навигационной спутниковой системы позволит Китаю не зависеть от крупнейших мировых систем американской (GPS) и российской (ГЛОНАСС). Это повысит эффективность китайских отраслей экономики, особенно, таких, которые связаны с телекоммуникациями.

Планируется, что к 2020 году в китайской НСС будет задействовано около 35 спутников, и тогда система «Бэйдоу» сможет контролировать весь земной шар. Китайская НСС предусматривает следующие виды услуг: определение местоположения с точностью до 10 м, скорости до 0,2 м/с и времени до 50 нс. Особенный круг пользователей будет иметь доступ к более точным параметрам измерений. Китай готов на взаимодействие с другими странами по разработке и эксплуатации спутниковой навигации. Китайская система «Бэйдоу» полностью совместима с европейской Galileo, российской ГЛОНАСС и американской GPS.

«Бэйдоу» эффективно применяется при подготовке прогнозов погоды, предупреждении стихийных бедствий, в области транспорта наземного, воздушного и морского, а также геологоразведке.

В планах Китая постоянное усовершенствование своей спутниковой навигационной системы. Увеличение количества спутников позволит расширить зону обслуживания всего азиатско-тихоокеанского региона.

Источник

Cпутниковые системы разных стран

какие существуют системы геолокации. Смотреть фото какие существуют системы геолокации. Смотреть картинку какие существуют системы геолокации. Картинка про какие существуют системы геолокации. Фото какие существуют системы геолокации

Потенциальные возможности спутниковой навигации появились с момента запуска первого ИСЗ. В настоящее время, спутниковые системы навигации широко используются для обеспечения навигации и позиционирования с высокой точностью для всех потребителей на любом месте и в любое время.

Глобальная Система Позиционирования(GPS) разработана и поддерживается на государственном уровне США. Спутниковая Система Глобальной Навигации (GLONASS) разработана в России. Обе эти навигационные системы уже функционируют.

Европейский Союз запланировал создать еще одну глобальную навигационную систему (GNSS) Galileo с бюджетом 3.8 миллиарда долларов еще в 1999.

Кроме того, другие страны: Китай, Индия и Япония также планируют строить свои собственные спутниковые системы навигации.

Основные услуги, которые предоставляют действующие навигационные системы, заключаются в позиционировании, то есть в определении местоположения объекта с в системе географических координат, измерение скорости перемещения объекта и передачи сигналов точного времени.

Использование этих услуг оказывает большое влияние на развитие новых технологий и стиль жизни людей. Спутниковая навигация стала важной инфраструктурой, так же необходимой, как дорожная сеть или сеть распределения электроэнергии. Некоторые эксперты полагают, что к 2015 году терминалы с функциями навигации будут распространены и востребованы подобно сотовым телефонам. По этим оценкам прекращение услуг навигации на 2 дня будет эквивалентно 1 миллиарду долларов убытков.

Прибыль спутниковой индустрии, которая работает на навигацию, достигает на данный момент 40 миллиардов долларов в год. Прибыль, которую принесут спутниковые системы навигации 2025 г., оценивается в размере 450 миллиардов EUR.

GPS(США)

Система GPS является единственной спутниковой системой навигации в настоящее время, которая обеспечивает предоставление услуг в глобальном масштабе.

Спутниковая группировка состоит из 24 непрерывно работающих спутников, расположенных в 6 орбитальных плоскостях, с наклонением 64.5о к плоскости Геостационарной орбиты(ГСО). Имеются и резервные спутники. Каждый спутник излучает так называемый Р код, обработка которого в GPS приемнике обеспечивает точность выше 10 м, и С/А код, обеспечивающий точность около 20 м.

Первый спутник GPS-III будет запущен в 2012/2013, а новая спутниковая группировка заработает в новом составе к 2017/2018. Согласно текущему прогрессу, первый запуск спутника GPS-III вероятно будет отложен на 2015.

По сравнению с существующей системой GPS-III будет иметь следующие особенности.

— запуск двух спутников будет организован одной ракетой;

— способность борьбы с возможными помехами будет существенно усилена и интенсивность сигнал возрастет на 20 дБ;

— точность местоопределения составит 1 м без организации дополнительных мер, а такой недостаток GPS системы, как уязвимость от внешнего воздействия будет устранен.

Будут добавлены дополнительные услуги связи, приема и передачи сигналов бедствия и поиска объектов.

Российская ГЛОНАСС

ГЛОНАСС – Глобальная Навигационная Спутниковая Система была разработана в 1978 г. Орбитальная группировка в полном составе из 24 спутников в 3-х орбитальных плоскостях с наклонением орбиты 64.5о была введена в действие в 1995 г.

В 2005 правительство РФ одобрило Федеральную Программу Космических исследований на 2006-2015 г. с бюджетом 23.6 миллиард рублей. Россия собиралась иметь 18 действующих спутников к концу 2007 и 24 действующих спутника к концу 2010. В то же самое время Россия и Индия договорились далее разрабатывать систему GLONASS вместе.

Первый модифицированный спутник GLONASS-M был запущен 26 Декабря 2004. Тестирование спутника было успешно завершено и спутник введен в эксплуатацию. Спутник GLONASS-M передает два сигнала для гражданских потребителей и имеет ожидаемый срок эксплуатации 7 лет. Точность местоопределения и точность сигналов времени возросли в два раза благодаря точной температурной стабилизации часов Cs. Надежность и целостность системы GLONASS также улучшены. Девять новых спутников GLONASS-M разрабатываются в НПО ПМ

Новое поколение спутников GLONASS-K также разрабатывается в НПО ПМ. Масса спутника GLONASS-K в 2 раза меньше, чем спутника GLONASS-M, а срок активного существования составит 10 лет.

Спутники GLONASS-К будут передавать 3 сигнала в интересах гражданских потребителей и объединенный информационный пакет, который предоставить возможность оказания дополнительных услуг по спасению, поиску и связи в чрезвычайных ситуациях. Всего планируется заказать 27 спутников GLONASS-K.

Европейская Система Galileo

Программа GALILEO создается по инициативе Европейской Комиссии и (EC) и Европейского Космического Агентства (ESA) с целью обеспечения Европы собственной независимой глобальной навигационной системой и создания конкуренции, в первую очередь с GPS.

Совет Европейского Союза решил создать гражданскую систему навигации в Феврале 1999. Новая программа вскоре была названа Galileo, с бюджетом 80 миллионов Евро. Общие же затраты на систему GALILEO (30 спутников и земной сегмент) оцениваются в 3800 млн EUR. Создание системы разбито на 3 фазы.

В фазу разработки система GALILEO с бюджетом 1.1 миллиард Евро вошла в марте 2002. Четыре спутника будут запущены для тестирования и проверки принципиальных решений.

Следующая фаза развертывания системы GALILEO будет финансироваться на 1/3 из бюджетных источников и на 2/3 частными компаниями.

Последняя фаза штатного функционирования предусматривает самоокупаемость системы GALILEO.

Изначально у истоков GALILEO стояли 28 государств, входящих в ESA. При этом к GALILEO присоединились Китай, Израиль, Украина, Индия, Саудовская Аравия, Марокко и Корея. Так участие Китая предусматривало Договором от 2003 г финансирование в размере 200 млн EUR, из которых 70 млн – на первой фазе. В 2005 г. этот Договор был пересмотрен. Договора с другими выше перечисленными странами так же предусматривают их участие в GALILEO на определенных условиях.

Ведутся переговоры с Россией по взаимодействию между ГЛОНАСС и GALILEO. Такие государства, как Австралия, Аргентина, Бразилия, Япония, Малайзия, Мексика и Норвегия так же заинтересованы в участии в GALILEO.

Полная орбитальная группировка будет насчитывать 30 спутников в трех орбитальных плоскостях и круговых орбитах высотой 23616 км от Земли и наклонением орбиты 56о. В каждой из плоскостей будут находиться 9 рабочих и 1 резервный спутник. Каждый спутник будет иметь вес 700 кг, мощность 1600 Вт, размеры 2.7х1.1х1.2 м и ширину при развернутых солнечных батареях 13 м.

GALILEO будет передавать 10 сигналов различного назначения, что позволит обеспечить следующие виды услуг:

— доступные всем услуги по определению местоположения с точностью лучше, чем 9 м для массового потребителя;

— коммерческие услуги по определению местоположения с точностью выше, чем 1 м;

— услуги для служб спасения для всех видов транспорта;

— услуги для государственных служб, таких как полиция, пожарные, скорая помощь, для военных целей и для других служб жизнеобеспечения;

— услуги по поиску и спасению в дополнении к спутниковой системе COSPAS-SARSAT.

28 декабря 2005 г. первый спутник в системе GALILEO – GIOVE-A был запущен с космодрома Байконур ракетой Союз-Фрегат. К 2006 испытания были полностью завершены.

Выполнение программы GALILEO позволит создать 140 тысяч новых рабочих мест только в Европе, а после ее ввода в эксплуатацию годовой эффект будет достигать 10 млрд EUR.

Существуют проблемы с присоединением к GALILEO стран – не членов EU. Доступ к услугам с высокой точностью измерений будет для этих стран запрещен, что не устраивает, например Китай.

Индийская Спутниковая Региональная Система Навигации IRNSS

Правительство Индии одобрило 9 Мая 2006, проект развертывания Индийской Спутниковая Региональная Система Навигации (IRNSS) с бюджетом 14.2 миллиарда Рупий в течение следующих 6-7 лет. Спутниковая группировка IRNSS будет состоять из семи спутников на геосинхронных орбитах. Причем четыре спутника из семи в IRNSS будут размещены на орбите с наклонением в 29о по отношению к экваториальной плоскости. Все семь спутников будет иметь непрерывную радио видимость с Индийскими управляющими станциями.

Спутники IRNSS будут использовать платформу, подобную той, которая используется на русском метеорологическом спутнике Kalpana-1 с массой 1330 кг и мощностью солнечных батарей 1400 Вт. Полезная нагрузка будет включать два 40 Вт твердотельных усилителя.

Земной сегмент IRNSS будет иметь станцию мониторинга, станцию, резервирования, станцию контроля и управления бортовыми системами. Государственная компания ISRO является ответственной за развертывание IRNSS, которая будет находиться целиком под контролем Индийского правительства. Навигационные приемники, которые будут принимать сигналы IRNSS, так же будут разрабатываться и выпускаться индийскими компаниями.

Китайская Навигационная Спутниковая Система Compass

Китай, являющийся наиболее быстро развивающейся страной в мире, также начал строительство своей собственной спутниковой системы навигации Compass.

Космический сегмент спутниковой системы навигации Compass будет сформирован из 5 спутников на Геостационарной орбите (ГСО) и 30 спутников на средней земной орбите.

Два типа услуг будут предусмотрены. Для общего пользования будет передаваться сигнал, обработка которого позволит добиться точности местоопределения в 10 м, скорости в 0.2 м/с и определения текущего времени с точностью 50 нс.

Ограниченный круг пользователей получит возможность измерений с большей точностью.

Три спутника на ГСО были выведены в 2000 г. Такая система их трех спутников в настоящее время предоставляет услуги местоопределения, точного времени и связи и успешно дополняет GPS.

Китай желает сотрудничать с другими странами в разработке спутниковой навигации, чтобы обеспечить взаимодействие Compass с другими глобальными навигационными системами.

Японская Quasi-Zenith навигационная система QZSS

Первоначально Японская QZSS была задумана в 2002 г. как коммерческая система с набором услуг для подвижной связи, вещания и широкого использования для навигации в Японии и соседних районах Юго-Восточной Азии. В марте 2006 Японское правительство объявило, что первый спутник не будет предназначен для коммерческого использования и будет запущен целиком на бюджетные средства для отработки принятых решений в интересах обеспечения решения навигационных задач. Только после удачного завершения испытаний первого спутника начнется второй этап и следующие спутники будут в полной мере обеспечивать запланированный ранее объем услуг. Новая дата для запуска первого спутника была перенесена на 2010 г.

Всего в спутниковый сегмент войдут 3 спутника, орбиты которых будут выбраны таким образом, чтобы их подспутниковые точки описывали на земной поверхности одну и ту же траекторию с одинаковыми временными интервалами. При этом, по крайней мере один спутник будет виден под углом места более 70 градусов в любое время на территории Японии и Кореи. Эта особенность и определила название навигационной системы Quasi-Zenith. Антенны спутников будут передавать сигналы практически во всей зоне видимости спутников, обеспечивая навигацию и передачу сигналов точного времени. Однако сигналы L1-SAIF, которые включают в себя различные поправки, позволяющие повысить точность измерений с помощью сигналов GPS и, возможно, GALILEO, будут передаваться с помощью параболической антенны только на Японию.

Сигналы, которые будут излучать спутники QZSS, полностью совместимы с сигналами будущей GPS. Японская QZSS в основном предназначена для улучшения характеристик GPS на национальной и некоторых соседних территориях. Ожидается, что внедрение QZSS позволит существенно повысить эффективность решения навигационных и других задач и придаст ускорение внедрению новых применений для навигации, которые требуют большей точности и надежности.

Почему нужно участвовать в развитии навигационных систем

В ближайшей перспективе будут одновременно работать три глобальных навигационных спутниковых системы GPS, GLONASS и GALILEO. Практически во всех странах в настоящее время широко используется только GPS, нормальное функционирование которой целиком зависит от правительства США. В некоторых областях, как например диспетчеризация полетов самолетов, использование GPS является неотъемлемой важнейшей составной частью инфраструктуры.

В то же время навигационные системы в ближайшем будущем составят неотъемлемую часть инфраструктуры государства, и напрямую будут влиять не только на безопасность, но и на развитие промышленного производства в целом.

Ни одно государство не может и не хочет, в своем развитии, зависеть в какой-либо области от другого, хотя и дружественного в данный момент, государства. Поэтому поиск альтернативы GPS и привел к созданию GALILEO и присоединению к ней многих развитых государств. Преимущества, которые появляются от присоединения к альтернативной навигационной системе на этапе ее развития следующие:

— диверсификация рисков, связанных с работой GNSS, посредством диверсификации инфраструктуры земного сегмента и используемого оборудования;

— создание новых рабочих мест при условии разработки и экспорта нового оборудования для GNSS;

— возможность заблаговременного внедрения технологических преимуществ использования GNSS в системы связи, транспорта и развитие новых технологий.

Источник

Системы определения местоположения в реальном времени (RTLS)

какие существуют системы геолокации. Смотреть фото какие существуют системы геолокации. Смотреть картинку какие существуют системы геолокации. Картинка про какие существуют системы геолокации. Фото какие существуют системы геолокации

Современная система позиционирования в реальном времени является основой для создания приложений, которые повышают эффективность, производительность и безопасность во всех отраслях. С ее помощью можно точно определять местонахождение людей и отслеживать перемещение активов или объектов, что позволяет оптимизировать бизнес-процессы и помогает сотрудникам предприятия сосредоточиться на деятельности, приносящей наибольшую пользу компании.

Типы систем RTLS

Существует множество вариантов реализации RTLS. Выбор технологии определяется условиями эксплуатации и требованиями, которые предъявляются к точности позиционирования.

Радиочастотные технологии

Все радиочастотные технологии делятся на две категории:

Оборудование, работающее с применением радиочастотных технологий, определяет расположение за счет радиосигналов. Его использование возможно на базе уже существующей инфраструктуры, что значительно снижает расходы на организацию системы.

Технология Ultra Wide Band является оптимальной для позиционирования и оценки расстояния до объектов. Оборудование применяет короткие импульсы, которые при низкой центральной частоте имеют высокую полосу пропускания. Инфраструктура базируется на проводной технологии и гарантирует высокую точность локализации. Однако при ее применении существуют определенные сложности с созданием передатчика высокой мощности.

Главное предназначение RFID технологии – идентификация объектов. Их используют для магнитных карт, распознавания штрих-кодов на продукции, опознания людей на предприятиях с установленными СКУД. Технология предусматривает использование считывателей, которые постоянно воспроизводят радиоизлучение определенной частоты в радиусе до 100 метров. При попадании в зону действия считывателей RFID метки используют эти лучи как источник питания и начинают передавать идентификационные коды.

WLAN, Wi-FI

WLAN – это локальная сеть, которая строится на базе беспроводных технологий. Наиболее востребованным способом ее построения является Wi-Fi. Схема сети содержит не меньше одной точки доступа, которая передает собственный идентификатор (SSID) посредством специальных сигнальных пакетов. Радиус действия точек доступа составляет в среднем от 30 до 200 метров, что обеспечивает точное позиционирование до 5–10 метров.

Bluetooth Low Energy

Оптимальным решением при использовании системы является стандарт Bluetooth Low Energy, который позволяет разработчикам создавать конкурентоспособные приложения с легкодоступными инструментами и компонентами. Радиус его действия превышает 100 метров. Одним из главных преимуществ BLE является сверхмалое пиковое потребление электроэнергии. Благодаря этому при организации системы позиционирования можно использовать миниатюрные датчики с непрерывной работой.

На сегодня нет универсальной RTLS системы, которая могла бы обеспечить нужную точность позиционирования в разных условиях, в закрытых помещениях или на открытой местности. Однако к числу наиболее распространенных относится технология Bluetooth, которая широко применяется для решения задач в области геолокации.

какие существуют системы геолокации. Смотреть фото какие существуют системы геолокации. Смотреть картинку какие существуют системы геолокации. Картинка про какие существуют системы геолокации. Фото какие существуют системы геолокации

Navigine SDK

Профессиональные решения для внутреннего позиционирования в реальном времени для мобильных приложений.

Компоненты и принципы работы RTLS Bluetooth

Стандартная система позиционирования на базе Bluetooth состоит из следующих компонентов:

Принцип работы системы достаточно прост. Как только пользователь попадает в радиус действия маячков, в его телефоне запускается предустановленное мобильное приложение, которое активирует отправку уведомлений. На смартфон могут передаваться любые данные – информация о товарах, акциях, скидках и др. Система позволяет выстраивать маршруты перемещения по территории, буквально доводит пользователя до интересующего объекта, помогает выполнять аналитику перемещений. Условиями для реализации технологии являются достаточный уровень мощности радиосигналов от маяков и хорошая плотность покрытия биконами.

Сферы применения систем RTLS

RTLS могут применяться в различных областях. Наиболее широкое распространение они находят в следующих сферах:

Таким образом, RTLS – это перспективная технология, которая органично интегрируется в концепцию интернета вещей. Она позволяет быстро идентифицировать интересующие объекты и контролировать их местонахождение.

Источник

Локаторы и метки. Как работают системы позиционирования в режиме реального времени

Real-time locating system (RTLS) или системы позиционирования объектов в реальном времени активно применяются в самых разных сферах. Это давно уже не только просто точка на карте — хотя, и это тоже. Я представляю ведущего мирового производителя RTLS-систем и расскажу об их огромных возможностях делать жизнь и работу лучше.

Система позиционирования в реальном времени — это не только определение местоположения объекта

Современные системы позиционирования собирают данные состояния окружающей среды и позволяют мгновенно получать информацию об уровне освещения, температуры, давления, влажности, радиации и концентрации разных веществ в воздухе.

Можно использовать оборудование для мониторинга жизненно важных индивидуальных показателей: давление, частота сердечных сокращений, температуры тела.

К устройствам системы позиционирования можно добавлять множество атрибутов, организовывать устройства в группы и определять роли зон, отправлять push-уведомления выбранным пользователям и организовывать локальные системы голосовой связи. Эффективно сочетание системы позиционирования в режиме реального времени с видеонаблюдением и радиосвязью. Например, можно связаться с рабочим, метка которого подала на пульт сигнал тревоги при входе в зону с повышенным риском.

Применение систем позиционирования, как первый шаг на пути к цифровому двойнику предприятия и промышленности 4.0

Умные фабрики создаются с помощью цифровых технологий. Рост эффективности предприятия основан на правильных решениях принятых своевременно. Качество решения определяется глубиной анализа. Своевременность определяется скоростью данных, которые вы получаете для анализа ситуации. Данные об объемах запасов деталей для производства, контейнерах, поддонах, погрузчиках, состоянии инструментов на конвейере, сотрудниках и многом другом в комплексе позволяют увеличить эффективность производственных процессов, сократить количество ошибок и время на их устранение.

Аналитика о времени сотрудника на складе, за станком, в столовой не только улучшает контроль за работой, но и позволяет видеть слабые места в практической организации труда.

Отслеживание активов на производстве в Dyer Engineering

Завод по производству металлических конструкций в Стенли (Великобритания) занимает 10 зданий на двух площадках общей площадью 9 200 кв. м. У компании одномоментно выполняется примерно 1 000 заказов на выполнение работ с большим количеством монтажа — около 10 000 операций на всех площадках.

Для повышения эффективности процессов на производстве было установлено 60 локаторов, каждый из которых покрывает зону около 100 кв. м. К оборудованию и продукции прикрепили 1 000 меток. Экономия от уменьшения времени поиска инвентаря и инструментов в денежном эквиваленте составила более 10 000 фунтов в месяц.

Оптимизация внутренней логистики и работы склада в NGK Ceramics

Позиционирование в реальном времени помогает организовывать систему внутренней логистики. Один из свежих примеров — NKG Ceramics, лидер по выпуску керамических катализаторов и фильтров для автомобилей. Компания стремилась увеличить мощность завода в Северной Каролине, где в пиковые часы поддоны с продукцией складывались по всему цеху и по меньшей мере двое сотрудников занимались их поиском и возвращением на места.

При помощи системы позиционирования был создан цифровой двойник предприятия с активным мониторингом инфраструктуры, запасов и логистических механизмов. Умный цех позволил уже в первые полгода втрое сократить время простоя производства.

Мониторинг и протоколирование процессов сборки в Atla

ATLA (Турин, Италия) занимается ремонтом высокотехнологичных компонентов для газовых турбин. Производственный процесс компании требует постоянного перемещения деталей между рабочими станциями.

Позиционирование здесь интегрировано в ERP-систему производства, при помощи отдельно разработанного приложения. Благодаря новой системе ALTA полностью автоматизировала и оцифровала цикл обработки заказов: приём, отгрузка, формирование партий. Местоположение, статус работы и потенциальные задержки отображаются мгновенно.

Усиление безопасности сотрудников на производстве в Empower Oyj

На складе или в цехе не всегда можно расслышать приближение автопогрузчика, но столкновение с ним человека может привести к серьезным последствиям. Снабдив метками погрузчики и рабочих, процент столкновений можно свести к минимуму.

Позиционирование в реальном времени позволило компании прогнозировать движение людей и механизмов, предупреждать работников, а при необходимости — останавливать движение машины.

Позиционирование шахтёров в Dedeman Mining

В 2014 году катастрофа на турецкой шахте Soma Mining унесла жизни 301 человека. Правительство обязало предприятия отрасли оснастить все предприятия отрасли эффективными системами позиционирования в реальном времени.

Шахты Dedeman Mining оборудованы локаторами для определения местоположения в реальном времени, каждый из которых подключен к управляющему компьютеру в защищенном шкафу с помощью бронированных волоконных кабелей. 500 небольших Bluetouth-меток вмонтированы прямо в фонари на касках шахтёров. Потенциально, метки могут также собирать и передавать самые разные данные о состоянии окружающей среды и человека.

Умный склад и позиционирование персонала в Fujitsu

7 000 кв. м, примерно 15 000 заказов на отгрузку ежедневно, 12 000 видов запчастей. Для оптимизации склада мировому производителю микроэлектроники требовалось более эффективное управление потоками сотрудников.

Система позиционирования сотрудников Fujitsu анализирует неэффективные рабочие процессы. Данные о перемещении людей собираются автоматически в реальном времени. Компания сократила сроки и повысила качество производства с помощью аналитики, полученной в результате применения системы позиционирования.

Позиционирование в медицине

Применение систем определения местоположения в сфере здравоохранения обеспечивают массу возможностей — от улучшения качества ухода за пациентами до оптимизации процедур неотложной помощи и спасения жизни.

Например, встроенная в браслет метка сразу автоматически оповещает о падении пациента на пол в палате или в коридоре.

Клиническая больница университета Фукуи (Япония)

Прикосновение — один из главных путей заразиться. Системы позиционирования эффективно повышают безопасность пациентов и персонала больниц. В одном из ведущих медучреждений Японии такая система отслеживает применение медперсоналом стандартных антисептических средств.

Койки пациентов позиционируются при помощи Bluetouth-меток. При помощи таких же меток на форме персонала система ненавязчиво предупреждает сотрудников, когда они переходят от одного пациента к другому, не обработав руки антисептиком.

Системы высокоточного определения местоположения в реальном времени в спорте

Командный спорт — лучший пример пользы применения системы позиционирования за счет новых данных. Например, в футболе метки диаметром 2 см можно крепить на форму игроков и получать информацию о скорости, дистанции, ускорении, пересечении линии и т.д.

Ещё больше данных получают при установке метки в мяч, так как становится возможным отследить его скорость, количество точных передач, время владения и много другое.

Системы позиционирования помогают обеспечивать безопасность, корректировать тренировки, прокачивать отдельные навыки и производить недоступную ранее мгновенную аналитику и данные для медиа, беттинга, цифровых игровых сервисов, скаутинга. Системы позиционирования уже вовсю применяется даже в таком высокоскоростном спорте, как хоккей.

Bluetouth-трекинг хоккеистов и шайб — революционная система позиционирования объектов, в создании которой мы принимали участие в рамках работы над проектом Континентальной хоккейной лигой. Тренерам больше не нужно перематывать моменты видео во время перерывов: данные о действиях команд и отдельных игроков поступают мгновенно, записываются и кластеризуются по ключевым моментам автоматически.

Настоящим прорывом стало размещение меток непосредственно внутри шайб, что даёт возможность предсказания траектории полёта шайбы и исхода матча.

Медиа и букмекерские компании получили возможность создавать новые продукты для фанатов. Возможно, скоро можно будет делать ставки даже на пульс хоккеистов при вбрасывании.

Безопасность и рост результатов пловцов в умном бассейне Nagi

Безопасность в воде всегда вызывает беспокойство — особенно, когда это касается детей. Bluetouth-метка на браслете пловца настраивается на его уровень умений и предупредит, если он пробыл под водой слишком долго.

Метки также позволяют тренерам видеть динамику и отдельные показатели эффективности пловцов в реальном времени, помогая добиваться лучших результатов.

Системы позиционирования для усиления безопасности

Защита здоровья и безопасность — ключевые факторы продуктивной работы на любом крупном предприятии. Системы позиционирования позволяют создавать новые способы обеспечения безопасности в штатных и чрезвычайных условиях, организовывать интеллектуальный контроль доступа, вовремя и эффективно эвакуировать людей.

Социальная дистанция в ILR Industries

Как и многие другие компании, крупное инновационное производство в Онтарио стремится обеспечить безопасность персонала и поддержать показатели бизнеса во время пандемии. Сотрудники боялись заболеть на работе и руководству требовалось эффективное решение предотвращения заражений.

Реализованная на предприятии система позиционирования предупреждает работников, если они не соблюдают социальную дистанцию и позволяет повышать эффективность рабочих процессов, пересмотренных после внедрения системы позиционирования.

Инфраструктура систем позиционирования объектов

Получает, обрабатывает и хранит информацию от локаторов и персональных меток. Также, часто доступ к базе данных о позиционировании предоставляется для сторонних сервисов, таких как внутренние ERP, MES или WMS системы.

Принимает или передает сигнал метки в зависимости от принципа работы системы для определения её местоположения в пространстве.

Носимое устройство с помощью которого система определяет местоположение объекта под наблюдением. Фиксируется на одежде, может быть встроена в оборудование. В ряде случаев есть возможность использование смартфона в качестве метки, при этом в целевом мобильном приложении необходимо использовать специальный программный код.

Аналитическое ПО для обработки, хранения и визуализации статистических данных.

Какие технологии используют в системах позиционирования

Внутренняя навигация с использованием Wi-Fi достигает точности 5-15 метров. Можно определять положение устройств с активированным Wi-Fi — смартфонов, планшетов и меток.

UWB — Ultra-wide band

Технология позиционирования ближнего действия. Точность может быть сантиметровой, что значительно выше Wi-Fi. Малое время задержки помогает мониторить достаточно быстро движущиеся объекты.

RFID — Radio Frequency IDentification

Положение отслеживаемых меток определяется только зонально. Можно видеть посещение объектом определенных зон.

Отличительной особенностью таких систем – легкая масштабируемость благодаря тому, что этот стандарт используется большинством мобильных и стационарных устройств по умолчанию.

Решения, работающие на принципе измерения угла прихода Bluetouth сигнала для определения местоположения позволяют добиться точности UWB при значительно большей зоне покрытия одного локатора.

Батарейка метки на основе Bluetouth Low Energy работает до двух лет, что существенно сокращает расходы на поддержание работоспособности системы.

Развитие систем позиционирования

Определение местоположения предметов и людей в реальном времени — актуальный запрос самого времени. Применение систем мгновенного позиционирования будет расти лавинообразно.

В следующей статье расскажем о реализованных нами решениях на технологии Bluetouth. С удовольствием отвечу на ваши вопросы в комментариях.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *