какие существуют виды коррозии

Виды коррозии и их характеристики

какие существуют виды коррозии. Смотреть фото какие существуют виды коррозии. Смотреть картинку какие существуют виды коррозии. Картинка про какие существуют виды коррозии. Фото какие существуют виды коррозииКоррозия представляет собой процесс разрушительного характера, возникающий на различных поверхностях начиная от керамики и заканчивая металлом. Возникает она в результате воздействия химического либо химико-физического типа. Причинами возникновения этого процесса может выступать несколько факторов. Основными специалисты называют именно неустойчивость материала к воздействию термодинамического характера, которое возникает в окружающей среды.

Виды коррозии металлов

На сегодняшний день разновидностей коррозии металлов достаточно много, так как источниками её возникновения может выступать довольно большое количество разнообразных факторов. В целом коррозийные процессы классифицируют по нескольких параметров, а определённые типы коррозии различают между собой по схожести признаков проявления.

В зависимости от общего характера протекания коррозия может проявляться в двух основных формах, которые можно встретить и в повседневной жизни.

Механизм возникновения

Коррозийные процессы разделяют на различные разновидности в зависимости от механизмов протекания. Этот факт необходимо учитывать при эксплуатации изделий из металла. Выделяют два основных механизма:

Влияние окружающей среды на металл

Ни для кого не станет секретом тот факт, что это процесс развивается в основном на поверхности металла, однако, существуют и исключения, при которых происходит проникновения очагов поражения далеко внутрь. Кроме этого, коррозийный процесс может развиваться практически во всех существующих средах.

Источник

Коррозия

Из Википедии — свободной энциклопедии

какие существуют виды коррозии. Смотреть фото какие существуют виды коррозии. Смотреть картинку какие существуют виды коррозии. Картинка про какие существуют виды коррозии. Фото какие существуют виды коррозии

Корро́зия (от лат. corrosio — разъедание) [1] — самопроизвольное разрушение металлов и сплавов в результате химического, электрохимического или физико-химического взаимодействия с окружающей средой. Разрушение по физическим причинам не является коррозией, а характеризуется понятиями «эрозия», «истирание», «износ». Причиной коррозии служит термодинамическая неустойчивость конструкционных материалов к воздействию веществ, находящихся в контактирующей с ними среде.

Пример — кислородная коррозия железа в воде:

4 F e + 6 H 2 O + 3 O 2 → 4 F e ( O H ) 3 <\displaystyle <\rm <4Fe+6H_<2>O+3O_<2>\rightarrow 4Fe(OH)_<3>>>> какие существуют виды коррозии. Смотреть фото какие существуют виды коррозии. Смотреть картинку какие существуют виды коррозии. Картинка про какие существуют виды коррозии. Фото какие существуют виды коррозии

Гидроксид железа Fe(OH)3 и является тем, что называют ржавчиной.

В повседневной жизни для сплавов железа (сталей) чаще используют термин «ржавление» — коррозия железа и его сплавов с образованием продуктов коррозии, состоящих из гидратированных остатков железа.

На неметаллические материалы определение коррозии не распространяется. Применительно к полимерам существует понятие «старение», аналогичное термину «коррозия» для металлов. Например, старение резины из-за взаимодействия с кислородом воздуха или разрушение некоторых пластиков под воздействием атмосферных осадков, а также биологическая коррозия.

Скорость коррозии, как и всякой химической реакции, очень сильно зависит от температуры. Повышение температуры на 100 градусов может увеличить скорость коррозии на несколько порядков.

Источник

Виды и способы удаления коррозии металла

Металл может разрушиться под воздействием многих факторов — высокой влажности, температуры, тока, различных химических веществ. Коррозия металлов бывает разных видов. Без должной защиты она может полностью разрушить металлоконструкцию. Важно изучить виды коррозионных процессов, способы защиты металла и методы удаления ржавчины.

какие существуют виды коррозии. Смотреть фото какие существуют виды коррозии. Смотреть картинку какие существуют виды коррозии. Картинка про какие существуют виды коррозии. Фото какие существуют виды коррозииРжавая труба

Что такое коррозия?

Коррозия — процесс разрушения металлов, сплавов, который развивает под воздействием разных факторов окружающей среды. При протекании данного процесса материал может быть разрушен частично или полностью. Следы коррозионного эффекта — пятна ржавчины разных цветов. Постепенно коррозия проникает вглубь материала, провоцируя появление сквозных отверстий с разрушенными краями.

Причины возникновения

Причины коррозионных процессов:

Ржавчина может образовываться при периодическом воздействии статического или постоянного тока.

Коррозионные процессы классифицируются зависимо от разных критериев. Основные из них — цвет, механизм образования ржавчины, тип агрессивной среды, характер разрушения.

По цвету

Зависимо от цвета бывают разные виды ржавчины. Она может быть черной, желтой, коричневой, красной. Оттенок зависит от химической формулы образовавшегося вещества.

какие существуют виды коррозии. Смотреть фото какие существуют виды коррозии. Смотреть картинку какие существуют виды коррозии. Картинка про какие существуют виды коррозии. Фото какие существуют виды коррозииРжавый металл

Желтая

Химическая формула желтой ржавчины — FeO(OH)H2O. Она появляется под воздействием высокой влажности, в среде с малым количеством кислорода. Подобный вид ржавчины можно увидеть под водой.

Коричневая

Химическая формула коричневой ржавчины — Fe2O3. Встречается крайне редко, появляется без воздействия влаги.

Красная

Химическая формула красной ржавчины — Fe2O3•H2O. Образуется при одновременном воздействием воды и кислорода. Встречается чаще других видов. Разрушительный процесс протекает равномерно, постепенно распространяется на всю поверхность.

Черная

Химическая формула — Fe3O4. Появляется без воздействия влаги, в среде с малым количеством кислорода. Часто используется для создания сверхпроводников, поскольку является ферромагнетиком.

По механизму протекания

Процессы отличаются по механизму разрушения материала.

Химическая

Процесс разрушения металла, провоцирующий распад металлических связей, развитие химических реакций между атомами материала. Элементы, которые взаимодействуют между собой, пространственно не разделяются. Скорость разрушения детали зависит от скорости протекания химической реакции.

Электрохимическая

Данный процесс разрушения металлических деталей протекает в среде электролитов и сочетается с возникновением тока.

какие существуют виды коррозии. Смотреть фото какие существуют виды коррозии. Смотреть картинку какие существуют виды коррозии. Картинка про какие существуют виды коррозии. Фото какие существуют виды коррозииРжавый корабль

По типу агрессивной среды

Атмосферная

Естественный процесс разрушения. Может протекать в воздушной или газовой атмосфере. Важное условие — повышенный уровень влажности. Чем он выше, тем быстрее разрушится материал.

Газовая

Процесс разрушения металлических деталей, который протекает в условиях газовой среды. Отличается низким уровнем влажности. Процесс образования ржавчины ускоряется при повышении температуры.

Радиационная

Возникает при интенсивном воздействии радиационного излучения. У сплавов высокой плотности протекает медленно.

Подземная

Если металлическая деталь какое-то время полежит под землей, можно заметить на ее поверхностях зеленый налет или другие цветовые искажения. Это следствие окислительный процессов, которые протекают в разных видах грунта.

Контактная

Быстро появляется в местах, где два разных металла соприкасаются друг с другом. Это обуславливается разницей стационарного потенциала в электролите.

Биокоррозия

Процесс разрушения металлических деталей, который обуславливается воздействием разных микроорганизмов, продуктов их жизнедеятельности.

какие существуют виды коррозии. Смотреть фото какие существуют виды коррозии. Смотреть картинку какие существуют виды коррозии. Картинка про какие существуют виды коррозии. Фото какие существуют виды коррозииРжавые обломки судов

Коррозия током

Может происходить при воздействии блуждающего или внешнего тока. Скорость распространения ржавчины зависит от силы тока, длительности, периодичности его воздействия на металлические детали.

Коррозийная кавитация

Один из многочисленных процессов саморазрушения разных видов металлов. Он запускается при воздействии внешней среды, механического повреждении.

Коррозия под напряжением

Процесс разрушения сплавов, который происходит при взаимодействии механического напряжения с коррозийно-активной средой. Этот вид коррозии опасен для металлоконструкций, которые подвержены большим нагрузкам.

Фреттинг-коррозия

Сложный коррозионный процесс, который протекает под воздействием коррозийной среды с различными вибрациями. Чтобы не допустить образования ржавчины, важно снизить коэффициент трения металлических деталей.

По характеру разрушения

Они отличаются локализацией, степенью углубления в материал, тяжестью разрушения.

Сплошная

При таком коррозионном процессе ржавчиной покрываются все металлические поверхности. Она может быть равномерной или неравномерной, зависимо от скорости разрушения материала в разных местах детали.

Избирательная

Подобный процесс затрагивает один из элементов металлоконструкции, который не имеет антикоррозийного покрытия, затормаживающего процесс разрушения.

какие существуют виды коррозии. Смотреть фото какие существуют виды коррозии. Смотреть картинку какие существуют виды коррозии. Картинка про какие существуют виды коррозии. Фото какие существуют виды коррозииРжавый автомобиль (Фото: pixabay.com)

Местная

Пятна ржавчины разбросаны по металлической поверхности. Они представляют собой углубления разного размера, одна часть которых могут быть поверхностными, другие сквозными.

Подповерхностная

Появляется под металлическими поверхностями. Она быстро проникает вглубь материала. Данный вид коррозионных процессов характеризуется расслоением металла.

Межкристаллическая

Начинает появляться по границам отдельных зерен материала. Ее крайне сложно выявить по внешнему виду. Быстро ухудшаются показатели плотности, прочности, пластичности. Детали становятся хрупкими.

Щелевая

Образуется на местах соединения двух металлических деталей. Может появляться в технологических зазорах, под техническими прокладками.

Возможные последствия

Распространенные последствия коррозионных процессов:

Появление ржавчины может привести к полному разрушению материала.

Методы защиты

Чтобы защитить металлические поверхности от образования коррозии, применяются разные методики. Каждая из них уникальна, имеет определенные особенности.

Нанесение защитного покрытия

Защитные покрытия могут быть двух видов — металлические, неметаллические. Виды неметаллических покрытий:

Полимерные покрытия — лучший вариант из всех предложенных. После нанесения жидкого полимера образуется прочная пленка, устойчивая к перепадам температуры, воздействию химических элементов, повышенному уровню влажности.

Легирование

К составу сплава добавляются разные легирующие добавки, которые изменяют свойства, технические характеристики материала, делают его устойчивым к разрушительному воздействию влаги.

Электрохимический метод

К металлической детали подключается источник тока. На поверхности материала образуется катодная поляризация, а ржавчина начинает разрушаться.

Покрытие металлами

Существуют разные способы покрытия металлом — термическая диффузия, металлизация, погружение в расплавленный металл, контактное осаждение.

Погружение в расплавленный металл

Специальная ванна заполняется расплавленным металлом с высокой устойчивостью к образованию коррозии. В емкость погружается деталь, которую нужно обработать.

Термическая диффузия

Термическую диффузию черных металлов чаще проводят с помощью цинка. Выполняется оно в газовой или паровой среде, при температуре до 850°C. Если обработка проходит в вакуумной среде, температура снижается до 250°C.

Металлизация

С помощью специального оборудование, которое создает мощную воздушную струю, на металлические поверхности наносится тонкий, равномерный слой расплавленного металла.

Контактное осаждение

Детали покрываются раствором солей железа или никеля. В результате обработки образуется прочная тонкая пленка. Контактное осаждение выполняется перед нанесением гальванического покрытия.

Изменение состава окружающей среды

Этот метод защиты применяется реже других. Его малая популярность связан с нестабильностью, рядом сложностей. Метод подходит только для металлоконструкций, которые находятся в закрытом помещении. Внутри можно создать подходящую атмосферу (уровень влажности, температуру), при которой развитие коррозии будет невозможно.

Способы удаления коррозии

Если ржавчина уже появилась, удалить ее можно разными способами — механическим, химическим. Также можно воспользоваться народными средствами.

какие существуют виды коррозии. Смотреть фото какие существуют виды коррозии. Смотреть картинку какие существуют виды коррозии. Картинка про какие существуют виды коррозии. Фото какие существуют виды коррозииРжавый замок (Фото: pixabay.com)

Механическая очистка

Подразумевает использование абразивных инструментов. Поврежденные части будут очищаться путем трения.

Щеткой по металлу

Представляет собой классическую ручную щетку со множеством металлических волокон, которыми происходит зачистка. Подходит для частичного удаления последствий коррозии.

Наждачной бумагой

Особенности работы с наждачной бумагой:

Чтобы придать материалу естественный металлических блеск, рекомендуется обработать его пастой ГОИ. Единственный недостаток работы с наждачкой без специальных инструментов — большие физические затраты.

Шлифовальной машинкой

Электроинструмент, на рабочей подошве которого закрепляется наждачная бумага. Упрощает чистку металлических поверхностей от разных загрязнений. Виды шлифовальных машинок:

Виброшлифовальные подходят только для финишной обработки, а ленточные для грубой, поскольку оставляют неровности.

Гриндером

Это станок для обработки разных металлических деталей. Он имеет одну или несколько абразивных полос, который работают по примеру ленточной шлифовальной машинки. Гриндеры используются для заточки инструментов, ножей, стачивания острых граней. Степень очистки зависит от фракции абразивной ленты.

Дрелью

Чтобы удалить ржавчину и загрязнения, необходимо установить специальную насадку, похожую на ручную щетку для металла.

какие существуют виды коррозии. Смотреть фото какие существуют виды коррозии. Смотреть картинку какие существуют виды коррозии. Картинка про какие существуют виды коррозии. Фото какие существуют виды коррозииДрель (Фото: pixabay.com)

Болгаркой с насадкой

Болгарка — электроинструмент, с помощью которого можно не только разрезать металлические детали, но и очищать их от коррозии, других видов загрязнений. Для этого могут использоваться два вида дисков:

Второй вид оснастки подходит для обработки разных материалов.

Пескоструйным аппаратом

Особенности работы с данным видом оборудования:

С помощью пескоструйного аппарата можно не только счищать загрязнения, но и изменять текстуру поверхности материала.

Химическая очистка

Такие способы очистки поверхностей менее популярны, поскольку химические вещества могут повредить материал.

Щавелевой кислотой

Соляной кислотой

Работать с соляной кислотой нужно очень осторожно. Купить концентрат крайне сложно. В продаже можно найти готовые очищающие средства на основе соляной кислоты, которые уже разбавлены до нужной консистенции. Инструкция по применению находится на оборотной стороне упаковки.

какие существуют виды коррозии. Смотреть фото какие существуют виды коррозии. Смотреть картинку какие существуют виды коррозии. Картинка про какие существуют виды коррозии. Фото какие существуют виды коррозииКислота (Фото: pixabay.com)

Формалином

Приготовление очищающего средства:

Молочной кислотой

Приготовление и очистка:

Народными средствами

Для удаления ржавчины можно использоваться не только химические вещества, но и народные средства. Они доступны любому человеку, но ими нельзя удалять серьезные загрязнения.

Кока-колой

Некоторые думают, что кока-колой можно очищать любые загрязнения — накипь из чайников, кастрюль, коррозию, но это мнение только наполовину правдиво. С помощью этого газированного напитка можно удалять ржавчину только на начальных этапах.

Содой

Приготовление чистящего раствора:

Также понадобится металл-донор, аккумулятор, провода.

Уксусом

Картофелем

Картофель эффективен в удалении коррозии, поскольку содержит небольшое количество щавелевой кислоты.

Лимоном или лимонной кислотой

Рекомендации

Сразу после удаления ржавчины поверхности нужно покрыть защитным составом, чтобы снизить риск повторного распространения коррозии.

Коррозионные процессы могут быстро разрушить любой материал. Порча металлоконструкций в некоторых ситуациях может иметь катастрофические последствия. Изучив способы защиты от образования коррозии, нужно применить один из наиболее подходящих.

Источник

Виды коррозии металлов. Классификация процессов. Механизмы коррозии.

Содержание:

1. Почему металл корродирует?

Почему коррозия «выгодна» для металлов? Дело в том, что большинство из них существуют в природе в химически связанном состоянии, например, в виде оксидов (корунд) или сульфидов (пирит). В чистом виде почти все металлы неустойчивы и чтобы выделить их из соединений приходится затрачивать немалую энергию. Обратный же процесс, когда металлы переходят в связанное состояние, всегда термодинамически более выгоден. Поэтому он происходит самопроизвольно, а металлы при любой возможности стремятся вступить в реакцию со своим окружением и перейти в более устойчивую форму. Иллюстрация этого представлена на рисунке 1.

Рисунок 1 – Схема восстановления металла из руд с последующей коррозией (окислением). Э – условный уровень энергии.

Коррозия приводит к огромным экономическим затратам, а её следствием становятся глобальные экологические катастрофы. Потеря металлофонда от коррозии составляет порядка 12% в год.

Помимо прямых потерь существуют и косвенные потери, вызываемые коррозией:

2. Классификация коррозионных процессов по определяющему механизму.

2.1 Химическая коррозия металлов.

Химическая коррозия – это процесс взаимодействия металла с коррозионной средой. Такая коррозия не сопровождается протеканием электрического тока и обычно идет при отсутствии влаги.

Термодинамическую устойчивость металла можно оценить по изменению свободной энергии Гиббса в коррозионной реакции. Коррозия возможна, если энергия Гиббса меньше нуля ∆G

Например, для окисления железа на воздухе по реакции:

изменение энергии Гиббса имеет вид:

∆G = υ ∆ G 0 FeO + υ ∆ G 0 Fe2O3 – υ ∆ G 0 Fe – υ ∆ G 0 O2

∆ Gх 0 – изменение энергии Гиббса отдельных компонентов, кДж/моль;
υ – стехиометрический коэффициент реакции.

Примеры изменения ∆G для некоторых других металлов представлены в таблице 1.

Таблица 1 – Изменение энергии Гиббса при ионизации металлов.

В зависимости от условий эксплуатации устойчивость металлов может существенно меняться. Для большинства из них с ростом температуры термодинамическая вероятность окисления снижается.

2.2 Электрохимическая коррозия металлов.

Электрохимическая коррозия – это процесс взаимодействия металла с коррозионной средой (электролитом), сопровождающийся окислением металла и восстановлением акцептора из коррозионной среды.

Электрохимическая коррозия подчиняется законам электрохимической кинетики. Она представляет собой переход металла из свободного состояния в связанное с потерей электронов. Скорость такой коррозии зависит от электродного потенциала самого металла.

Современная теория, объясняющая электрохимическую коррозию, была предложена советским учёным, доктором химических наук Яковом Михайловичем Колотыркиным.

В основе этой теории лежит предположение, что вся поверхность металла равнодоступна и для катодной для анодной составляющей процесса коррозии.

Электрохимическая коррозия включает в себя 4 основных стадии (рисунок 2):

Рисунок 2 – Схема работы коррозионного элемента.

Электрохимическая коррозия представляет собой совокупность двух протекающих реакций:

Термодинамическая возможность протекания электрохимической коррозии определяется равновесным потенциалом, если он больше 0, то коррозия возможна.

Из формулы можно сделать вывод, что реакция возможно тогда и только тогда, когда потенциал деполяризатора больше потенциала металла ЕD > EМе.

Деполяризаторы в водных растворах:

• в нейтральных и щелочных:

Если в качестве деполяризатора выступает гидроксил ион или вода, то принято говорить, что коррозия идёт с водородной деполяризацией, если деполяризатором выступает кислород – кислородная деполяризация. Очень часто бывают случаи смешанной деполяризации, при ней одновременно восстанавливаются и водород, и кислород.

2.3 Биологическая коррозия металлов.

Биокоррозия – это разрушение металла, вызванное непосредственно или косвенно жизнедеятельностью бактерий, плесени и грибов.

Данному типу коррозии подвержены абсолютно все материалы и изделия известные человеку. Это обусловлено образованием окислительных ферментов, вызывающих разрушение различных субстратов с образованием органических кислот. Данные кислоты также оказывают разрушающее действие на материалы.

Например, вырабатываемые грибками органические кислоты вызывают питтинговую коррозию углеродистой стали в трюмах или алюминиевых топливных баков.

2.4 Кавитационная коррозия металлов.

Кавитационная коррозия – это разрушение, возникшее вследствие удара под воздействием текучей среды (потока жидкости или газа). Проявляется при схлопывании на поверхности металла пузырьков газа, сопровождающееся гидравлическим ударом.

2.5 Эрозия.

Эрозия – износ и выбивание частиц металла с поверхности под влиянием твёрдых частиц, находящихся в потоке жидкости. Эрозия металла ускоряется коррозионным действием среды. Иными словами, потеря материала происходит не только вследствие механического действия потока, но и в результате некоторого электрохимического процесса. Иллюстрация процесса эрозии приведена на рисунке 3.

Рисунок 3 – Пример эрозионной коррозии.

3. Классификация коррозионных процессов по условиям протекания коррозии.

4. Классификация коррозионных процессов по характеру коррозионного разрушения.

4.1 Контактная коррозия.

Контактная коррозия образуется при контакте разных металлов в присутствии электролита или влажного воздуха. В образовавшейся гальванопаре, металл с более электроотрицательным потенциалом становится анодом и разрушается в первую очередь, тогда как более электроположительный металл – катодом.

Рисунок 4 – Примеры контактной коррозии на стали.

4.2 Щелевая коррозия.

Щелевая коррозия – это коррозия, возникающая в случаи, если часть металла изолирована от основного участка неметаллическим материалом (резиной, деревом, пластиком и т.д.). Пример такой коррозии можно наблюдать в трубах в месте соприкосновения с сальником (рисунок 5). Образование полости под сальником вызывает протечки в трубах. При наличии таких неровностей коррозионная жидкость застаивается в щели, где и происходит бурная коррозия металла.

Причиной щелевой коррозии является пониженная концентрация окислителей в зазорах по сравнению с объёмом раствора и замедленный отвод продуктов коррозии. В результате их накопления меняется pH раствора в щели, что так же ускоряет коррозию.

Металл в щели и металл открытой поверхности образуют макропару:

Поскольку площадь открытой поверхности гораздо больше, чем внутри щели, плотность тока коррозии внутри щели оказывается чрезвычайно высокой.

Рисунок 5 – Кислородная концентрационная ячейка под сальником.

По мере протекания коррозии внутри щели накапливается избыточный положительный заряд. Ионы ОН- устремляются в щель, чтобы нейтрализовать этот заряд. В результате, на внутренней поверхности щели осаждается гидроксид металла, что ещё больше сокращает эффективную площадь анода.

4.3 Питтинговая коррозия.

Питтингом называют глубокие поражения (точечные язвы) на поверхности металла (рисунок 6). Питтинговая коррозия, вследствие своей локализованности и малой заметности, является одним из наиболее опасных видов коррозионного разрушения. Не следует путать питтиговую коррозию с питтингом на никелевых покрытиях.

Так как пассирующий слой на поверхности металла не является гомогенной системой, то коррозия возникает из-за наличия анодных и катодных участков на поверхности. В возникшей гальванопаре анодом является питтинг, а катодом – остальная часть поверхности. На аноде происходит высвобождение электронов, которые восстанавливают кислород на катодной пассивированной части поверхности.

Рисунок 6 – Виды питтингов: а – открытый с защитным слоем на окружающей поверхности; б – закрытый, без окружающего защитного слоя; в – закрытый, с окружающим защитным слоем. 1 – металл; 2 – раствор; 3 – защитный слой; 4 – пористые продукты коррозии; 5 – крышка над питтингом; 6 – отверстия в крышке.

4.4 Межкристаллитная коррозия.

Межкристаллическая коррозия возникает из-за разницы потенциалов на границе зерна и в его матрице (рисунок 7).

На воздухе на границе зерна образуется карбидная фаза, что сдвигает потенциал в область более электроотрицательных значений. Таким образом граница зерна является анодом по отношению к их матрице.

Наиболее опасен данный тип коррозии для сплавов, так как в месте скопления более электроотрицательного металла будет образовываться анод, а основного – катод. Например, для нержавеющих сталей, содержащих хром, вблизи границ зёрен содержание хрома оказывается ниже, чем на остальной поверхности, что делает их менее пассивированными. Вследствие этого такие места становятся анодами по отношению к матрице зерна.

Рисунок 7 – Межкристаллическая коррозия нержавеющей стали: 1 – катод; 2 – анод; 3 – карбидная фаза; 4 – зона, обеднённая хромом; 5 – граница зёрен.


4.5 Фреттинг-коррозия.

Фретинг-коррозия происходит между двумя поверхностями, находящимися в непрерывном контакте друг с другом и совершающими малые колебания. Поверхности никогда не отрываются друг от друга, поэтому в точках механического контакта происходит накопление осколков продуктов коррозии.

Данная коррозия возникает при незначительных колебаниях, циклических или возвратно-поступательных движений с малыми амплитудами и скоростями.
Этой коррозии подвергаются болты, заклёпки, шарниры, муфты, клапаны, детали двигателей и пр.

4.6 Коррозионное растрескивание под напряжением.

Коррозионное растрескивание под напряжением возникает, когда металлическое изделие подвержено растяжению в коррозионной среде. Тогда даже при напряжениях ниже напряжения разрушения происходит растрескивание, в конце концов, приводящее к разрушению конструкции или изделия.

На растянутых участках металла идёт коррозия, поскольку они оказываются анодами по отношению к нерастянутой части. Это явление наблюдается на любых металлах и сплавах, а также в любых средах.

4.7 Коррозионная усталость.

Коррозионная усталость возникает вследствие одновременного воздействия агрессивной среды и механической нагрузки.

Коррозионная усталость часто бывает причиной «неожиданного» разрушения металлических деталей, так, если деталь, находящаяся в коррозионном окружении, подвержена непрерывным вибрациям, её разрушение происходит при напряжении гораздо ниже предела выносливости.

5. Коррозия отдельных металлов.

Скорости годовой коррозии некоторых металлов и сплавов в различных средах приведены в таблице 2.

5.1 Коррозия железа и сталей.

Коррозия железа начинает протекать при относительной влажности более 75%. Если необходимый для деполяризации кислород отсутствует, то в качестве акцептора электронов могут выступать ионы железа (III), восстанавливаясь до железа (II), которые затем взаимодействуют с кислородом и окисляются снова до железа (III).

2Fe 2+ + 2H + + 0.5O2 = 2Fe 3+ + H2O

Таким образом ионы железа (III) выступают в роли переносчика кислорода, ускоряя коррозию.
Реакция коррозии железа в атмосферном воздухе приведена в начале статьи.

Образование оксидной защитной плёнки на поверхности железа возможно только в присутствии сильного окислителя, например, азотная кислота. В обычных же условиях окисная пленка на железе рыхлая и пористая, т.е. не способна защитить его от коррозии.

Для защиты от коррозии сталь легируют добавлением некоторых компонентов. Их влияние можно обобщить следующим образом:

При использовании материалов на основе железа в прибрежной атмосфере следует применять катодную защиту. В промышленности, поверхность сталей следует защищать от коррозии защитными покрытиями, а также применять подходящие ингибиторы коррозии. Чаще всего в качестве защитного покрытия применяют цинк и его сплавы, кадмий, порошково-полимерные и цинкнапоолненные краски.

5.2 Коррозия алюминия и его сплавов.

Реакция взаимодействия алюминия с кислородом:

Реакция взаимодействия алюминия с водой:

Чистый алюминий проявляет высокую коррозионную стойкость и пластичность, но обладает низкой механической прочностью. Для повышения прочности и способности к тепловой обработке добавляют легирующие компоненты.

Добавление легирующих компонентов, потенциал которых более электроположительный чем потенциал алюминия, приводит к образованию катодных и анодных зон. Например, при добавлении в сплав меди образуется интерметаллидная фаза CuAl3. Являясь катодом по отношению к основному металлу, CuAl3 осаждается на границе зерна, из-за чего области вблизи этих границ оказываются обеднёнными медью и будут являться анодами по отношению к самим границам зёрен, вызывая межкристаллитную коррозию.

Частным случаем коррозии алюминия с участием интерметаллидов являются так называемые «черные точки». Коррозия такого типа идет в три этапа:

На крупногабаритных деталях этот эффект проявляется особенно сильно. Часто точки могут возникать при травлении и анодировании алюминия. Сразу после травления точки могут быть не видны, т.к. они скрыты под слоем травильного шлама. Но если деталь промыть и дать высохнуть на воздухе, то со временем шлам желтеет и черные точки становятся легко различимы невооруженным глазом (рисунок 8).

Стандартные электродные потенциалы различных сплавов алюминия и некоторых интерметаллидов приведены в таблице 3.

Сплав или интерметаллид

Стационарный потенциал, мВ

* За стационарные потенциалы принимали потенциал, установившийся через 24 часа в 3%-м рас-творе хлорида натрия по хлорид-серебрянному электроду.

Добавление более электроотрицательных компонентов, таких как магний, увеличивает пассивацию алюминия, благодаря чему коррозионная стойкость возрастает.

Наиболее популярными покрытиями для защиты алюминия и его сплавов от коррозии являются анодирование, химическое никелирование и многослойные покрытия на основе меди, никеля, серебра и олова.

5.3 Коррозия меди и её сплавов.

Чистая металлическая медь имеет потенциал 0,337 В, благодаря чему в обычной атмосфере обладает неплохой коррозионной стойкостью. Она не разрушается под действием неокисляющих кислот или в присутствии депассиватора. Разрушение меди начинается в присутствии окисляющих кислот (азотная кислота и пр.), органических кислот, а также комплексообразователей.

Несмотря на то, что медь практически не взаимодействует с кислородом, при контакте с влажным воздухом медь начинает разрушаться. Образовавшиеся продукты коррозии нерастворимы и предотвращают дальнейшую коррозию металла.

Из-за высокой теплопроводности и неплохой коррозионной стойкости в воде медь популярна в конструкциях теплообменников или трубопроводов. Однако медь подвержена кавитационной и эрозийной коррозии. Чтобы предотвратить данную коррозию медь легируют.

В большинстве случаев легирующие элементы придают меди не только более высокую коррозионную стойкость, но и улучшают её механические свойства. Наиболее распространёнными легирующими элементами являются цинк, никель, олово, алюминий и кремний.

Сплавы меди с цинком, при содержании последнего в диапазоне от 15% до 50%, называются латунями. Латунь обладает высокой прочностью, хорошей обрабатываемостью и стойкостью к действию сульфидов. Цинк, будучи более реакционноспособным металлом по сравнению с медью, легко подвергается селективному выщелачиванию. В этом случае на поверхности латуни можно наблюдать отложения меди характерного красного цвета.

Среди прочих сплавов меди особое значение имеет сплав с оловом. Добавка олова значительно повышает предел усталости и в то же самое время позволяет сохранить коррозионную стойкость.

5.4 Коррозия других металлов.

Титан является катодным металлом по отношению большинству прочих металлов и сплавов. На нём легко образуется оксидная плёнка, устойчивая к действию большинства кислот, в том числе соляной. Благодаря сочетанию своих свойств: высокой прочности, низкому удельному весу, высокой коррозионной стойкости, стойкости к высокотемпературному окислению и высокой точке плавления, титан получил применение в самолётостроении.

Никель обладает рядом физических и механических свойств сравнимых с малоуглеродистой сталью. В то же самое время никель обладает более высокой коррозионной стойкостью. В качестве легирующего элемента никель повышает коррозионную стойкость таких металлов, как железо и медь. Чистый никель почти не подвержен контактной коррозии, поскольку благодаря образованию защитной оксидной плёнки является катодом по отношению к большинству металлов. Оксидная плёнка никеля устойчива к действию щелочей.

Кобальт во многих отношениях схож с никелем. В сочетании с хромом кобальт образует сплавы, обладающие превосходной стойкостью к высокотемпературному окислению. Подобно никелю кобальт может быть легко запассивирован, особенно при добавлении в него хрома.

Свинец демонстрирует высокую коррозионную стойкость к серной кислоте. Свинцом покрывают ёмкости и трубы, находящиеся в контакте с этой кислотой. Добавление 3-6% сурьмы повышает механическую прочность свинца. Однако слишком большая доля сурьмы нежелательна, поскольку она ухудшает коррозионные свойства свинца, сурьма легко подвергается действию серной кислоты.

Цинк и его сплавы нельзя применять в коррозионных атмосферах. Этот металл является слишком анодным и не образует практически никакой защитной плёнки.

Почти все благородные металлы демонстрируют высокую коррозионную стойкость в любых кислых и щелочных средах. Серебро и его сплавы растворяются в окисляющих кислотах, но являются устойчивыми по отношению к восстанавливающим. Золото и платина устойчивы к действию даже окисляющих кислот. Они растворимы в так называемой царской водке.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *