какие технологии программирования существуют

10 ведущих технических трендов 2021 года, на которые стоит обратить внимание программистам

Для индустрии разработки программного обеспечения и для программистов 2020 год стал значительным годом больших прорывов во многих областях. Пандемия значительно ускорила перевод самых разных процессов в цифровую среду, в результате тренды, о которых мы сегодня поговорим, будут представлять собой более масштабные явления, чем нечто подобное в прошлом году.

Разработка традиционных приложений и веб-проектов стала жизненно важным аспектом современного бизнеса, а программисты стали неотъемлемой частью самых разных организаций, помогая бизнесу внедрять инновации, создавать новые направления деятельности и развиваться.

какие технологии программирования существуют. Смотреть фото какие технологии программирования существуют. Смотреть картинку какие технологии программирования существуют. Картинка про какие технологии программирования существуют. Фото какие технологии программирования существуют

Уже прошли четыре месяца 2021 года и сейчас совершенно очевидно то, что программист, обладающий актуальными знаниями и навыками, как и прежде, будет находиться в верхней части списка специалистов, которых ценят компании.

Здесь мне хотелось бы рассмотреть технологические тренды 2021 года, на которые стоит обратить внимание программистам. Всё то, о чём я буду говорить, основано на фактах, цифрах и данных из надёжных источников.

1. Мультиоблачные среды

Если говорить о компаниях, поддерживающих облачные сервисы для публичного использования, то совершенно очевидно то, какие именно компании являются лидерами рынка. По данным Statista в четвёртом квартале 2020 года лидером рынка облачных услуг с долей в 32% стала платформа Amazon Web Services. Microsoft Azure досталось 20% рынка, а Google Cloud — 9%. В 2021 году, вероятно, эти три ведущих платформы сохранят свои позиции.

какие технологии программирования существуют. Смотреть фото какие технологии программирования существуют. Смотреть картинку какие технологии программирования существуют. Картинка про какие технологии программирования существуют. Фото какие технологии программирования существуют

Ведущие облачные платформы в 4 квартале 2020 года

И, что интересно, набирают популярность мультиоблачные среды. Несколько компаний движутся в этом направлении. В частности, компания Amazon, ранее без особого энтузиазма относившаяся к мультиоблачным стратегиям, теперь вышла на этот рынок, предложив программистам инструменты для удобного развёртывания приложений в мультиоблачной инфраструктуре.

2. Блокчейн-технологии

Блокчейн-технологии появились сравнительно недавно. Уже сейчас понятно, что они способны изменить мир. Они используются, например, в криптовалютах. Но эти технологии могут серьёзно трансформировать всю IT-индустрию. Ресурс PR Newswire прогнозирует, что к 2027 году рынок блокчейн-технологий достигнет размеров в 30,7 миллиардов долларов при совокупном среднегодовом темпе роста в 43%. Весьма вероятно то, что в 2021 году эти технологии, в виде механизма смарт-контрактов, будут использоваться в самых разных областях.

3. Квантовые вычисления

Квантовые вычисления — это, без сомнения, самая реформистская технология нынешней эпохи. Эта технология, скорее всего, повлияет на все отрасли экономики. И, по сведениям, опубликованным в IBM Research Blog, в 2023 году компания выпустит процессор IBM Quantum Condor на 1121 кубита.

Для того чтобы понятнее описать перспективы квантовых компьютеров — приведу следующее сравнение. Если представить, что самый совершенный современный суперкомпьютер — это шахматист, или ученик математического класса, оканчивающий среднюю школу, то квантовый компьютер будет гениальным математиком, вроде Эйлера, или шахматистом, который может одновременно играть с полусотней других шахматистов.

Поэтому, учитывая огромные возможности квантовых компьютеров и сильнейший интерес, который испытывает к ним общественность, в 2021 году в сфере квантовых вычислений можно ожидать появления невероятных открытий и прорывных достижений.

4. Инструменты для глубокого обучения

Globe News Wire даёт прогноз, в соответствии с которым рынок технологий глубокого обучения достигнет в 2028 году 93,34 миллиарда долларов, при стабильном совокупном среднегодовом темпе роста в 39,1%. Наиболее заметными глобальными фигурами на этом рынке являются Facebook и Google. По данным исследования, проведённого Stack Overflow среди разработчиков, оказалось, что фреймворк Google TensorFlow 2.0 популярнее, чем Facebook PyTorch. Причиной этого является тот факт, что фреймворк TensorFlow обладает всеми возможностями PyTorch, но при этом отлично работает в среде Google Colab.

какие технологии программирования существуют. Смотреть фото какие технологии программирования существуют. Смотреть картинку какие технологии программирования существуют. Картинка про какие технологии программирования существуют. Фото какие технологии программирования существуют

TensorFlow популярнее PyTorch

Но, с другой стороны, разработчикам комфортнее работать с PyTorch, так как этот фреймворк включает в себя функционал, ориентированный на удобство работы с ним.

какие технологии программирования существуют. Смотреть фото какие технологии программирования существуют. Смотреть картинку какие технологии программирования существуют. Картинка про какие технологии программирования существуют. Фото какие технологии программирования существуют

С PyTorch работать комфортнее, чем с TensorFlow

Не стоит и говорить о том, что в 2021 году и PyTorch, и TensorFlow 2.0. станут теми самыми инструментами, которые, в зависимости от нужд конкретного проекта, чаще всего будут использоваться там, где нужны технологии глубокого обучения.

5. Вычисления, требующие переработки большого количества данных

Несколько лет назад в сфере распределённой пакетной обработки данных, или при проведении вычислений, требующих переработки большого количества данных, стандартным инструментом была платформа Hadoop. Но сейчас, с появлением платформы Apache Spark, её, в большинстве случаев, используют вместо Hadoop. В публикации из блога Towards Data Science сказано, что основное отличие двух этих платформ заключается в производительности. А именно, если речь идёт об обработке данных, хранящихся на дисках, то Spark стабильно показывает производительность, в 10 раз превышающую производительность Hadoop. Если же данные хранятся в памяти — речь идёт о 100-кратном повышении производительности. Более того — платформа Spark создавалась с прицелом на исправление недостатков Hadoop. В результате тренд отказа от Hadoop и перехода на Spark, весьма вероятно, продолжится и в этом году.

6. Быстрая разработка приложений

Недавняя публикация ресурса PR Newswire позволяет говорить о том, что к 2027 году рынок быстрой разработки приложений (Low Code/No-Code, LCNC) достигнет 65,15 миллиардов долларов, при этом совокупный среднегодовой темп роста превысит показатель в 26,1%. Low Code/No-Code-возможности в сфере веб-разработки поддерживает несколько платформ. Среди них — Microsoft Power Apps, Bubble, OutSystems и Appian.

В 2021 году развитие LCNC-платформ будет представлять собой один из наиболее мощных трендов. В этой сфере можно будет наблюдать множество инноваций и крупных сделок по приобретению одних компаний другими или по слиянию компаний.

7. JavaScript, Python и Java

Мир языков программирования претерпевает значительные изменения. Традиционные «тяжёлые» языки теряют позиции, а языки, больше ориентированные на удобство разработчика, вроде JavaScript, Python и Java, наоборот, остаются популярными.

какие технологии программирования существуют. Смотреть фото какие технологии программирования существуют. Смотреть картинку какие технологии программирования существуют. Картинка про какие технологии программирования существуют. Фото какие технологии программирования существуют

Учитывая то, что индустрия разработки программного обеспечения бурно развивается, и то, что к ней постоянно присоединяются новые разработчики, языки, на которых проще и удобнее программировать, будут очень хорошо чувствовать себя в этом году.

8. React — популярная библиотека для разработки пользовательских интерфейсов

Если взглянуть на фреймворки и библиотеки, используемые в веб-разработке, то оказывается, что тут первое место всё ещё принадлежит jQuery, но эта библиотека довольно скоро может уступить первенство React и Angular. Кроме того, React — это, в соответствии с результатами исследования Stack Overflow, библиотека для фронтенд-разработки, которая опережает другие подобные инструменты по количеству загрузок и по уровню использования. Разработчики выбирают её для создания интерфейсов чаще других подобных средств.

какие технологии программирования существуют. Смотреть фото какие технологии программирования существуют. Смотреть картинку какие технологии программирования существуют. Картинка про какие технологии программирования существуют. Фото какие технологии программирования существуют

Библиотеки и фреймворки для фронтенд-разработки

9. Контейнеризация

В IT-индустрии, изначально ориентированной на облачные среды, контейнеризацию можно признать одной из ключевых технологий. Платформа Kubernetes, по сведениям Globe Newswire, занимает 48% рынка. Эта платформа стала ведущим инструментом для оркестрации контейнеров и для управления ими. Причём, это относится и к частным, и к общедоступным облачным системам. Более того, все ведущие поставщики облачных услуг, такие, как Amazon, Microsoft и Google, предоставляют своим клиентам возможность пользоваться Kubernetes.

В этом году нас ждёт продолжение распространения Kubernetes, так как эта платформа является важнейшим ингредиентом мультиоблачных стратегий.

10. Пограничные вычисления

Пограничные вычисления представлены распределённой вычислительной инфраструктурой, расположенной как можно ближе к конечному пользователю, которая объединяет системы хранения данных и вычислительные мощности. По некоторым оценкам глобальный рынок пограничных вычислений к 2028 году может дорасти до 61,14 миллионов долларов. Учитывая рост использования IoT-устройств, транспортных средств с выходом в интернет, технологий искусственного интеллекта и машинного обучения, в этом и в следующих годах рынок пограничных вычислений будет бурно расти. Поэтому нам стоит быть готовыми к инновациям в этой области и к появлению в этой области новых стандартов.

Итоги

Индустрия разработки программного обеспечения куда больше, чем рассмотренные в этом материале её части, поэтому за один заход невозможно охватить все важные аспекты этой индустрии. Однако тут представлены несколько значительных трендов, которые способны сыграть очень важную роль в жизни любого программиста. Надеюсь, теперь у вас есть некоторое представление о том, на что стоит обратить внимание в 2021 году.

Как вы думаете, на что ещё программистам стоит обратить внимание в этом году?

Источник

Лекция «СОВРЕМЕННЫЕ ТЕХНОЛОГИИ ПРОГРАММИРОВАНИЯ»

Ищем педагогов в команду «Инфоурок»

СОВРЕМЕННЫЕ ТЕХНОЛОГИИ ПРОГРАММИРОВАНИЯ.

1. Алгоритм. Свойства алгоритма. Способы записи алгоритмов; блок-схемы.

2. Алгоритмические конструкции: следование, ветвление, повторение.

3. Программа. Программирование. Языки программирования, их классификация.

Алгоритм – точно определенное правило действий, для которого задано указание, как и в какой последовательности это правило необходимо применять к исходным данным задачи, чтобы получить ее решение

Основные свойства алгоритмов

Результативность (или конечность). Это свойство состоит в том, что алгоритм должен приводить к решению задачи за конечное число шагов.

Массовость. Это означает, что алгоpитм pешения задачи pазpабатывается в общем виде, т.е. он должен быть пpименим для некотоpого класса задач, pазличающихся лишь исходными данными. Пpи этом исходные данные могут выбиpаться из некотоpой области, котоpая называется областью пpименимости алгоpитма.

Способы описания алгоритмов. На практике наиболее распространены следующие формы представления алгоритмов:

словесная (записи на естественном языке);

графическая (изображения из графических символов);

псевдокоды (полуформализованные описания алгоритмов на условном алгоритмическом языке, включающие в себя как элементы языка программирования, так и фразы естественного языка, общепринятые математические обозначения и др.);

программная (тексты на языках программирования).

Словесный способ записи алгоритмов представляет собой описание последовательных этапов обработки данных. Алгоритм задается в произвольном изложении на естественном языке.

Например. Записать алгоритм нахождения наибольшего общего делителя (НОД) двух

Алгоритм может быть следующим:

если числа равны, то взять любое из них в качестве ответа и остановиться, в противном случае продолжить выполнение алгоритма;

определить большее из чисел;

заменить большее из чисел разностью большего и меньшего из чисел;

повторить алгоритм с шага 2.

Описанный алгоритм применим к любым натуральным числам и должен приводить к решению поставленной задачи. Убедитесь в этом самостоятельно, определив с помощью

этого алгоритма наибольший общий делитель чисел 125 и 75.

Словесный способ не имеет широкого распространения по следующим причинам:

такие описания строго не формализуемы;

страдают многословностью записей;

допускают неоднозначность толкования отдельных предписаний.

Графический способ описания алгоритма. Наибольшее распространение получило описание алгоритмов с помощью блок-схем. Блок-схема – это представление алгоритма с помощью определенного набора геометрических фигур, дополненное элементами словесной записи. Поскольку алгоритмы воспринимаются в первую очередь визуально, их следует изображать таким образом, чтобы их структура выглядела четко и выразительно.

В схеме алгоритма каждому типу действий (вводу исходных данных, вычислению значений выражений, проверке условий и т.п.) соответствует геометрическая фигура, представленная в виде блочного символа (блока).

Наиболее часто употребляемые блоки приведены в таблице.

Вычислительное действие или последовательность вычислительных действий

Вычисления по подпрограмме, стандартной подпрограмме

Вывод, печать результатов на бумаге

Разрыв линий потока

Начало, конец, останов, вход и выход в подпрограммах

Алгоритм любой, даже самой сложной, задачи можно представить в виде совокупности трех основных типовых структур: линейной, разветвляющейся и циклической. Рассмотрим подробнее эти базовые структуры.

Псевдокод представляет собой систему обозначений и правил, предназначенную для единообразной записи алгоритмов. Он занимает промежуточное место между естественным и формальным языками. С одной стороны, он близок к обычному естественному языку, поэтому алгоритмы могут на нем записываться и читаться как обычный текст. С другой строны, в псевдокоде используются некоторые формальные конструкции и математическая символика, что приближает запись алгоритма к общепринятой математической записи.

В псевдокоде не приняты строгие синтаксические правила для записи команд, присущие формальным языкам, что облегчает запись алгоритма на стадии его проектирования и дает возможность использовать более широкий набор команд, рассчитанный на абстрактного исполнителя. Однако в псевдокоде обычно имеются некоторые конструкции, присущие формальным языкам, что облегчает переход от записи на псевдокоде к записи алгоритма на формальном языке. В частности, в псевдокоде, так же, как и в формальных языках, есть служебные слова, смысл которых определен раз и навсегда. Они выделяются в печатном тексте жирным шрифтом, а в рукописном тексте подчеркиваются. Единого или формального определения псевдокода не существует, поэтому возможны различные псевдокоды, отличающиеся набором служебных слов и основных (базовых) конструкций. Примером псевдокода является школьный алгоритмический язык в русской нотации (школьный АЯ), описанный в учебнике А.Г. Кушниренко и др. «Основы информатики и вычислительной техники», 1991. Этот язык в дальнейшем мы будем называть просто «алгоритмический язык».

Программа – это упорядоченная последовательность команд, необходимых для управления компьютером (выполнения им конкретных действий).

Машинный код процессора.

Процессор компьютера – это большая интегральная микросхема. Все команды и данные процессор получает в виде электрических сигналов. Фактически процессор можно рассматривать как огромную совокупность достаточно простых электронных элементов – транзисторов. В электронике транзисторы имеют три применения: для создания усилителей, в электронных схемах, обладающих автоколебательными свойствами, и в электронных переключателях. Последний способ и применяется в цифровой вычислительной технике. В процессоре компьютера транзисторы сгруппированы в микроэлементы, называемые триггерами и вентилями. Триггеры имеют два устойчивых состояния (открыт – закрыт) и переключаются из одного состояния в другое электрическими сигналами. Этим устойчивым состояниям (открыт – закрыт) соответствуют математические понятия 0 или 1. Вентили немного сложнее – они могут иметь несколько входов (напряжение на выходе зависит от комбинации напряжения на входах) и служат для простейших арифметических и логических операций.

Команды, поступающие в процессор, по его шинам, на самом деле являются электрическими сигналами, но и их также можно представить как комбинации нулей и единиц, т.е. двоичными числами. Разным командам соответствуют разные числа. Поэтому программа, с которой реально работает процессор, представляет собой последовательность чисел, называемую машинным кодом.

Управлять компьютером нужно по определенному алгоритму. Как отмечалось выше, алгоритм – это точно определенное описание способа решения задачи в виде конечной (по времени) последовательности действий. Такое описание называют формальным. Для представления алгоритма в виде, понятном компьютеру, служат языки программирования.

Понятие о языках программирования: Языки программирования – искусственные языки. От естественных они отличаются ограниченным числом «слов», значения которых понятно транслятору, и очень строгими правилами записи команд (операторов). Совокупность подобных требований образуют синтаксис языка программирования, а смысл каждой команды и других конструкций языка – его семантику. Нарушение формы записи программы приводит к тому, что транслятор не может понять значение оператора и выдает сообщение о синтаксической ошибке, а правильно написанное, но не отвечающее алгоритму использование команд языка приводит к семантическим ошибкам (называемые еще логическими ошибками или ошибками времени исполнения). Процесс поиска ошибок в программе называется тестированием, а процесс устранения ошибок – отладкой.

По этому критерию можно выделить следующие уровни языков программирования:

машинно-независимые (языки высокого уровня).

Языки высокого уровня делятся на:

алгоритмические (Basic, Pascal, C и др.), которые предназначены для однозначного описания алгоритмов;

логические (Prolog, Lisp и др.), которые ориентированы не на разработку алгоритма решения задачи, а на систематическое и формализованное описание задачи с тем, чтобы решение следовало из составленного описания.

объектно-ориентированные (Object Pascal, C++, Java и др.), в основе которых лежит понятие объекта, сочетающего в себе данные и действия над нами. Программа на объектно-ориентированном языке, решая некоторую задачу, по сути описывает часть мира, относящуюся к этой задаче. Описание действительности в форме системы взаимодействующих объектов естественнее, чем в форме взаимодействующих процедур.

Каждый компьютер имеет свой машинный язык, то есть свою совокупность машинных команд, которая отличается количеством адресов в команде, назначением информации, задаваемой в адресах, набором операций, которые может выполнить машина и др. При программировании на машинном языке программист может держать под своим контролем каждую команду и каждую ячейку памяти, использовать все возможности имеющихся машинных операций. Но процесс написания программы на машинном языке очень трудоемкий и утомительный. Программа получается громоздкой, труднообозримой, ее трудно отлаживать, изменять и развивать. Поэтому в случае, когда нужно иметь эффективную программу, в максимальной степени учитывающую специфику конкретного компьютера, вместо машинных языков используют близкие к ним машинно-ориентированные языки (ассемблеры).

Языком самого низкого уровня является язык ассемблера, который просто представляет каждую команду машинного кода не в виде чисел, а с помощью символьных условных обозначений, называемых мнемониками.

Он позволяет программисту пользоваться текстовыми мнемоническими (то есть легко запоминаемыми человеком) кодами, по своему усмотрению присваивать символические имена регистрам компьютера и памяти, а также задавать удобные для себя способы адресации. Кроме того, он позволяет использовать различные системы счисления (например, десятичную или шестнадцатеричную) для представления числовых констант, использовать в программе комментарии и др.

Перевод программы с языка ассемблера на машинный язык осуществляется специальной программой, которая также называется ассемблером и является, по сути, простейшим транслятором.

Источник

информатика

Лекции

1. Введение

ИНФОРМАЦИЯ И ЕЕ РОЛЬ В СОВРЕМЕННОМ ОБЩЕСТВЕ.

ИНФОРМАТИКА- НАУКА, ИЗУЧАЮЩАЯ СПОСОБЫ АВТОМАТИЗИРОВАННОГО СОЗДАНИЯ, ХРАНЕНИЯ, ОБРАБОТКИ, ИСПОЛЬЗОВАНИЯ, ПЕРЕДАЧИ И ЗАЩИТЫ ИНФОРМАЦИИ.

ИНФОРМАЦИЯ – ЭТО НАБОР СИМВОЛОВ, ГРАФИЧЕСКИХ ОБРАЗОВ ИЛИ ЗВУКОВЫХ СИГНАЛОВ, НЕСУЩИХ ОПРЕДЕЛЕННУЮ СМЫСЛОВУЮ НАГРУЗКУ.

В развитых странах большинство работающих заняты не в сфере производства, а в той или иной степени занимаются обработкой информации. Поэтому философы называют нашу эпоху постиндустриальной. В 1983 году американский сенатор Г.Харт охарактеризовал этот процесс так: «Мы переходим от экономики, основанной на тяжелой промышленности, к экономике, которая все больше ориентируется на информацию, новейшую технику и технологию, средства связи и услуги..»

2. КРАТКАЯ ИСТОРИЯ РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ.

Вся история развития человеческого общества связана с накоплением и обменом информацией (наскальная живопись, письменность, библиотеки, почта, телефон, радио, счеты и механические арифмометры и др.). Коренной перелом в области технологии обработки информации начался после второй мировой войны.

В вычислительных машинах первого поколения основными элементами были электронные лампы. Эти машины занимали громадные залы, весили сотни тонн и расходовали сотни киловатт электроэнергии. Их быстродействие и надежность были низкими, а стоимость достигала 500-700 тысяч долларов.

Появление более мощных и дешевых ЭВМ второго поколения стало возможным благодаря изобретению в 1948 году полупроводниковых устройств- транзисторов. Главный недостаток машин первого и второго поколений заключался в том, что они собирались из большого числа компонент, соединяемых между собой. Точки соединения (пайки) являются самыми ненадежными местами в электронной технике, поэтому эти ЭВМ часто выходили из строя.

В ЭВМ третьего поколения (с середины 60-х годов ХХ века) стали использоваться интегральные микросхемы (чипы)- устройства, содержащие в себе тысячи транзисторов и других элементов, но изготовляемые как единое целое, без сварных или паяных соединений этих элементов между собой. Это привело не только к резкому увеличению надежности ЭВМ, но и к снижению размеров, энергопотребления и стоимости (до 50 тысяч долларов).

История ЭВМ четвертого поколения началась в 1970 году, когда ранее никому не известная американская фирма INTEL создала большую интегральную схему (БИС), содержащую в себе практически всю основную электронику компьютера. Цена одной такой схемы (микропроцессора) составляла всего несколько десятков долларов, что в итоге и привело к снижению цен на ЭВМ до уровня доступных широкому кругу пользователей.

СОВРЕМЕННЫЕ КОМПЬТЕРЫ- ЭТО ЭВМ ЧЕТВЕРТОГО ПОКОЛЕНИЯ, В КОТОРЫХ ИСПОЛЬЗУЮТСЯ БОЛЬШИЕ ИНТЕГРАЛЬНЫЕ СХЕМЫ.

6.ПРЕДСТАВЛЕНИЕ ИНФОРМАЦИИ В КОМПЬЮТЕРЕ И ЕЕ ОБЪЕМ.

ЛЮБОЕ СООБЩЕНИЕ НА ЛЮБОМ ЯЗЫКЕ СОСТОИТ ИЗ ПОСЛЕДОВАТЕЛЬНОСТИ СИМВОЛОВ- БУКВ, ЦИФР, ЗНАКОВ. Действительно, в каждом языке есть свой алфавит из определенного набора букв (например, в русском- 33 буквы, английском- 26, и т.д.). Из этих букв образуются слова, которые в свою очередь, вместе с цифрами и знаками препинания образуют предложения, в результате чего и создается текстовое сообщение. Не является исключением и язык на котором «говорит» компьютер, только набор букв в этом языке является минимально возможным.

В КОМПЬЮТЕРЕ ИСПОЛЬЗУЮТСЯ 2 СИМВОЛА- НОЛЬ И ЕДИНИЦА (0 и 1), АНАЛОГИЧНО ТОМУ, КАК В АЗБУКЕ МОРЗЕ ИСПОЛЬЗУЮТСЯ ТОЧКА И ТИРЕ. Действительно, закодировав привычные человеку символы (буквы, цифры, знаки) в виде нулей и единиц (или точек и тире), можно составить, передать и сохранить любое сообщение.

ЭТО СВЯЗАНО С ТЕМ, ЧТО ИНФОРМАЦИЮ, ПРЕДСТАВЛЕННУЮ В ТАКОМ ВИДЕ, ЛЕГКО ТЕХНИЧЕСКИ СМОДЕЛИРОВАТЬ, НАПРИМЕР, В ВИДЕ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ. Если в какой-то момент времени по проводнику идет ток, то по нему передается единица, если тока нет- ноль. Аналогично, если направление магнитного поля на каком-то участке поверхности магнитного диска одно- на этом участке записан ноль, другое- единица. Если определенный участок поверхности оптического диска отражает лазерный луч- на нем записан ноль, не отражает- единица.

ОБЪЕМ ИНФОРМАЦИИ, НЕОБХОДИМЫЙ ДЛЯ ЗАПОМИНАНИЯ ОДНОГО ИЗ ДВУХ СИМВОЛОВ-0 ИЛИ 1, НАЗЫВАЕТСЯ 1 БИТ (англ. binary digit- двоичная единица). 1 бит- минимально возможный объем информации. Он соответствует промежутку времени, в течение которого по проводнику передается или не передается электрический сигнал, участку поверхности магнитного диска, частицы которого намагничены в том или другом направлении, участку поверхности оптического диска, который отражает или не отражает лазерный луч, одному триггеру, находящемуся в одном из двух возможных состояний.

Итак, если у нас есть один бит, то с его помощью мы можем закодировать один из двух символов- либо 0, либо 1.

3 бита- 8 вариантов;

Продолжая дальше, получим:

4 бита- 16 вариантов,

7 бит- 128 вариантов,

8 бит- 256 вариантов,

9 бит- 512 вариантов,

10 бит- 1024 варианта,

В обычной жизни нам достаточно 150-160 стандартных символов (больших и маленьких русских и латинских букв, цифр, знаков препинания, арифметических действий и т.п.). Если каждому из них будет соответствовать свой код из нулей и единиц, то 7 бит для этого будет недостаточно (7 бит позволят закодировать только 128 различных символов), поэтому используют 8 бит.

ДЛЯ КОДИРОВАНИЯ ОДНОГО ПРИВЫЧНОГО ЧЕЛОВЕКУ СИМВОЛА В КОМПЬЮТЕРЕ ИСПОЛЬЗУЕТСЯ 8 БИТ, ЧТО ПОЗВОЛЯЕТ ЗАКОДИРОВАТЬ 256 РАЗЛИЧНЫХ СИМВОЛОВ.

СТАНДАРТНЫЙ НАБОР ИЗ 256 СИМВОЛОВ НАЗЫВАЕТСЯ ASCII ( произносится «аски», означает «Американский Стандартный Код для Обмена Информацией»- англ. American Standart Code for Information Interchange).

ОН ВКЛЮЧАЕТ В СЕБЯ БОЛЬШИЕ И МАЛЕНЬКИЕ РУССКИЕ И ЛАТИНСКИЕ БУКВЫ, ЦИФРЫ, ЗНАКИ ПРЕПИНАНИЯ И АРИФМЕТИЧЕСКИХ ДЕЙСТВИЙ И Т.П.

КАЖДОМУ СИМВОЛУ ASCII СООТВЕТСТВУЕТ 8-БИТОВЫЙ ДВОИЧНЫЙ КОД, НАПРИМЕР:

ОБЪЕМ ИНФОРМАЦИИ, НЕОБХОДИМЫЙ ДЛЯ ЗАПОМИНАНИЯ ОДНОГО СИМВОЛА ASCII НАЗЫВАЕТСЯ 1 БАЙТ.

Очевидно что, поскольку под один стандартный ASCII-символ отводится 8 бит,

Остальные единицы объема информации являются производными от байта:

1 КИЛОБАЙТ = 1024 БАЙТА И СООТВЕТСТВУЕТ ПРИМЕРНО ПОЛОВИНЕ СТРАНИЦЫ ТЕКСТА,

1 МЕГАБАЙТ = 1024 КИЛОБАЙТАМ И СООТВЕТСТВУЕТ ПРИМЕРНО 500 СТРАНИЦАМ ТЕКСТА,

1 ГИГАБАЙТ = 1024 МЕГАБАЙТАМ И СООТВЕТСТВУЕТ ПРИМЕРНО 2 КОМПЛЕКТАМ ЭНЦИКЛОПЕДИИ,

1 ТЕРАБАЙТ = 1024 ГИГАБАЙТАМ И СООТВЕТСТВУЕТ ПРИМЕРНО 2000 КОМПЛЕКТАМ ЭНЦИКЛОПЕДИИ.

СКОРОСТЬ ПЕРЕДАЧИ ИНФОРМАЦИИ ПО ЛИНИЯМ СВЯЗИ ИЗМЕРЯЕТСЯ В БОДАХ.

В частности, если говорят, что пропускная способность какого-то устройства составляет 28 Килобод, то это значит, что с его помощью можно передать по линии связи около 28 тысяч нулей и единиц за одну секунду.

7. СЖАТИЕ ИНФОРМАЦИИ НА ДИСКЕ

ИНФОРМАЦИЮ НА ДИСКЕ МОЖНО ОБРАБОТАТЬ С ПОМОЩЬЮ СПЕЦИАЛЬНЫХ ПРОГРАММ ТАКИМ ОБРАЗОМ, ЧТОБЫ ОНА ЗАНИМАЛА МЕНЬШИЙ ОБЪЕМ.

Сжатие информации используют, если объем носителя информации недостаточен для хранения требуемого объема информации или информацию надо послать по электронной почте

Программы, используемые при сжатии отдельных файлов называются архиваторами. Эти программы часто позволяют достичь степени сжатия информации в несколько раз.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *