какие тела обладают кинетической энергией примеры
10 лучших примеров кинетической энергии
E = ½mv 2
Поскольку энергия является скалярной величиной, она не зависит от направления и всегда положительна. Если вы удвоите массу, вы удвоите и энергию. Однако, если вы удвоите скорость, энергия увеличится в четыре раза.
Кинетическую энергию можно разделить на три группы в зависимости от типа движения объекта.
Стандартная единица измерения кинетической энергии является Джоуль. Она может передаваться между объектами и преобразовываться в другие виды энергии.
Например, бегун использует химическую энергию (предоставляемую пищей) для ускорения. В этом случае химическая энергия преобразуется в энергию движения, т.е. кинетическую энергию. Однако этот процесс не является полностью эффективным, так как много энергии теряется в тепле.
Кинетическая энергия в основном проявляется в пяти различных формах: механической, электрической, тепловой, излучающей и звуковой. Чтобы лучше объяснить это количественное свойство, мы собрали несколько простейших и наиболее основных примеров кинетической энергии, которая происходит в повседневной жизни.
1. Движущийся автомобиль
Форма механической энергии
Чем больше масса и скорость транспортного средства, тем больше кинетической энергии он будет иметь. У автомобиля будет более высокая кинетическая энергия, чем у мотоцикла (учитывая, что оба движутся с одинаковой скоростью, но у автомобиля больше массы).
Точно так же летающий истребитель или космический корабль (такой, как Международная космическая станция на низкой околоземной орбите) обладает очень большим количеством кинетической энергии.
2. Езда на велосипеде
Форма механической энергии
Однако такое преобразование энергии не очень эффективно. Велосипедист также использует значительное количество химической энергии для получения тепла и преодоления трения и сопротивления воздуха.
3. Падение телефона на пол
Форма механической энергии
Что происходит, когда вы случайно роняете свой телефон? Он ускоряется за счет гравитационной силы, набирая скорость и импульс.
Любой падающий объект будет продолжать ускоряться до тех пор, пока восходящая сила сопротивления воздуха полностью не уравновесит нисходящую силу, действующую из-за гравитации. В этом случае, однако, мы можем пренебречь сопротивлением воздуха, так как оно намного ниже силы тяготения.
Изначально, в самой высокой точке, телефон обладает максимальной потенциальной энергией. При падении эта энергия преобразуется в кинетическую энергию. Чем больше масса телефона, тем больше кинетической энергии он будет достигать.
Когда телефон ударяется о пол, эта кинетическая энергия переходит в производство звука, вызывая отскок телефона, и ломает или деформирует его тело.
4. Пуля, выпущенная из пистолета
Форма механической энергии
Чем быстрее движется пуля и чем она тяжелее, тем выше ее кинетическая энергия и тем больше урона она нанесет.
5. Молния во время грозы
Форма электрической энергии
Молния во время грозы является ярким примером электрической энергии. То, что вы на самом деле видите, это мгновенный разряд электронов, вызванный статическим электричеством в облаках. По мере того как молния нагревает воздух, она производит ударную волну, вызывая звук грозы.
6. Электричество, обеспечиваемое автомобильной аккумуляторной батареей.
Форма электрической энергии
Автомобильный аккумулятор преобразует химическую энергию в электрическую, доступ к которой осуществляется через клеммы аккумулятора. Химический процесс в разрядной батарее освобождает электроны от анода к катоду. Эти движущиеся электроны обеспечивают электричество для цепей в автомобиле.
Для зарядки батареи поток электронов обратный (от катода к аноду). Кроме того, эти аккумуляторы предназначены для выпуска высокого всплеска тока, а затем быстро заряжается.
7. Вибрирующие стереодинамики
Форма звуковой энергии
Стереодинамики (или все, что производит звук) работает таким же образом. Если вы проигрываете его громче и кладете на него руку, вы почувствуете, как он вибрирует. Что на самом деле происходит, так это то, что колонка движется вперед и назад, надавливая на частицы воздуха, что изменяет давление воздуха и генерирует звуковые волны.
Еще одним отличным примером может служить игра на барабанах; когда вы бьете по барабану, его поверхность вибрирует и вызывает звук.
В отличие от света, звук не может проходить через вакуум, так как нет атомов, которые могли бы передавать вибрацию.
8. Фотоны, испускаемые лампой накаливания
Форма излучающей энергии
В традиционной электрической лампочке, также называемой лампой накаливания, электрический ток перемещается от одного металлического контакта к другому. По мере того как течение пропускает через проводы и нить вольфрама, нить нагреют до пункта где она начинает испустить фотоны, небольшие пакеты видимого света.
9. Радиоволны, движущиеся со скоростью света
Форма излучающей энергии
Радиоволны также движутся в форме волн. Они имеют частоты от 3 кГц до 300 ГГц и соответствующие длины волн 100 километров и 1 миллиметр. Как и другие электромагнитные волны, радиоволны движутся со скоростью света. Радиостанции используют эти волны для передачи их содержания на большие расстояния.
Другим хорошим примером излучаемой энергии являются лучи, исходящие от Солнца. Вот почему вы чувствуете себя жарче в солнечном свете, чем в тени.
10. Кипящая вода
Форма тепловой энергии
Как и энергия излучения, тепловую энергию можно испытать в виде тепла или излучения. Однако между ними есть большая разница: если энергия излучения описывает движение частиц или волн, то тепловая энергия относится к уровню активности между молекулами и атомами в объекте.
Примером кинетической энергии является также геотермальная энергия, получаемая в результате вулканического действия Земли и распада природных минералов.
Все виды энергии кратко и с примерами
Энергия — это способность выполнять работу, и как таковая, она проявляется по-разному. В этом смысле существует два основных типа энергии: энергия положения или состояния, также называемая потенциальной энергией, а другая — это энергия в действии или движении и называемая кинетической энергией.
Оба типа энергии могут преобразовывать друг друга и являются частью других форм энергии. В зависимости от источника, откуда они берутся, мы можем говорить об электрической, ядерной, химической, излучающей или магнитной энергии.
Кинетическая энергия
Кинетическая энергия шара для боулинга опрокидывает кегли.
Кинетическая энергия — это энергия в действии, энергия движения. Зависит от количества массы тела, а также от скорости. Таким образом, шар для боулинга выбьет больше кеглей, потому что он имеет большую массу. Более быстрый шар для боулинга будет более эффективным, чем медленный.
Человек может использовать в своих интересах кинетическую энергию многих природных ресурсов. Например, ветер движется воздухом, и ветрогенераторы используют это для производства электроэнергии.
Потенциальная энергия
Потенциальная энергия тела также зависит от массы объекта.
Потенциальная энергия является другим основным типом энергии и связана с положением или состоянием объекта по отношению к другому.
Потенциальная энергия увеличивается, когда притягиваемые тела отделяются или когда отбрасываемые или отталкиваемые тела объединяются. Область, в которой объекты притягиваются или отталкиваются, называется силовым полем. Примерами силовых полей могут быть, например, гравитационное силовое поле Земли или магнитное силовое поле.
Потенциальная и кинетическая энергия
Потенциальная энергия преобразуется в кинетическую энергию, а также может быть найдена в других видах энергии, таких как потенциальная гравитационная энергия или упругая потенциальная энергия.
Гравитационная потенциальная энергия
В тот момент, когда спортсмен достигает высшей точки, он обладает большей потенциальной энергией.
Когда потенциальная энергия связана с гравитационной силой, она называется потенциальной гравитационной энергией. Гравитационное силовое поле вокруг нашей планеты притягивает объекты к ее центру. Когда мы поднимаем объекты, отделяя их от Земли, мы увеличиваем их гравитационную потенциальную энергию.
Существует потенциальная гравитационная энергия между Солнцем и планетами, а также между Луной и Землей. Фактически, приливы являются результатом притяжения, которое Луна создает на земных водоемах.
Упругая потенциальная энергия
Когда мы растягиваем пружину, энергия, чтобы вернуться к своей первоначальной форме, сохраняется как потенциальная энергия.
Другой формой потенциальной энергии является энергия, которую содержит пружина, когда мы растягиваем или сжимаем её. Эта энергия называется упругой потенциальной энергией: это энергия материалов, когда они растягиваются или скручиваются. Когда мы сжимаем пружину, мы увеличиваем ее потенциальную энергию.
Эластичная потенциальная энергия — это то, что движет в пружине. Также в прыжках с шестом в легкой атлетике у нас есть пример того, как упругая потенциальная энергия превращается в гравитационную потенциальную энергию.
Механическая энергия
Механическая энергия — это сумма энергии положения и движения.
Механическая энергия тела охватывает движение и положение объекта, то есть это сумма кинетической и потенциальной энергии этого объекта.
Когда мы качаемся, мы превращаем кинетическую энергию в потенциал и наоборот, поэтому мы можем двигаться быстрее и выше.
Например, ребенок на скейтборде на предыдущем изображении обладает кинетической энергией, которая позволяет ему закрепиться на стене, набирая потенциальную энергию. Когда оно начинает падать, потенциальная энергия превращается в кинетическую энергию и набирает скорость.
Химическая энергия
Химическая энергия сохраняется в связях между атомами.
Химическая энергия — это форма потенциальной энергии, которая сохраняется в связях между атомами в результате сил притяжения между ними.
Во время химической реакции одно или несколько соединений, называемых реагентами, превращаются в другие соединения, называемые продуктами. Эти превращения происходят из-за разрыва или образования химических связей, которые вызывают изменения в химической энергии.
Энергия высвобождается, когда связи разрушаются во время химических реакций. Это то, что известно как экзотермическая реакция. Например, автомобили используют химическую энергию бензина для выработки тепловой энергии, которая используется для движения автомобиля. Точно так же пища хранит химическую энергию, которую мы используем живыми существами, чтобы функционировать.
Когда соединения образуются, требуется энергия; Это реакция эндотермического типа. Фотосинтез — это эндотермическая реакция, энергия которой исходит от Солнца.
Тепловая энергия
Тепловая энергия огня передается тепловой энергии горшка через тепло.
Тепловая энергия (внутренняя энергия) представляет собой тип кинетической энергии, являющейся продуктом движения или внутренней вибрации частиц в телах. Когда мы измеряем температуру с помощью термометра, мы измеряем то движение атомов и молекул, которые составляют тело. При более высокой температуре большее движение и, следовательно, большая тепловая энергия.
Кроме того, тепловая энергия перемещается между телами через тепло. Когда вы помещаете горячий предмет рядом с холодным, происходит передача энергии от самого горячего к самому холодному, до точки, где они имеют одинаковую температуру. Тепло также передается через инфракрасное излучение или движение горячих жидкостей или газов.
Электрическая мощность
Электрические батареи превращают химическую энергию в электрическую.
Электричество — это тип энергии, который зависит от притяжения или отталкивания электрических зарядов. Существует два вида электричества: статическое и текущее. Статическое электричество связано с наличием статических нагрузок, т.е. нагрузок, которые не двигаются. Электрический ток происходит из-за перемещение грузов.
Пример статического электричества — когда мы натираем воздушный шарик на волосы. Воздушный шар удерживает электроны от волос, заряжаясь отрицательно, в то время как волосы заряжены положительно. Если вы подойдете к воздушному шарику к своей голове, не касаясь его, вы увидите, как пряди волос тянутся к воздушному шарику.
Электрический ток — это поток зарядов из-за движения свободных электронов в проводнике. Это движение происходит в электрическом поле, то есть в области вокруг заряда, где действует сила. Электрические заряды легко переносятся такими материалами, как металлы, особенно серебро, медь и алюминий.
В батареях или электрических батареях происходит превращение химической энергии в электрическую энергию. Химическая энергия происходит в результате реакции между электродами и электролитом, когда положительный полюс соединен с отрицательным полюсом батареи. Вольт — это единица измерения потенциальной энергии на заряд в батарее.
Ядерная энергетика
Существует три типа ядерной реакции: радиоактивный распад, слияние и деление. При радиоактивном распаде ядро радиоактивного атома самопроизвольно выделяет энергию. При делении ядра ядро бомбардируется нейтроном, что приводит к образованию двух новых атомов. При ядерном синтезе легкие ядра объединяются в тяжелые ядра.
Использование ядерной энергии
Магнитная энергия
Магниты используются для захвата магнитных материалов, таких как гайки и болты.
Способность объекта выполнять работу из-за его положения в магнитном поле является потенциальной энергией магнитного поля. Магниты имеют магнитное поле и две области, называемые магнитными полюсами. Равные полюса отбрасываются, а разные полюса притягиваются. Наиболее используемые магнитные материалы — это железо и его сплавы.
Например, железный винт, который приближается к магниту, но не касается его, обладает потенциальной магнитной энергией. Объекты движутся в направлении, которое уменьшает их потенциальную магнитную энергию.
Микрофоны, например, хорошо работают благодаря магнитной энергии. Операция заключается в следующем: микрофон имеет мембрану, которая вибрирует со звуком. Эта вибрация передается на кабель, обмотанный вокруг магнита, который посылает электрический сигнал на усилитель, делая звук громче. В этом случае мы имеем преобразование звуковой энергии в магнитную энергию, затем электрическую энергию и затем звуковую энергию.
Железные дороги с электромагнитной подвеской — еще один пример того, как мы можем использовать магнитную энергию для выполнения работы. Железная дорога движется через магнитное поле, которое движется вдоль ферромагнитного пути.
Звуковая энергия
Колокол вибрирует от удара и производит звуковые волны, которые распространяются по воздуху.
Звуковая энергия — это механическая энергия частиц, которые вибрируют в форме волн через среду передачи. Средой, через которую проходят звуковые волны, может быть воздух, вода или другие материалы. Все, что вызывает шум, генерирует звуковую энергию.
Звук распространяется в твердых телах быстрее, чем в жидкостях, и быстрее в жидкостях, чем в газах. Поэтому если прислонить ухо к полу, можно слышать, потому что скорость звука на земле в четыре раза выше, чем в воздухе.
Именно благодаря звуковой энергии мы можем слышать. Когда звуковые волны в воздухе проникают в ваши уши, они стимулируют специальные клетки, которые посылают информацию в мозг. Чем больше энергии имеет звуковая волна, тем громче будет звук.
Карты морского дна выполнены с использованием звуковой системы. Гидролокатор посылает звуковые волны и рассчитывает пройденное расстояние, используя скорость звука в воде.
В медицине ультразвук используется для удаления камней в почках. Эхокардиограмма является еще одной технологией, которая использует звуковые волны, чтобы увидеть плод у беременных женщин.
Лучистая энергия
Свет — это лучистая энергия, которая распространяется волнами.
Энергия в форме света или тепла — это лучистая энергия, более известная как излучение. Излучение — это электромагнитные волны, которым не нужны средства для перемещения подобно звуковым волнам, чтобы они могли перемещаться в космическом пространстве. Источником электромагнитных волн являются электроны, которые вибрируют, создавая электрическое поле и магнитное поле.
Различные типы лучистой энергии или излучения (потоки) упорядочены по уровням энергии в электромагнитном спектре. Они путешествуют в космосе со скоростью 300 миллионов метров в секунду, то есть со скоростью света.
Рентгеновские и гамма-лучи — это невидимые излучения с большим количеством энергии. Оба имеют важные применения в медицине. Рентген используется для диагностики переломов костей, в то время как гамма-излучение используется для диагностики неврологических заболеваний, таких как болезнь Паркинсона и Альцгеймера, или при заболеваниях сердца.
Ультрафиолетовые (УФ) лучи представляют собой тип невидимого излучения, создаваемого Солнцем и некоторых специальных ламп. Эти лучи отвечают за загар, который мы приобретаем, когда подвергаем себя воздействию солнца. Однако чрезмерное воздействие ультрафиолетовых лучей может вызвать ожоги и рак кожи. Вот почему вы должны защищать свое тело, когда вы долго на солнце, особенно кожу (чтобы защититься от рака кожи) и глаза.
Видимый свет излучения — это то, что человеческий глаз может воспринимать. Обычно мы видим белый свет, который является не более чем смесью огней разных цветов. Свет находится в энергетических пакетах, называемых фотонами, которые не имеют массу.
Инфракрасное излучение, микроволна и радиоволны менее энергичное излучение электромагнитного спектра. Радиоволны и микроволны — это волны, используемые в коммуникациях для передачи звука и изображений.
Солнечная энергия
Солнце — самый важный источник энергии для жизни на Земле.
Солнечная энергия — это лучистая энергия солнца. Он путешествует в пространстве, пока не достигнет Земли в виде электромагнитных волн. Большая часть солнечного излучения, которое достигает атмосферы Земли, — это ультрафиолетовое излучение, видимый свет и инфракрасные лучи.
Солнце состоит из водорода и гелия. В этом случае энергия исходит от процесса ядерного синтеза: ядра водорода объединяются, образуя гелий и лучистую энергию.
Люди научились использовать солнечную энергию. Сегодня энергия солнечного света используется для отопления домов и зданий, увеличения их тепловой энергии. Видимый солнечный свет проходит через стекла окон и поглощается материалами внутри комнаты. Это заставляет материалы нагреваться.
Лучистая энергия Солнца ответственна за существование жизни на Земле. Растения собирают эту энергию для производства пищи, превращая ее в химическую энергию. Солнечная энергия управляет движением воздуха в атмосфере, вызывая ветры.
Возобновляемые и невозобновляемые источники энергии
Такие ресурсы, как солнце и ветер, являются возобновляемыми источниками энергии.
Закон сохранения энергии гласит, что энергия не может быть создана или уничтожена, может только быть преобразована. Это означает, что при подсчете количества энергии в системе это количество всегда будет одинаковым, хотя и по-разному.
Когда мы говорим о возобновляемых или невозобновляемых энергоресурсах, мы действительно имеем в виду источники или ресурсы, из которых люди извлекают энергию.
Уголь и нефть являются ископаемым топливом, в котором химическая энергия сохраняется в связях между атомами углерода. Ископаемое топливо не возобновимо, потому что оно было сформировано миллионы лет назад из доисторических организмов. Эти источники энергии, помимо ограниченного существования, наносят серьезный ущерб окружающей среде.
Наша цель должна заключаться в том, чтобы воспользоваться другими источниками энергии, такими как солнце, ветер, внутреннее земное тепло и океанские волны, которые являются возобновляемыми и не загрязняющими окружающую среду. Вода может использоваться снова и снова благодаря естественному процессу круговорота воды.
Другой аспект, который мы должны принять во внимание, это не тратить энергию. Электрическая энергия вашего дома имеет свою стоимость. Если у вас долгое время открыт холодильник или вы оставили лампы в своей комнате, особенно если вас там нет, вы увеличиваете потребление электроэнергии в своем доме, и это будет оплачиваться вашими родителями. Экономия энергии — это разумное и осознанное использование.
10 примеров кинетической энергии в повседневной жизни
некоторые примеры кинетической энергии повседневной жизни может быть движение американских горок, мяча или машины.
Предполагается, что в той степени, в которой масса и скорость объекта постоянны, будет происходить и его ускорение. Таким образом, если скорость изменяется, то изменяется и значение, соответствующее кинетической энергии..
Когда вы хотите остановить движущийся объект, необходимо приложить отрицательную энергию, которая противодействует значению кинетической энергии, которую приносит объект. Величина этой отрицательной силы должна быть равна величине кинетической энергии, чтобы объект мог остановиться (Nardo, 2008).
Коэффициент кинетической энергии обычно сокращается буквами T, K или E (E- или E + в зависимости от направления силы). Точно так же термин «кинетический» происходит от греческого слова «κίνησις» или «kinēsis», что означает движение. Термин «кинетическая энергия» был впервые введен Уильямом Томсоном (лорд Кевин) в 1849 году..
Из исследования кинетической энергии выводятся исследования движения тел в горизонтальном и вертикальном направлении (падения и смещения). Коэффициенты проникновения, скорости и воздействия также были проанализированы (Академия, 2017).
Примеры кинетической энергии
Кинетическая энергия вместе с потенциалом включает в себя большинство энергий, перечисленных физикой (ядерная, гравитационная, упругая, электромагнитная, среди прочих).
1- сферические тела
Когда два сферических тела движутся с одинаковой скоростью, но имеют разную массу, тело большей массы будет развивать больший коэффициент кинетической энергии. Это случай двух мраморов разного размера и веса.
Приложение кинетической энергии также можно наблюдать, когда мяч брошен так, что он достигает рук приемника..
Мяч переходит из состояния покоя в состояние движения, где он приобретает коэффициент кинетической энергии, который сводится к нулю, как только он попадает в приемник (BBC, 2014).
2- американские горки
Когда автобусы американских горок находятся наверху, их коэффициент кинетической энергии равен нулю, потому что эти вагоны в покое.
Как только их притягивает сила тяжести, они начинают двигаться на полной скорости во время спуска. Это означает, что кинетическая энергия будет постепенно увеличиваться с увеличением скорости.
Когда внутри машины для американских горок будет больше пассажиров, коэффициент кинетической энергии будет выше, пока скорость не уменьшится. Это потому что машина будет иметь большую массу.
3- Бейсбол
Когда объект находится в состоянии покоя, его силы уравновешены и значение кинетической энергии равно нулю. Когда бейсбольный кувшин держит мяч до броска, он отдыхает.
Однако, как только мяч брошен, он постепенно и за короткий промежуток времени набирает кинетическую энергию, чтобы перемещаться из одного места в другое (из точки метателя в руки приемника)..
4- Автомобили
Автомобиль, который находится в состоянии покоя, имеет энергетический коэффициент, равный нулю. Как только это транспортное средство ускоряется, его коэффициент кинетической энергии начинает увеличиваться, так что, по мере увеличения скорости, будет больше кинетической энергии (Softschools, 2017).
5- Велоспорт
Велосипедист, который находится в начальной точке, не совершая никакого движения, имеет коэффициент кинетической энергии, равный нулю. Однако, как только вы начинаете крутить педали, эта энергия увеличивается. Вот как на более высоких скоростях, тем больше кинетическая энергия.
Когда наступит время, когда вы должны остановиться, велосипедист должен замедлить движение и применить противодействующие силы, чтобы замедлить мотоцикл и снова найти его с коэффициентом энергии, равным нулю..
6- Бокс и удар
Пример силы удара, который получается из коэффициента кинетической энергии, очевиден во время матча по боксу. Оба противника могут иметь одинаковую массу, но один из них может быть быстрее в движениях.
7- Открытие дверей в средние века
Как и в случае с боксером, принцип кинетической энергии широко использовался в средние века, когда толкались тяжелые тараны, чтобы открыть ворота замков..
В той степени, в которой таран или туловище двигались с более высокой скоростью, тем сильнее.
8- Падение камня или отряда
Перемещение камня в гору требует силы и ловкости, особенно когда камень имеет большую массу.
Тем не менее, спуск с того же камня вниз по склону будет быстрым благодаря силе гравитации на вашем теле. Таким образом, с увеличением ускорения коэффициент кинетической энергии будет увеличиваться.
Пока масса камня больше и ускорение постоянное, коэффициент кинетической энергии будет пропорционально выше (FAQ, 2016).
9- Падение вазы
Когда ваза падает со своего места, она переходит из состояния покоя в движение. Когда сила тяжести оказывает свою силу, ваза начинает набирать ускорение и постепенно накапливает кинетическую энергию в своей массе. Эта энергия высвобождается, когда ваза падает на землю и разбивается.
10- человек на скейтборде
Когда человек, едущий на скейтборде, находится в состоянии покоя, его энергетический коэффициент будет равен нулю. Как только он начинает движение, его коэффициент кинетической энергии будет постепенно увеличиваться.
Точно так же, если этот человек имеет большую массу или его скейтборд способен двигаться быстрее, его кинетическая энергия будет больше.