какие типы файлов существуют в ос unix
Типы файлов в Linux
При навигации по файловой системе в Linux, вы обязательно столкнетесь с различными типами файлов. Наиболее часто используемые и очевидные типы — это обычные файлы и каталоги. Однако помимо их в Linux также существуют еще 5 специальных типов.
Идентификация типов файлов в Linux
Для определения типа файла достаточно воспользоваться всего одной командой:
Типы файлов в Linux
Ниже представлено краткое описание 7 различных типов файлов в Linux:
c — символьное устройство;
b — блочное устройство;
s — (локальный) сокет;
p — именованный канал;
l — символьная ссылка.
Обычный файл
Обычный файл — это наиболее распространенный тип файлов в Linux. Текстовые файлы, изображения, двоичные файлы, общие библиотеки и т.д. — все они относятся к обычному типу файлов. Вы можете создать обычный файл с помощью команды touch :
$ touch ravesli.txt
diego@debian:
$ rm ravesli.txt
diego@debian:
Каталог
Обозначается как d
Каталог — это второй по распространенности тип файлов в Linux. Каталог можно создать с помощью команды mkdir (сокр. от «make directory»):
$ mkdir ravesli
diego@debian:
$ rmdir ravesli
diego@debian:
При попытке удалить каталог, содержащий внутри себя файлы, вы получите сообщение об ошибке:
$ mkdir ravesli
diego@debian:
$ touch /home/diego/ravesli/ravesli.txt
diego@debian:
$ rmdir ravesli
rmdir: не удалось удалить ‘ravesli’: Каталог не пуст
Символьное устройство
Обозначается как c
Символьные и блочные файлы устройств позволяют пользователям и программам взаимодействовать с аппаратными периферийными устройствами. При этом символьные устройства обеспечивают последовательный поток ввода или вывода:
В этом примере символьным устройством является генератор псевдослучайных чисел.
Блочное устройство
Обозначается как b
Блочные устройства похожи на символьные. Чаще всего они управляют аппаратными устройствами, такими как: жесткие диски, память и т.д. Большинство из них располагаются в каталоге /dev :
Локальные сокеты
Обозначаются как s
Как правило, локальные сокеты используются для связи между такими службами, как: X Window, syslog и т.д.
Именованные каналы
Обозначаются как p
Символьные ссылки
Обозначаются как l
С помощью символьных ссылок администратор назначает файлу или каталогу несколько идентификаторов. Символьную ссылку можно рассматривать как указатель на исходный файл.
Существует два типа символьных ссылок в Linux:
Мягкая ссылка является указателем на некоторый файл или каталог (сродни ярлыкам в Windows). Если вы переместите файл, связь с символьной ссылкой разорвётся (но сама ссылка все еще будет существовать, указывая на файл, которого нет). Если вы замените файл другим, сохранив имя, символьная ссылка будет указывать на новый файл. Символьные ссылки могут охватывать различные разделы файловой системы.
Жесткая ссылка привязывается только к файлам, охватывает только один раздел файловой системы и, по сути, является тем же файлом, на который ссылается.
$ echo file1 > file1
diego@debian:
$ cat file2
file1
diego@debian:
Заключение
Как системный администратор вы, в основном, будете иметь дело с обычными файлами, каталогами и символьными устройствами. Как разработчик программного обеспечения вы будете сталкиваться с сокетами и именованными каналами.
Поделиться в социальных сетях:
Типы файлов в Linux
Пространство нашего жесткого диска занято файлами разных типов. Например, взять даже наш корневой раздел (/), при создании файла, файловая система записывает его в определенном формате на нужное физическое место жесткого диска. Всегда, для работы с файлами используется файловая система, но не всегда она записывает файлы на диск, файловая система может работать на лету, генерируя файлы, например, как procfs, с помощью которой может быть выполнена настройка ядра linux или записывать файлы в оперативную память, как tmpfs расположенная в папке /tmp. Но все это не имеет значения, ведь в любом случае мы имеем дело именно с файлами.
В системе Linux нет различий между каталогами и файлами. Но каталоги могут объединять другие файлы в группы, чтобы их было легче найти и использовать. Все аппаратные устройства представлены в виде файлов и находятся в каталоге dev, только через эти файлы программы могут работать с ними.
Преимущество использования файлов как для обычной информации, так и для устройств, в том, что не нужно реализовать отдельный набор API интерфейсов для каждого устройства, с ним могут работать все стандартные утилиты Linux и API интерфейсы.
Типы файлов в Linux
Файлы в операционной системе Linux можно поделить на три основных типа:
Дальше рассмотрим более подробно эти типы файлов linux.
Обычные файлы
Это файлы, с которыми мы привыкли работать каждый день, они могут содержать текст, исполняемые инструкции для программ, изображения или другую информацию. Это самый распространенный тип файлов, которые вы можете найти в системе Linux. Рассмотрим небольшой список относящихся сюда файлов:
Утилита ls может определять тип файла в режиме списка, обычные файлы обозначаются черточкой, например:
Эта статья была бы неполной, если бы мы рассматривали типы файлов, но не упомянули о форматах. Дело в том, что все обычные файлы сохранены в определенном формате, это нужно, чтобы система знала какой программой нужно открывать файл.
Посмотреть форматы файлов linux можно с помощью утилиты file. Например:
Система сообщила что это исполняемый файл, а теперь посмотрим обычный, текстовый:
Утилита умеет распознавать все известные форматы файлов. Чтобы узнать вывести все доступные форматы файлов linux наберите:
Специальные файлы
Специальные файлы намного интереснее, они предназначены для обмена информации с ядром, работы с устройствами или общения между программами. Такие файлы могут тоже быть нескольких типов, в зависимости от назначения.
Утилита ls обозначает блочные файлы буквой b, например, выберем все блочные файлы из каталога /dev:
Утилита file, которую мы рассматривали в предыдущем разделе тоже умеет определять типы файлов:
Символьные файлы обеспечивают не буферизованный доступ к аппаратным компонентам и ядру. Поскольку у них нет буфера, они позволяют передавать только по одному символу за один раз. А в остальном, это такие же файлы устройств, как и блочные файлы.
Вы также можете отфильтровать их с помощью ls. Символьные файлы обозначаются буквой c (character):
Но вернемся к символическим ссылкам. Утилита ls обозначает их буквой l (link):
Создавать символические ссылки можно с помощью утилиты ln. Например:
Обозначаются такие типы файлов linux буквой p (pipe):
Чтобы создать именованный тоннель вы можете использовать утилиту mkfifo:
echo «test test test» > pipe1
После создания туннеля мы передали в него данные, и оболочка стала не интерактивной. Она будет ожидать пока данные будут прочитаны на другом конце туннеля. Открываем другую оболочку и читаем данные:
while read line ;do echo «Data: ‘$line’ «; done
Файлы сокетов обозначаются буквой s:
Создать сокет можно с помощью функции socket() на языке программирования Си, чтение и запись выполняется системными вызовами read() и write(). Но нам сейчас не нужно писать реальную программу, будет достаточно немного поиграться. Поэтому воспользуемся утилитой nc. Создаем Unix сокет:
Подключаемся к нему из другой консоли:
Все данные, которые вы будете набирать в одной из консолей будут отправляться на другую после нажатия Enter, связь работает в обоих направлениях.
Каталоги
Это специальные файлы, которые позволяют объединять другие и каталоги в группы для более простой навигации и поиска. Естественно, они могут содержать как обычные, так и специальные файлы, одним словом любые типы файлов ос linux. В системе Linux, файлы организуются в папки начиная от корня (/)
Обозначаются каталоги буквой d (directory):
Создать каталог в linux можно с помощью команды mkdir:
Заключение
Теперь у вас более четкое представление о том, почему в linux все является файлами, а также какие типы файлов в linux существуют в вашей системе. Вы можете найти более подробную информацию по каждому виду файлов в интернете, но если у вас остались вопросы, можете задать их в комментариях!
Типы файлов Linux
В GNU/Linux как и других Unix-подобных операционных системах понятие типа файла не связано с расширением файла (несколькими буквами после точки в конце имени), как это обстоит в Windows.
Unix-подобная ОС не следит за расширениями файлов. Задача связать расширения файла с конкретным пользовательским приложением, в котором этот файл будет открываться, видимо лежит на какой-либо дополнительной программе. В свою очередь пользовательское приложение анализирует структуру данный файла, расширение ему также безразлично.
Таким образом, среди файловых атрибутов, хранящихся в операционной системе на базе ядра Linux, нет информации о типе данных в файле. Там есть информация о более существенном разделении, связанном с тем, что в Unix-подобных системах все объекты – это файлы. Все объекты весьма разнообразны. Поэтому тип файла в Linux – это скорее тип объекта, но не тип данных как в Windows.
В операционной системе GNU/Linux существуют следующие типы файлов: обычные файлы, каталоги, символьные ссылки, блочные устройства, символьные устройства, сокеты, каналы. Каждый тип имеет собственное обозначение одним символом. Знание этих символов нам пригодится в дальнейшем при изучении командной оболочки Bash.
Обычные файлы (-)
Сюда относятся все файлы с данными, играющими роль ценной информации сами по себе. Linux все-равно текстовый перед ним файл, исполняемый или картинка. В любом случае это будет обычный (regular) файл. Все они обозначаются знаком минус «-«. Остальные типы файлов считаются специальными (special).
Каталоги (d)
В Linux каталог представляет собой такой тип файла, данными которого является список имен других файлов и каталогов, вложенных в данный каталог. Напрямую, то есть через какой-либо редактор, пользователь не может редактировать данные файла-каталога. Редактированием занимается ядро операционной системы, получая, в том числе от пользователя, команды создания файла, удаления и др.
В файле каталога осуществляется связь между именами файлов (словесного обозначения для людей) и их индексными дескрипторами (истинным именем-числом, которым оперирует ОС).
В Unix-подобных системах один и тот же файл может существовать под разными именами и/или в разных каталогах: все имена будут связаны с одним и тем же индексным дескриптором (механизм жестких ссылок).
Также следует, что файлы всегда должны содержаться в каталогах, иначе станут недоступны, так как нигде не будет содержаться записи о них.
Символьные ссылки (l)
Символьная ссылка – это файл, в данных которого содержится адрес другого файла по его имени (а не индексному дескриптору).
Выполнение символьной ссылки приводит к открытию файла, на который она указывает. Это аналог ярлыков в операционной системе Windows.
Если удалить исходный файл, то символьная ссылка продолжит существовать. Она по-прежнему будет указывать на файл, которого уже нет.
Символьные ссылки не содержат атрибутов файлов, на которые они указывают. У них есть собственные атрибуты.
Символьные (c) и блочные устройства (b)
Файлы устройств предназначены для обращения к аппаратному обеспечению компьютера (дискам, принтерам, терминалам и др.). Когда происходит обращение к файлу устройства, то ядро операционной системы передает запрос драйверу этого устройства.
К символьным устройствам обращение происходит последовательно (символ за символом). Примером символьного устройства может служить терминал.
Считывать и записывать информацию на блочные устройства можно в произвольном порядке, причем блоками определенного размера. Пример: жесткий диск.
Сокеты (s) и каналы (p)
Чтобы понять, что такое канал и сокет, необходимо понимание процессов в операционной системе. И каналы и сокеты организуют их взаимодействие. Пользователь с данными типами файлов почти не сталкивается.
Ключевым отличием канала от сокета является то, что канал однонаправлен. Через канал один процесс всегда передает данные второму, но не наоборот. Сокеты позволяют передавать данные в разных направлениях, т. е. осуществляют связь.
Также следует отметить, что канал представлен в структуре каталогов файлом, только если он именован. Когда возникают безымянные каналы, то они существуют только внутри ядра Linux.
Команда file
Хотя выше было сказано, что Линукс не делает предположение о типе данных в обычном файле, есть специальная утилита, которая выполняет эту задачу, – программа file. Для этого она анализирует начало содержимого файла и находит в нем специальные «сигналы», характерные для определенного типа – бинарного файла, текстового, изображения и др.
На скриншоте также показано, что расширение для программы file безразлично. Файл flag – копия flag.png, и программа успешно его идентифицировала как изображение.
Команда file имеет множество различных ключей.
Курс с ответами к заданиям и дополнительными уроками:
android-приложение, pdf-версия.
Виды файлов в Linux: «всё есть файл»
В Unix-подобных системах, куда входит и Linux, существует концепция «Всё есть файл». Согласно ей, работа с системой сводится к работе с файлами. Однако файлы в системе «Линукс» бывают разные. Об этом — наша статья.
К файлам в системе Linux относят и объекты, куда мы записываем наши данные, и исполняемые файлы, и файлы специального назначения (устройств, туннелей, сокетов и пр.). Но всё это неважно, ведь мы в любом случае работаем именно с файлами, которые используются и для обычных данных, и для устройств.
Преимущество такой концепции заключается в том, что отпадает необходимость в реализации отдельного набора API для каждого устройства, в результате чего с ним способны работать все стандартные программы системы «Линукс» и API-интерфейсы.
Основные типы файлов Linux
В системе Linux файлы делят на 3 главных типа: 1) обыкновенные (для хранения информации); 2) специальные (для туннелей и устройств); 3) директории.
Теперь рассмотрим каждый из этих типов подробнее.
Обыкновенные файлы
С обычными файлами мы работаем ежедневно. Они содержат текст, изображения, инструкции для работы софта и прочие данные. Это наиболее распространённый файловый тип в системе Linux. Сюда входят: 1) текстовые файлы; 2) файлы изображений, архивов, библиотек; 3) исполняемые и другие файлы.
Для определения файлового типа в режиме списка используется утилита ls. Обычные файлы будут обозначаться чертой:
Говоря об обычных файлах в системе, обязательно упомянем форматы. Чтобы система понимала, какой утилитой открывать файлы, необходимо, чтобы они были сохранены в конкретном формате. Форматы тоже можно посмотреть, но уже с помощью команды file:
В примере выше система сообщила, что файл является исполняемым. А вот как обстоит дело в случе, если он текстовый:
Так вы можете посмореть все файловые форматы:
Специальные файлы
Файлы этого типа обеспечивают обмен информацией с ядром, работу с устройствами либо общение между утилитами. С учётом своего назначения они делятся на несколько видов: 1.Блочные. Файлы устройств, обеспечивающие буферный доступ к аппаратным компонентам. В процессе записи информации на жёсткий диск либо съёмный носитель данные не записываются сразу — это нерационально с точки зрения расходования ресурсов. Поэтому данные сначала собираются в буфере, для чего и используются блочные файлы. Они способны передавать большие блоки информации за один раз, и с их помощью файловая система и прочие утилиты получают возможность взаимодействовать с драйверами аппаратных устройств.
Если вернутся к уже упомянутой программе ls, то блочные файлы обозначаются буквой b. Давайте выведем их из /dev:
Файловые типы также умеет определять и утилита file:
2.Символьные. С их помощью обеспечивается небуферизованный доступ к ядру и аппаратным компонентам. Это значит, что они могут передавать за раз лишь один символ. В остальном, это те же файлы устройств.
Как и в случае с блочными, вы можете отсортировать их посредством ls. Для символьных файлов предусмотрена буква c (character):
3.Символические ссылки. Они указывают на другие файлы по их имени, способны указывать и на обыкновенные файлы, и на каталоги, и на другие файловые типы. Можно сказать, что они аналогичны ярлыкам в системе Windows. Обозначаются буквой l (link):
Создать символические ссылки можно посредством утилиты ln:
4.Туннели/именованные туннели. Обеспечивают настройку связи между 2-мя процессами в системе, перенаправляя вывод одного на вход другого. Туннели именованного типа тоже применяются для связи между 2-мя процессами и функционируют, как и обыкновенные туннели.
Для их обозначения существует буква p (pipe):
Для создания именованного туннеля воспользуйтесь утилитой mkfifo:
В примере выше мы создали туннель и передали в него информацию, а оболочка стала неинтерактивной. Прочитать данные можно на другом конце туннеля:
5.Файлы сокетов. Создают прямую связь между процессами в системе. Передают данные между процессами, которые запущены в различных средах либо даже на различных машинах. Означает это следующее: посредством сокетов программы могут осуществлять обмен информацией даже по сети. Работа сокета похожа на работу туннеля, но в обе стороны.
Для обозначения предусмотрена буква s:
Создадим Unix-сокет с помощью утилиты nc:
И теперь подключимся к этому сокету из другой консоли:
Связь функционирует в обоих направлениях, поэтому после нажатия Enter вся информация, которую вы будете вводить в одной из консолей, станет отправляться в другую.
Каталоги
Каталог может содержать и обычные, и специальные файлы, то есть любые файловые типы в системе Linux. Они объединяют файлы (а также другие каталоги) в группы, чтобы упростить навигацию и поиск. В системе Linux файлы организовываются в папки, начиная от корня (/).
Каталоги обозначаются буквой d (directory):
Для создания каталога используют команду mkdir :
Вывод
В статье мы рассмотрели довольно простые вещи, которые касались типов файлов в Linux. Но если вы хотите освоить администрирование операционной системы Linux на продвинутом уровне, имеет смысл ознакомиться со специализированным курсом от практикующих администраторов. Не пропустите:
Какие типы файлов существуют в ос unix
Как мы неоднократно отмечали, в ОС UNIX понятие файла является универсальной абстракцией, позволяющей работать с обычными файлами, содержащимися на устройствах внешней памяти; с устройствами, вообще говоря, отличающимися от устройств внешней памяти; с информацией, динамически генерируемой другими процессами и т.д. Для поддержки этих возможностей единообразным способом файловые системы ОС UNIX поддерживают несколько типов файлов, наиболее существенные из которых мы рассмотрим в этом разделе.
Обычные файлы
Обычные (или регулярные) файлы реально представляют собой набор блоков (возможно, пустой) на устройстве внешней памяти, на котором поддерживается файловая система. Такие файлы могут содержать как текстовую информацию (обычно в формате ASCII), так и произвольную двоичную информацию. Файловая система не предписывает обычным файлам какую-либо структуру, обеспечивая на уровне пользователей представление обычного файла как последовательности байтов. Используя базовые системные вызовы (или функции библиотеки ввода/вывода, которые мы рассмотрим в разделе 4), пользователи могут как угодно структуризовать файлы. В частности, многие СУБД хранят базы данных в обычных файлах ОС UNIX.
Для некоторых файлов, которые должны интерпретироваться компонентами самой операционной системы, UNIX поддерживает фиксированную структуру. Наиболее важным примером таких файлов являются объектные и выполняемые файлы. Структура этих файлов поддерживается компиляторами, редакторами связей и загрузчиком. Однако, эта структура неизвестна файловой системе. Для нее такие файлы по-прежнему являются обычными файлами.
Файлы-каталоги
Наличие обычных файлов недостаточно для организации иерархических файловых систем. Требуется наличие каталогов, которые сопоставляют имена файлов или каталогов с их физическим описанием. Каталоги представляют собой особый вид файлов, которые хранятся во внешней памяти подобно обычным файлам, но структура которых поддерживается самой файловой системой.
Этот последний файл, как и любой обычный файл, хранится в файловой системе как набор блоков запоминающего устройства. Однако файловая система знает, что на самом деле это каталог со структурой, контролируемой файловой системой. Поэтому файлам-каталогам соответствует особый тип файла (обозначенный в их i-узлах), по отношению к которому возможно выполнение только специального набора системных вызовов:
mkdir, производящего новый каталог,
rmdir, удаляющий пустой (незаполненный) каталог,
getdents, позволяющего прочитать содержимое указанного каталога.
Специальные файлы
Специальные файлы не хранят данные. Они обеспечивают механизм отображения физических внешних устройств в имена файлов файловой системы. Каждому устройству, поддерживаемому системой, соответствует, по меньшей мере, один специальный файл. Специальные файлы создаются при выполнении системного вызова mknod, каждому специальному файлу соответствует порция программного обеспечения, называемая драйвером соответствующего устройства. При выполнении чтения или записи по отношению к специальному файлу, производится прямой вызов соответствующего драйвера, программный код которого отвечает за передачу данных между процессом пользователя и соответствующим физическим устройством.
При этом имена специальных файлов можно использовать практически всюду, где можно использовать имена обычных файлов. Например, команда
перепишет файл с именем myfile в подкаталог kuz рабочего каталога. В то же время, команда
cp myfile /dev/console
выдаст содержимое файла myfile на системную консоль вашей установки.
Символьные специальные файлы ассоциируются с внешними устройствами, которые не обязательно требуют обмена блоками данных равного размера. Примерами таких устройств являются терминалы (в том числе, системная консоль), последовательные устройства, некоторые виды магнитных лент. Иногда символьные специальные файлы ассоциируются с магнитными дисками.
При обмене данными с блочным устройством система буферизует данные во внутреннем системном кеше. Через определенные интервалы времени система «выталкивает» буфера, при которых содержится метка «измененный». Кроме того, существуют системные вызовы sync и fsync, которые могут использоваться в пользовательских программах, и выполнение которых приводит к выталкиванию измененных буферов из общесистемного пула. Основная проблема состоит в том, что при аварийной остановке компьютера (например, при внезапном выключении электрического питания) содержимое системного кеша может быть утрачено. Тогда внешние блочные файлы могут оказаться в рассогласованном состоянии. Например, может быть не вытолкнут супер-блок файловой системы, хотя файловая система соответствует его вытолкнутому состоянию. Заметим, что в любом случае согласованное состояние файловой системы может быть восстановлено (конечно, не всегда без потерь пользовательской информации).
Обмены с символьными специальными файлами производятся напрямую, без использования системной буферизации.
Связывание файлов с разными именами
Файловая система ОС UNIX обеспечивает возможность связывания одного и того же файла с разными именами. Часто имеет смысл хранить под разными именами одну и ту же команду (выполняемый файл) командного интерпретатора. Например, выполняемый файл традиционного текстового редактора ОС UNIX vi обычно может вызываться под именами ex, edit, vi, view и vedit.
Можно узнать имена всех связей данного файла с помощью команды ncheck, если указать в числе ее параметров номер i-узла интересующего файла. Например, чтобы узнать все имена, под которыми возможен вызов редактора vi, можно выполнить следующую последовательность команд (третий аргумент команды ncheck представляет собой имя специального файла, ассоциированного с файловой системой /usr):
Ранее в большинстве версий ОС UNIX поддерживались только так называемые «жесткие» связи, означающие, что в соответствующем каталоге имени связи сопоставлялось имя i-узла соответствующего файла. Новые жесткие связи могут создаваться с помощью системного вызова link. При выполнении этого системного вызова создается новый элемент каталога с тем же номером i-узла, что и ранее существовавший файл.
Начиная с «быстрой файловой системы» университета Беркли, в мире UNIX появились «символические связи». Символическая связь создается с помощью системного вызова symblink. При выполнении этого системного вызова в соответствующем каталоге создается элемент, в котором имени связи сопоставляется некоторое имя файла (этот файл даже не обязан существовать к моменту создания символической связи). Для символической связи создается отдельный i-узел и даже заводится отдельный блок данных для хранения потенциально длинного имени файла.
Для работы с символьными связями поддерживаются три специальных системных вызова:
Именованные программные каналы
Основной принцип работы программного канала состоит в буферизации байтового вывода одного процесса и обеспечении возможности чтения содержимого программного канала другим процессом в режиме FIFO (т.е. первым будет прочитан байт, который раньше всего записан). В любом случае интерфейс программного канала совпадает с интерфейсом файла (т.е. используются те же самые системные вызовы read и write).
Именованному программному каналу обязательно соответствует элемент некоторого каталога и даже собственный i-узел. Другими словами, именованный программный канал выглядит как обычный файл, но не содержащий никаких данных до тех пор, пока некоторый процесс не выполнит в него запись. После того, как некоторый другой процесс прочитает записанные в канал байты, этот файл снова становится пустым. В отличие от неименованных программных каналов, именованные программные каналы могут использоваться для связи любых процессов (т.е. не обязательно процессов, входящих в одну иерархию родства). Интерфейс именованного программного канала практически полностью совпадает с интерфейсом обычного файла (включая системные вызовы open и close), хотя, конечно, необходимо учитывать, что поведение канала отличается от поведения файла (подробности см. в п. 3.4.4).
Файлы, отображаемые в виртуальную память
Для отображения файла в виртуальную память, после открытия файла выполняется системный вызов mmap, действие которого состоит в том, что создается сегмент разделяемой памяти, ассоциированный с открытым файлом, и автоматически подключается к виртуальной памяти процесса (подробнее о разделяемой памяти см. п. 3.4.1). После этого процесс может читать из нового сегмента (реально будут читаться байты, содержащиеся в файле) и писать в него (реально все записи отображаются в файл). При закрытии файла соответствующий сегмент автоматически отключается от виртуальной памяти процесса и уничтожается, если только файл не подключен к виртуальной памяти некоторого другого процесса.
Несколько процессов могут одновременно открыть один и тот же файл и подключить его к своей виртуальной памяти системным вызовом mmap. Тогда любые изменения, производимые путем записи в соответствующий сегмент разделяемой памяти, будут сразу видны другим процессам.
Синхронизация при параллельном доступе к файлам
Исторически в ОС UNIX всегда применялся очень простой подход к обеспечению параллельного (от нескольких процессов) доступа к файлам: система позволяла любому числу процессов одновременно открывать один и тот же файл в любом режиме (чтения, записи или обновления) и не предпринимала никаких синхронизационных действий. Вся ответственность за корректность совместной обработки файла ложилась на использующие его процессы, и система даже не предоставляла каких-либо особых средств для синхронизации доступа процессов к файлу.
Поэтому разработчикам пришлось пойти «обходным путем». Ядро ОС UNIX поддерживает дополнительный системный вызов fcntl, обеспечивающий такие вспомогательные функции, относящиеся к файловой системе, как получение информации о текущем режиме открытия файла, изменение текущего режима открытия и т.д. В System V.4 именно на системный вызов fcntl нагружены функции синхронизации.
С помощью этого системного вызова можно установить монопольную или совместную блокировку файла целиком или блокировать указанный диапазон байтов внутри файла. Допускаются два варианта синхронизации: с ожиданием, когда требование блокировки может привести к откладыванию процесса до того момента, когда это требование может быть удовлетворено, и без ожидания, когда процесс немедленно оповещается об удовлетворении требования блокировки или о невозможности ее удовлетворения в данный момент времени.