какие типы реакторов кроме рбмк и ввэр
ВВЭР vs РБМК
В чем разница между реактором ВВЭР и РБМК
Главным преимуществом реакторов типа ВВЭР перед РБМК является то, что они намного более безопасней. Это определяется тремя основными причинами:
Самым главным преимуществом реактора ВВЭР является большая безопасность, значение которой полностью осознали, к огромному сожалению, лишь после Чернобыльской катастрофы, хотя это было известно за долго до нее. И то, что в энергетике той же России энергоблоки РБМК получили тем не менее широкое распространение, объяснятся тем, что до ввода в конце 70-х годов завода «Атоммаш», производящего ректоры типа ВВЭР, СССР мог производить только по одному корпусу такого реактора в год (на Ижорском заводе). Сейчас же Россия производит только усовершенствованные реакторы типа ВВЭР. Темпы завод «Атоммаш» значительно выросли и теперь он может изготавливать от 4 до 8 реакторов в год.
Однако в защиту РБМК необходимо сказать еще несколько слов.
Корпус ВВЭР имеет гигантские размеры, а изготовление его весьма трудоемко. Его размеры ограничены достижением предельного состояния прочности, так как механические напряжения, разрывающие корпус, пропорциональны его диаметру и внутреннему давлению в нем (при этом необходимо учитывать охрупчивание металла под действием нейтронного облучения). Кроме того, габариты корпуса ВВЭР ограничены требованиями железнодорожной перевозки. Все это приводит к тому, что для ВВЭР имеется некоторая предельная мощность, обусловленная размерами корпуса. Например, максимальная мощность ВВЭР в США достигла 1300 МВт и длина его корпуса составляет 13,42 м при диаметре 5,6 м. Для РБМК таких проблем нет, так как его мощность может быть увеличена простым наращиванием числа параллельных технологических каналов в графитовой кладке (при этом, конечно, усложняется система раздачи и сбора пара из технологических каналов). Повышение единичной мощности реакторов очень важно, так как стоимость строительства АЭС весьма высока и превышает 1100 долл/кВт. Повышение единичной мощности всегда приводит к снижению стоимости 1 кВт установленной мощности, так как при этом укрупняются такие элементы как ГЦН, парогенераторы (или барабаны-сепараторы), паровая турбина со всем ее сложным хозяйством, удешевляется удельная стоимость системы автоматики, водоснабжения и т.д. Уже очень давно на Игналинской АЭС (Литва) работает реактор типа РБМК мощностью 1500 МВт (эл).
Важным преимуществом реактора типа РБМК является возможность непрерывной перегрузки топлива (замены ТВС) перегрузочной машиной, с помощью которой ежесуточно заменяют 3—4 ТВС. Реактор типа ВВЭР необходимо останавливать ежегодно (со снятием верхнего блока и крышки) — для того, чтобы извлечь 1/3 топлива из центральной части активной зоны, где выгорание идет быстрее. Затем 1/3 топлива перемещают из средней части активной зоны в центральную часть и из периферийной — в среднюю; в освобожденной периферийной части активной зоны устанавливаются ТВС со свежими твэлами. Правда, перегрузку топлива, совмещают с планово-предупредительными ремонтами (ППР) длительностью 20—40 суток другого оборудования энергоблока. Но в любом случае необходимость ежегодной перезагрузки топлива (сейчас постепенно решается вопрос о продлении топливной компании до 18 месяцев) приводит к снижению коэффициента использования установленной мощности (КИУМ).
Атомная энергетика сегодня, типы реакторов и переход к экологически чистой энергии
реклама
реклама
реклама
Внутри активной зоны атомы урана расщепляются естественным образом. При этом часть мощной силы, связывающей атомы вместе, высвобождается в виде гамма-излучения, а также пары нейтронов. Пока нейтроны летят, вода действует как замедлитель. То есть она замедляет эти нейтроны, увеличивая вероятность того, что они будут взаимодействовать с другими атомами урана.
Если один из этих нейтронов поглощается атомом урана-235, этот атом становится нестабильным и расщепляется, высвобождая больше энергии и больше нейтронов. Этот каскад нейтронов и расщепляющихся атомов перерастает в цепную реакцию, в результате которой выделяется энергия, достаточная для питания города в течение десятилетий. Чтобы реакция не вышла из-под контроля и не расплавила активную зону, можно вставить управляющие стержни, поглощающие нейтроны и гасящие выход.
Все это включает в себя множество очень сложных физических моментов, но в результате получается «гигантский чайник», который нагревает воду. Эта горячая вода проходит через теплообменник и нагревает еще один контур воды для создания пара, который затем вращает турбину, которая приводит в действие генератор, вырабатывающий электричество.
реклама
Современные типы реакторов
Вот краткая информация о том, как работают основные типы реакторов, используемых сегодня. Следует иметь в виду, что некоторые из этих основных конструкций были разработаны еще в 1950-х годах и на протяжении более 60 лет постоянно совершенствовались, чтобы сделать их более безопасными и эффективными.
Pressurized Water Reactor
Наиболее распространенным типом реактора является реактор с водой под давлением (PWR), который первоначально был разработан в США для питания атомных подводных лодок, а в настоящее время используется в более чем 20 странах. Это конструкция, описанная выше, в которой вода используется и как замедлитель, и как теплоноситель.
В современных конструкциях реакторов PWR топливо обогащается примерно до 3,2 процента урана-235 и формируется в таблетки весом около 10 граммов, которые запечатываются в стержни из циркониевого сплава. Контейнер из нержавеющей стали, окружающий реактор, предназначен как для герметизации всех ядерных продуктов, так и для использования в качестве сосуда под давлением, который поддерживает жидкую воду при более высокой температуре, как в скороварке, для большей эффективности. Контейнер, в свою очередь, закрыт стальным и бетонным щитом, чтобы удержать содержимое реактора даже в случае расплавления.
В старых конструкциях реакторов PWR вода с теплоносителем выходила из защитного экрана и использовалась для выработки электроэнергии. Чтобы поддерживать активную зону реактора холодной, вода должна была постоянно активно прокачиваться. Оба варианта создавали проблемы с безопасностью, как это было во время катастрофы на острове Три-Майл, поэтому в более поздних реакторах использовалась серия контуров теплообменников и резервные пассивные системы циркуляции воды для поддержания охлаждения активной зоны даже в случае полной остановки.
Кипящий водо-водяной реактор (BWR)
Boiling water reactor
Следующий по распространенности реактор, известный как реактор с кипящей водой (BWR), является более простым и практически менее безопасным, чем PWR. Как следует из названия, воде в контуре теплоносителя дают возможность закипеть, и пар поступает непосредственно в турбину из защитной оболочки, а после повторной конденсации возвращается в реактор. Это обеспечивает большую вероятность радиоактивного заражения.
Схема кипящего водо-водяного реактора
Heavy Water Reactor
Улучшенный реактор с газовым охлаждением AGR
Для охлаждения в этих реакторах используется двуокись углерода. Поскольку прежний реактор Магнокс был предназначен в основном для производства плутония, он был не очень эффективен, поэтому был создан реактор AGR, который работает при более высокой температуре для лучшего производства пара и работы турбин.
Реактор большой мощности канальный
Реактор большой мощности канальный, РБМК был разработан в СССР примерно в то же время, что и Magnox, и имеет некоторые общие конструктивные особенности, хотя это совершенно другая машина. В РБМК используется очень мощная графитовая активная зона с водяным охлаждением, состоящая примерно из 1700 вертикальных каналов, содержащих оксид урана, обогащенный до 1,8 процента урана-235. Вода циркулирует под давлением и затем используется для выработки пара.
Хотя большое количество РБМК все еще работает в бывших странах СССР, их печально известная небезопасная конструкция была продемонстрирована Чернобыльской катастрофой в 1986 году, когда инженеры нарушили протоколы безопасности во время имитации испытания на отключение электроэнергии, в результате чего активная зона одного из реакторов комплекса была разорвана паром, после чего произошло возгорание графитового замедлителя.
Реакторы будущего
Сравнение реакторов типов ВВЭР и РБМК
Главное преимущество реакторов типа ВВЭР перед РБМК состоит в их большей безопасности. Это определяется тремя причинами:
реактор ВВЭР принципиально не имеет так называемых положительных обратных связей, т.е. в случае потери теплоносителя и потери охлаждения активной зоны цепная реакция горения ядерного топлива затухает, а не разгоняется, как в РБМК;
активная зона ВВЭР не содержит горючего вещества (графита), которого в активной зоне РБМК содержится около 2 тыс. т;
реактор ВВЭР имеет защитную оболочку, не допускающую выхода радиоактивности за пределы АЭС даже при разрушении корпуса реактора; выполнить единый защитный колпак для РБМК невозможно из-за большой разветвленности труб реакторного контура.
Основное преимущество ВВЭР — безопасность, значение которого полностью осознали после Чернобыльской катастрофы. Распространение в энергетике России энергоблоков РБМК объяснятся тем, что до ввода в конце 70-х годов завода «Атоммаш» (который стал производить ректоры типа ВВЭР), СССР мог производить только по одному корпусу реактора в год (на Ижорском заводе). Сейчас Россия производит только усовершенствованные высоконадежные реакторы типа ВВЭР.
Преимущества РБМК по сравнению с ВВЭР.
· гигантские размеры, поэтому изготовление его весьма трудоемко;
· размеры ограничены достижением предельного состояния прочности: механические напряжения, разрывающие корпус, пропорциональны его диаметру и внутреннему давлению в нем (при этом учитывается также охрупчивание металла под действием нейтронного облучения);
· габариты корпуса ВВЭР ограничены требованиями железнодорожной перевозки.
В следствии этого для ВВЭР имеется некоторая предельная мощность. Для РБМК таких проблем нет: мощность может быть увеличена простым наращиванием числа параллельных технологических каналов в графитовой кладке (при этом усложняется система раздачи и сбора пара из технологических каналов). Повышение единичной мощности реакторов важно, так как стоимость строительства АЭС весьма высока и превышает 1100 долл/кВт. Повышение единичной мощности всегда приводит к снижению стоимости 1 кВт установленной мощности, так как при этом укрупняются такие элементы как ГЦН, парогенераторы (или барабаны-сепараторы), паровая турбина со всем ее сложным хозяйством, удешевляется удельная стоимость системы автоматики, водоснабжения и т.д.
Важным преимуществом реактора типа РБМК является возможность непрерывной перегрузки топлива (замены ТВС) перегрузочной машиной (см. рис. 5.11), с помощью которой ежесуточно заменяют 3—4 ТВС. Реактор типа ВВЭР необходимо останавливать ежегодно (со снятием верхнего блока и крышки — см. рис. 5.4) для того, чтобы извлечь 1/3 топлива из центральной части активной зоны, где выгорание идет быстрее. Затем 1/3 топлива перемещают из средней части активной зоны в центральную часть и из периферийной — в среднюю; в освобожденной периферийной части активной зоны устанавливаются ТВС со свежими твэлами. Правда, перегрузку топлива, совмещают с планово-предупредительными ремонтами (ППР) длительностью 20—40 сут другого оборудования энергоблока. Но в любом случае необходимость ежегодной перезагрузки топлива (сейчас постепенно решается вопрос о продлении топливной компании до 18 мес) приводит к снижению коэффициента использования установленной мощности (КИУМ).
Технологические схемы производства электроэнергии на АЭС с реакторами типов ВВЭР и РБМК
Реакторы типа ВВЭР используют для строительства двухконтурных АЭС. Как следует из названия, такая АЭС (рис. 5.14) состоит из двух контуров. Первый контур расположен в реакторном отделении. Он включает реактор типа ВВЭР, через который с помощью ГЦН прокачивается вода под давлением 15,7 МПа (160 ат). На входе в реактор вода имеет температуру 289 °С, на выходе — 322 °С. При давлении в 160 ат вода может закипеть, как видно из рис. 1.2, только при температуре 346 °С и, таким образом, в первом контуре двухконтурной АЭС всегда циркулирует только вода без образования пара.
Из ядерного реактора вода с температурой 322 °С поступает в парогенератор. Парогенератор — это горизонтальный цилиндрический сосуд (барабан), частично заполненный питательной водой второго контура; над водой имеется паровое пространство. В воду погружены многочисленные трубы парогенератора ПГ, в которые поступает вода из ядерного реактора. Можно сказать, что парогенератор — это кипятильник, выпаривающий воду при повышенном давлении. С помощью питательного насоса ПН и соответствующего выбора турбины в парогенераторе создается давление существенно меньшее, чем в первом контуре (для реактора ВВЭР-1000 и турбины мощностью 1000 МВт это давление свежего пара р0 = 60 ат). Поэтому уже при нагреве до 275 °С в соответствии с рис. 1.2 вода в парогенераторе закипает вследствие нагрева ее теплоносителем, имеющим температуру 322 °С. Таким образом, в парогенераторе, являющимся связывающим звеном первого и второго контура (но расположенном в реакторном отделении), генерируется сухой насыщенный пар с давлением р0 = 60 ат и температурой t0 = 275 °С (свежий пар). Если говорить строго, то этот пар — влажный, однако его влажность мала (0,5 %). И сейчас мы отмечаем первую особенность АЭС — низкие начальные параметры и влажный пар на входе в турбину.
Этот пар направляется в ЦВД паровой турбины. Здесь он расширяется до давления примерно 1 МПа (10 ат). Выбор этого давления обусловлен тем, что уже при этом давлении влажность пара достигает 10—12 %, и капли влаги, движущиеся с большой скоростью, приводят к интенсивной эрозии и размывам деталей проточной части паровой турбины.
Поэтому из ЦВД пар направляется в сепаратор-пароперегреватель (СПП). В сепараторе С от пара отделяется влага, и он поступает в пароперегреватель, где его параметры доводятся до значений 10 ат, 250 °С. Таким образом, пар на выходе из СПП является перегретым, и эти параметры выбраны такими, чтобы получить допустимую влажность в конце турбины, где угроза эрозии еще большая, чем за ЦВД. Пар с указанными параметрами поступает в ЦНД (в энергоблоке 1000 МВт три одинаковых ЦНД, на рис. 5.14 показан только один). Расширившись в ЦНД, пар поступает в конденсатор, а из него в конденсатно-питательный тракт, аналогичный показанному на рис. 2.5 тракту обычной ТЭС.
Важно отметить, что во втором контуре циркулирует нерадиоактивная среда, что существенно упрощает эксплуатацию и повышает безопасность АЭС.
На рис. 5.15 показана схема одноконтурных АЭС, построенных в России с реакторами РБМК-1000 на трех АЭС (см. табл. 5.1). Одноконтурной она называется потому, что и через реактор, и через паротурбинную установку циркулирует одно и то же рабочее тело.
Питательная вода с помощью ГЦН с параметрами 80 ат и 265 °С из раздаточного коллектора подводится к многочисленным (в РБМК-1000 их 1693) параллельным технологическим каналам, размещенным в активной зоне реактора. На выходе из каналов пароводяная смесь с паро-содержанием 14—17 % собирается в коллекторе и подается в барабан-сепаратор (у РБМК-1000 их четыре). Барабан-сепаратор служит для разделения пара и воды. Образующийся пар с параметрами 6,4 МПа (65 ат) и 280 °С направляется прямо в паровую турбину (реактор РБМК-1000 в номинальном режиме питает две одинаковые паровые турбины мощностью по 500 МВт каждая).
Пар, получаемый в реакторе и в сепараторе, является радиоактивным вследствие наличия растворенных в нем радиоактивных газов, причем именно паропроводы свежего пара обладают наибольшим радиоактивным излучением. Поэтому их прокладывают в специальных бетонных коридорах, служащих биологической защитой. По этой же причине пар к турбине подводится снизу, под отметкой ее обслуживания (пола машинного зала).
Пар, расширившийся в ЦВД до давления 0,35 МПа (3,5 ат), направляется в СПП (на каждой турбине энергоблока с реактором РБМК-1000 их четыре), а из них — в ЦНД (на каждой турбине их также четыре) и в конденсаторы. Конденсатно-питательный тракт такой же, как у обычной ТЭС (см. рис. 2.5). Однако многие его элементы требуют биологической защиты от радиоактивности. Это относится к конденсатоочистке и водяным емкостям конденсатора, где могут накапливаться радиоактивные продукты коррозии, подогревателям регенеративной системы, питаемым радиоактивным паром из турбины, сборникам сепарата CПП. Одним словом, и устройство, и эксплуатация одноконтурных АЭС, особенно в части машинного зала, существенно сложнее, чем двухконтурных.
Конденсат, пройдя систему регенеративного подогрева воды, приобретает температуру 165°С, смешивается с водой, идущей из барабана-сепаратора (280 °С) и поступает к ГЦН, обеспечивающим питание ядерного реактора.
Что представляет из себя АЭС?
Атомная станция обычно представляет собой комплекс зданий. Основным является главный корпус, где находится реакторный зал. В нем размещается реактор, бассейн выдержки ядерного топлива, перегрузочная машина (для осуществления перегрузок топлива), за всем этим наблюдают операторы с блочного щита управления (БЩУ).
Основным элементом реактора является активная зона. Она размещена в бетонной шахте. Обязательными компонентами любого реактора являются система управления и защиты, позволяющая осуществлять выбранный режим протекания управляемой цепной реакции деления, а также система аварийной защиты – для быстрого прекращения реакции при возникновении аварийной ситуации. Все это смонтировано в главном корпусе.
Есть также 2 здание, где размещается турбинный зал: парогенераторы, сама турбина. Далее по технологической цепочке следуют конденсаторы и высоковольтные линии электропередач, уходящие за пределы площадки станции. На территории находятся также корпус для перегрузки и хранения в специальных бассейнах отработавшего ядерного топлива, административные здания. Кроме того, станции комплектуются, как правило, какими-то элементами оборотной системы охлаждения – градирнями (бетонная башня, сужающаяся кверху), прудом-охладителем (это либо естественный водоем, либо искусственно созданный) или брызгальными бассейнами (большие бассейны с разбрызгивающими устройствами).
Посмотреть на площадку и помещения реальной атомной станции можно на сайте Виртуального агентства путешествий «Энергия travel».
Преимущества и недостатки АЭС по сравнению с ТЭС
Главным преимуществом АЭС перед любыми другими электростанциями является их практическая независимость от источников топлива, т.е. удаленности от месторождений урана и радиохимических заводов. Энергетический эквивалент ядерного топлива в миллионы раз больше, чем органического топлива, и поэтому, в отличие, скажем, от угля, расходы на его перевозку ничтожны. Это особенно важно для европейской части России, где доставка угля из Кузбасса и Сибири слишком дорога. Кроме того, замена выработки электроэнергии на газомазутных (фактически — газовых) ТЭС производством электроэнергии на АЭС — важный способ поддержания экспортных поставок газа в Европу.
Это преимущество трансформируется в другое: для большинства стран, в том числе и России, производство электроэнергии на АЭС не дороже, чем на газомазутных и тем более пылеугольных ТЭС. Достаточно сказать, что сейчас тарифы на закупку электроэнергии АЭС электрическими сетями на 40—50 % ниже, чем для ГРЭС различного типа. Особенно заметно преимущество АЭС в части стоимости производимой электроэнергии стало заметно в начале 70-х годов, когда разразился энергетический кризис и цены на нефть на мировом рынке возросли в несколько раз. Падение цен на нефть, конечно, автоматически снижает конкурентоспособность АЭС.
Затраты на строительство АЭС находятся примерно на таком же уровне, как и на строительство пылеугольных ТЭС или несколько выше.
Наконец, огромным преимуществом АЭС является ее относительная экологическая чистота. Из табл. 5.3 видно, сколь значительны выбросы вредных веществ ТЭС, работающих на различных органических топливах
Подобные выбросы на АЭС просто отсутствуют. Если ТЭС мощностью 1000 МВт потребляет в год 8 млн т кислорода для окисления топлива, то АЭС не потребляет кислорода вообще.
Главный недостаток АЭС — тяжелые последствия аварий в реакторном отделении с его разгерметизацией и выбросом радиоактивных веществ в атмосферу с заражением громадных пространств. Это не требует особых пояснений — достаточно вспомнить аварию на Чернобыльской АЭС. Для исключения таких аварий АЭС оборудуется сложнейшими системами безопасности с многократными запасами и резервированием, обеспечивающими даже в случае так называемой максимальной проектной аварии (местный полный поперечный разрыв трубопровода циркуляционного контура в реакторном отделении) исключение расплавления активной зоны и ее расхолаживание.
Для обеспечения радиационной безопасности АЭС оборудуют специальной приточно-вытяжной системой вентиляции, сложность которой не идет ни в какое сравнение с вентиляционной системой ТЭС. Если для последней основной задачей является поддержание только санитарно-технических норм, то вентиляционная система АЭС, кроме решения названной задачи должна решать проблему радиационной безопасности. Для этого АЭС оборудуется системой определенного направленного движения воздуха из зон с малым радиоактивным загрязнением в так называемые необслуживаемые помещения с высоким уровнем радиации (вплоть до создания в таких помещениях разрежения). В конечном счете все вентиляционные потоки поступают к дезактивационным фильтрам и затем к вентиляционной трубе высотой не менее 100 м.
Серьезной проблемой для АЭС является их ликвидация после выработки ресурса, которая по оценкам может составлять до 20 % стоимости их строительства.
Некоторые эксплуатационные особенности АЭС:
АЭС в силу ряда технических причин не могут работать в маневренных режимах, т.е. участвовать в покрытии переменной части графика электрической нагрузки. Из-за высокой стоимости АЭС должны работать с максимальной нагрузкой, но при их высокой доле в установленной мощности отдельных объединенных энергосистем и при больших неравномерностях графика суточной и недельной нагрузки возникает необходимость быстрых нагружений и разгружений АЭС, которые для них крайне нежелательны.
Как видно из рис. 5.14 и 5.15, параметры энергоблоков АЭС существенно ниже, чем ТЭС: температура пара перед турбиной почти в 2 раза, а давление более чем в 3 раза меньше. Это означает, что работоспособность 1 кг пара, протекающего через турбину АЭС, оказывается примерно вдвое меньше, чем через турбину ТЭС. Вместе с тем, большие капитальные затраты требуют большой единичной мощности энергоблоков АЭС. Отсюда — большие расходы пара через турбоагрегаты АЭС по сравнению с турбоагрегатами ТЭС и соответственно большие расходы охлаждающей воды.
Тем не менее, при всех «недостатках» генерация электроэнергии на АЭС развивается.
Восемь уроков Чернобыля: как их выучила атомная промышленность России
РБК обобщил факторы, приведшие к такому развитию событий, и предложил государственной корпорации «Росатом» прокомментировать их. Аналогичные запросы были направлены в МАГАТЭ и Курчатовский институт. Агентство к моменту публикации материала не ответило, институт предложил использовать информацию с его сайта.
1. Проблемы с реактором РБМК
Эксплуатировавшиеся на ЧАЭС водно-графитовые реакторы типа РБМК на урановом топливе, созданные в СССР на основе реакторов для производства оружейного плутония, имеют «врожденный» недостаток — так называемый положительный паровой коэффициент реактивности, то есть в определенных ситуациях при повышении мощности реактора далее она может начать расти неконтролируемо и непредсказуемо. Это делает эти реакторы, составлявшие каркас советской атомной энергетики, нестабильными и ядерноопасными. На апрель 1986 года реактор РБМК имел десятки нарушений и отступлений от действующих правил ядерной безопасности. Советские специалисты неоднократно предупреждали об этом, но их выводы фактически игнорировались, как и зарубежные исследования, посвященные безопасности атомных станций.
Комментарий «Росатома». Современные российские реакторы типа РБМК и ВВЭР соответствуют всем современным нормам и требованиям безопасности, в том числе международным требованиям МАГАТЭ. Это подтверждают регулярно проводимые международными организациями проверки и инспекции.
Сейчас сооружаются реакторы российского дизайна только типа ВВЭР. После 1986 года специалистами атомной отрасли проделана огромная работа в области повышения безопасности реакторов типа РБМК. После всестороннего анализа причин аварии на Чернобыльской АЭС были реализованы, в частности, следующие технические мероприятия по повышению безопасности действующих реакторов РБМК-1000:
— активная зона реакторов переведена на уран-эрбиевое топливо с обогащением 2,8% (что привело к снижению парового коэффициента реактивности почти в десять раз);
— повышена эффективность аварийной защиты (АЗ) реактора за счет увеличения количества стержней АЗ с 24 до 33 штук;
— увеличен оперативный запас реактивности до 43–48 регулирующих стержней;
— внедрены исполнительные механизмы быстрой аварийной защиты (системы управления и защиты реактора — СУЗ), позволяющие осуществлять полный ввод стержней АЗ в активную зону реактора не более чем за 2,5 секунды (защита от разгона и расплавления топливной матрицы);
— реализован автоматический ввод в активную зону реактора стержней СУЗ типа УСП (укороченные стержни-поглотители) по сигналу аварийной защиты, тем самым повышена безопасность увеличением эффективности действия защитных органов;
— стержни СУЗ устаревшей конструкции с вытеснителем заменены на кластерные регулирующие органы, что позволило снизить эффект обезвоживания контура охлаждения СУЗ на номинальном уровне мощности почти в четыре раза, а также уменьшить время полного ввода стержней в активную зону с 18 до 7 секунд (таким образом, исключена возможность разгона реактора);
— увеличено количество внутриреакторных датчиков контроля нейтронного потока, устанавливаемых в реактор для контроля поля энерговыделения (по радиусу — до 182 штук, по высоте — до 72 штук);
— внедрена система сейсмической защиты реакторной установки при землетрясении;
— в проекты энергоблоков включена противоаварийная мобильная техника для предотвращения и ослабления последствий запроектных аварий.
Кроме того, была выполнена модернизация и реконструкция целого ряда систем реактора. Ежегодно на реакторах РБМК-1000 выполняются работы по управлению ресурсными характеристиками графитовых кладок.
Эти мероприятия обеспечили надежную и безопасную работу атомных станций с РБМК-1000. Их безопасность подтверждалась в ходе многочисленных международных проектов (МАГАТЭ, TACIS, EBRD).
При этом происходит постепенный вывод из эксплуатации энергоблоков с реакторами РБМК-1000 и замена их на самые современные в мире энергоблоки с реакторами поколения 3+ — ВВЭР-1200 и ВВЭР-ТОИ.
Единственным институтом Российской академии наук, специализирующимся в области комплексных исследований проблем безопасности объектов атомной энергетики и промышленности, является Институт проблем безопасного развития атомной энергетики (ИБРАЭ) РАН. Созданный в 1988 году для исследования последствий аварии на Чернобыльской АЭС, ИБРАЭ РАН за десятилетия работы превратился в один из самых известных и авторитетных в мире научных центров в области ядерной и радиационной безопасности. При этом институт является независимым от «Росатома» исследовательским центром, находящимся в ведении Министерства науки и высшего образования.
С 2018 года ИБРАЭ РАН является членом Всемирной ядерной ассоциации (World Nuclear Association) — международной организации, которая объединяет более 180 ведущих предприятий и организаций атомной отрасли и задачами которой являются популяризация и продвижение атомной энергетики и оказание поддержки предприятиям атомной отрасли.
2. Проблемы с аварийной защитой
Советский проект реактора РБМК из соображений экономии не предполагал сооружения защитной бетонной купольной оболочки, которая к тому времени уже использовалась в других странах. Аварийная защита РБМК, осуществляемая путем ввода в активную зону реактора стержней из карбида бора с графитовыми вытеснителями, также обладала серьезным недостатком — так называемым концевым эффектом. В результате при попытке экстренно остановить реактор в аварийной ситуации его мощность могла поначалу расти. Введение в действие аварийной защиты занимало около 20 секунд. При аварии в Чернобыле стержни застряли на середине пути.
Комментарий «Росатома». Современные АЭС — это абсолютно новый технологический этап развития атомной энергетики. В новых блоках АЭС с реакторами ВВЭР-1200 использованы новейшие достижения и разработки, отвечающие всем современным международным требованиям.
Самый мощный на сегодняшний день реактор ВВЭР-1200 обладает тремя ключевыми преимуществами: он высокопроизводителен, долговечен и безопасен. Главной особенностью проекта ВВЭР-1200 является уникальное сочетание активных и пассивных систем безопасности, делающих станцию максимально устойчивой к внешним и внутренним воздействиям. В проекте реализован полный комплекс технических решений, позволяющих обеспечить безопасность АЭС и исключить выход радиоактивных продуктов в окружающую среду.
В частности, энергоблок оснащен двумя защитными оболочками с вентилируемым пространством между ними. Внутренняя защитная оболочка обеспечивает герметичность объема, где расположена реакторная установка. Внешняя оболочка способна противостоять природным (смерчи, ураганы, землетрясения, наводнения и т.д.), техногенным и антропогенным (взрывы, падение самолета и т.д.) воздействиям на АЭС.
Пассивные системы безопасности станции способны функционировать даже в случае полной потери электроснабжения, могут выполнять все функции обеспечения безопасности без участия активных систем и вмешательства оператора.
В проекте ВВЭР-1200 предусмотрена система пассивной фильтрации пространства между внешней и внутренней защитными оболочками энергоблока. Она позволяет исключить выход радиоактивности в окружающую среду через наружную защитную оболочку в любых ситуациях, связанных с отказом активной системы спецвентиляции. Кроме того, в нижней части защитной оболочки АЭС установлено устройство локализации расплава (УЛР), или «ловушка» расплава, предназначенное для локализации и охлаждения расплава активной зоны реактора в случае гипотетической аварии, которая может привести к повреждению активной зоны реактора.
Проверки на российских АЭС проводятся в соответствии с годовым планом работ, графиком проверок, а также поручениями руководства концерна «Росэнергоатом» и госкорпорации «Росатом». В случае ухудшения показателей безопасной эксплуатации АЭС проводятся целевые проверки, направленные на углубленное изучение причин ухудшения состояния безопасности и принятие необходимых корректирующих действий по их устранению.
Кроме того, на российских АЭС регулярно проводятся международные партнерские проверки с участием специалистов МАГАТЭ и ВАО АЭС (Всемирная ассоциация организаций, эксплуатирующих атомные электростанции).
3. Проблемы с обеспечением безопасности при строительстве станции
При строительстве ЧАЭС с ведома директора станции Виктора Брюханова из-за дефицита материалов и других проблем был нарушен ряд требований, обязательных при сооружении объектов такого рода: вместо огнестойких тросов использовались обычные, крыша турбинного зала была залита битумом и т.п. Город Припять находился в 3 км по прямой от ЧАЭС. В санитарной зоне, которая должна была защищать население от излучения низкой интенсивности, при попустительстве властей появились огороды и дачи горожан.
Комментарий «Росатома». Безусловным приоритетом для инжинирингового дивизиона «Росатома» является обеспечение безопасности реализуемых проектов на основе принципа глубоко эшелонированной защиты, то есть применении системы барьеров на пути распространения ионизирующих излучений и радиоактивных веществ в окружающую среду с целью защиты населения, а также системы технических мер по сохранению эффективности этих барьеров.
В соответствии с концепцией глубоко эшелонированной защиты предусмотрены системы безопасности, предназначенные для выполнения следующих основных функций безопасности:
— аварийного останова реактора и поддержания его в подкритическом состоянии;
— аварийного отвода тепла от реактора;
— удержания радиоактивных веществ в установленных границах;
— отвода тепла от ядерного топлива при его хранении.
Во всех проектах АЭС поколения 3+ предусмотрена защита станции от мощного землетрясения (8 баллов и выше по шкале MSK-64 в зависимости от места расположения), падения самолета, внешней воздушной ударной волны, торнадо и наводнений.
Специалисты инжинирингового дивизиона «Росатома» применяют интегрированную систему менеджмента (ИСМ), которая разработана, документирована, сертифицирована и функционирует в соответствии с требованиями международных стандартов ISO 9001, ISO 14001, OHSAS 1800 с учетом законодательных и нормативных требований, действующих в атомной отрасли, а также рекомендаций норм МАГАТЭ по безопасности.
В течение всего периода проектирования, сооружения и ввода в эксплуатацию энергоблока на площадке работает авторский надзор — инженеры генеральной проектной организации, осуществляющие оперативный надзор соответствия выполняемых работ утвержденному проекту.
Все строительные материалы и оборудование перед использованием на строительной площадке проходят обязательный входной контроль со стороны заказчика, генеральной проектной организации, генерального подрядчика и компаний — изготовителей оборудования.
При выборе площадки для сооружения АЭС учитываются следующие основные требования:
— возможность размещения АЭС с точки зрения выполнения экологических норм;
— близость к источнику водоснабжения;
— сейсмичность района (согласно федеральным нормам не более 7 баллов по шкале MSK-64);
— благоприятный рельеф местности, подходящее качество грунта, низкий уровень грунтовых вод;
— достаточные размеры территории для размещения станции с учетом ее возможного будущего расширения, обеспечения санитарно-защитной зоны;
— развитая инфраструктура местности в районе строительства — близость к транспортным магистралям, линиям электропередачи;
— климатические особенности региона (количество осадков, вероятность смерчей, сила ветра, температурные максимумы и минимумы в течение года).
Окончательное решение о выборе места строительства АЭС принимается на основании технико-экономического анализа, позволяющего определить оптимальный вариант.
4. Проблемы с согласованием испытаний на АЭС
Авария на ЧАЭС произошла ночью, в ходе плановых испытаний, которые предполагали остановку реактора и которые первоначально предполагалось провести днем. Однако они были перенесены на более позднее время из-за указания диспетчера Киевских энергосетей в связи с большой потребностью промышленности в энергии в конце квартала. Окончательное решение о проведении испытаний принял главный инженер ЧАЭС. К этому времени они были просрочены уже на два года.
Комментарий «Росатома». Согласно нормативно-технической документации, действующей в «Росэнергоатоме», для АЭС с ректорами типа РБМК-1000 и ВВЭР (ВВЭР-440, ВВЭР-1000, работающих в рамках 12-месячного топливного цикла) плановый останов энергоблоков для замены топливных элементов и обслуживания реакторных установок проводится один раз в год. Для АЭС с реакторами ВВЭР-1000 и ВВЭР-1200, работающих в 18-месячном топливном цикле, плановый останов выполняется один раз в полтора года.
Процедура планирования и проведения на АЭС планового останова реакторов для замены топливных элементов и обслуживания проводится силами АЭС с участием подрядных организаций. При этом сама процедура планирования и проведения на АЭС планового останова реакторов для замены топливных элементов и обслуживания находится под непрерывным контролем со стороны руководства и ремонтной службы АЭС, «Росэнергоатома» и Ростехнадзора.
Правовые основы регулирования режимов работы Единой энергосистемы (ЕЭС) России установлены федеральным законом «Об электроэнергетике». Ответственность за выполнение данной функции возложена на АО «Системный оператор Единой энергосистемы» (СО ЕЭС).
Перед окончанием ремонтных работ АЭС направляет заявку на испытания генерирующего оборудования (турбогенератора) по форме в соответствии с требованиями СО ЕЭС. Такая заявка согласовывается с техническими и сбытовыми службами «Росэнергоатома», разрешение дает заместитель генерального директора концерна. В заявке указываются: сроки, основные работы, причина подачи заявки, программа переключений, в соответствии с которой осуществляются пусковые операции, а также режимные указания диспетчера, компенсирующие мероприятия (при необходимости). Заявка на испытания при выходе энергоблока из ремонта не имеет отношения к операциям по изменению состояния ядерной установки (реактора), а следовательно, к безопасности. Все изменения состояния реакторной установки проводятся в соответствии с технологическим регламентом энергоблока и условиями действия лицензии.
СО ЕЭС управляет режимами работы энергообъектов (в том числе АЭС) и формирует диспетчерские графики нагрузок электростанций для обеспечения надежного функционирования Единой энергосистемы. Формирование диспетчерских графиков АЭС зависит от оперативно-диспетчерской ситуации в ЕЭС, учитывающей ремонты и режимы работы других генерирующих и сетевых объектов, а также прогнозное и фактическое потребление. В случае вывода в ремонт той или иной линии электропередачи СО ЕЭС имеет возможность ограничить выработку электростанций. При этом такие ограничения в отношении АЭС вводятся в одну из последних очередей. Чаще всего это происходит в период новогодних праздников, когда снижается уровень потребления электроэнергии, или в период майских праздников, когда к снижению потребления добавляется рост выработки ГЭС из-за паводка.
5. Проблемы во взаимодействии персонала АЭС и в работе автоматических систем станции
В ночь на 26 апреля 1985 года реактором четвертого энергоблока ЧАЭС управлял 25-летний Леонид Топтунов. Соответствующую должность он занял совсем недавно. В ходе испытаний он был вынужден выполнять указания заместителя главного инженера ЧАЭС Анатолия Дятлова, хотя не всегда был согласен с ними. К этому времени Дятлов провел на рабочем месте более суток без сна. Готовя реактор к остановке, Топтунов преждевременно дал команду с пульта об этом — из-за того, что не ввел в специализированную ЭВМ «Скала» новое минимальное значение, она использовала прежнее, нулевое.
Комментарий «Росатома». На реакторах типа РБМК-1000 за прошедшие годы выполнен целый ряд организационных мероприятий по исключению ошибок персонала. На всех АЭС с реакторами этого типа введены в работу полномасштабные тренажеры для обучения и тренировок персонала, на блочном щите управления выполнена доработка интерфейса представления информации оператору в части сигнализации о вводе-выводе защит и блокировок.
Система централизованного контроля «Скала» заменена на информационно-измерительную систему «Скала-Микро», в которой реализован трехмерный контроль распределения энерговыделения, в пять раз уменьшена периодичность контроля индивидуальных параметров реактора (с 10 до 2 секунд), в 12 раз — температурных параметров реактора (с 60 до 5 секунд).
Профессиональная надежность персонала является ключевым аспектом в обеспечении безопасной и эффективной работы АЭС. Подготовка на должность работников АЭС осуществляется в учебно-тренировочных подразделениях (УТП) и непосредственно в подразделениях АЭС.
Учебные помещения УТП оснащены современными техническими средствами обучения — полномасштабными и аналитическими тренажерами, тренажерными обучающими системами, учебными стендами. Выполнение работниками определенных видов деятельности осуществляется при наличии у них разрешений Ростехнадзора.
Задачи по повышению и поддержанию надежности человеческого фактора в «Росэнергоатоме» возложены на лаборатории психофизиологического обеспечения (ЛПФО), где также проводятся психофизиологические обследования работников. Первоочередная задача ЛПФО — проведение психофизиологического обследования и соответствующего отбора работников и контроля их профессионально важных личностных качеств для выявления ранних признаков психологической дезадаптации.
К профессионально важным качествам относятся: мотивация к профессиональной деятельности (приоритет безопасности); готовность к выполнению профессиональных обязанностей (ответственность, добросовестность, дисциплинированность, строго регламентированный и взвешенный подход к работе); способность действовать в сложных условиях (самоконтроль, эмоциональная устойчивость и стабильность в стрессовых ситуациях, нештатных ситуациях); способность работать в команде (готовность к сотрудничеству и взаимодействию, адаптивность и коммуникативные способности); познавательная активность и обучаемость (аналитические способности); лидерство для обеспечения безопасности.
Психофизиологическое обследование проводится как при приеме на работу, так и при назначении на новую должность. Это позволяет определить, насколько индивидуально-психологические особенности кандидата соответствуют требованиям профессиональной деятельности.
Психофизиологическое обследование проводится ежегодно для должностей работников АЭС, влияющих на безопасность, что позволяет отслеживать профессиональную надежность работников. В случае отрицательной динамики им назначается психологическая и психофизиологическая поддержка. Внеплановое обследование проводится после перенесенного тяжелого заболевания, травмы, длительного перерыва в трудовой деятельности, для выявления ранних признаков психологической дезадаптации, снижающих надежность персонала.
Ежегодно специалисты ЛПФО АЭС проводят около 10 тыс. психофизиологических обследований персонала.
Психологи АЭС проводят также тренинги по отработке навыков самоконтроля, стрессоустойчивости, коммуникации в сменах, присутствуют на тренажерных занятиях персонала, анализируя действия в нештатных ситуациях, дают обратную связь.
В 2020 году более 11 тыс. работников АЭС прошли психологическую подготовку, которую осуществляют специалисты ЛПФО, в объеме 35 000 часов обучения.
Подготовка на должность оперативного персонала АЭС проводится по индивидуальным программам, которые разрабатываются на основе должностных инструкций и с учетом уровня знаний работника и включают в себя теоретическую подготовку, практическую подготовку, подготовку к выполнению работ на оборудовании, подконтрольном органам государственного надзора (если требуется по должности), стажировку на рабочем месте.
Практическая подготовка в зависимости от должности включает занятия на тренажерах (полномасштабном, аналитическом, тренажере местных щитов управления, оборудования и систем) или занятия в учебных мастерских и лабораториях с использованием образцов оборудования АЭС, учебных стендов, измерительных приборов, инструментов. Для оперативного персонала блочного щита управления в программу подготовки на должность обязательно включается подготовка на тренажерах.
Работники из числа оперативного персонала после успешного прохождения проверки знаний и получения разрешения Ростехнадзора (если требуется по должности) проходят так называемое дублирование. Дублирование оперативного персонала проводится с целью формирования навыков выполнения должностных обязанностей, включая управление действующим оборудованием и системами под наблюдением и с разрешения другого работника, ответственного за дублирование. При прохождении дублирования работник проходит не менее двух индивидуальных противоаварийных тренировок.
Кроме того, на российских АЭС не реже одного раза в месяц проводятся противоаварийные тренировки персонала с привлечением кризисного центра «Росэнергоатома» и центра технической поддержки.
6. Проблемы с получением достоверной информации о ситуации на АЭС и информированием населения
В первые секунды после взрыва находящиеся на ЧАЭС сотрудники станции не поняли, что произошло. Они не представляли себе уровень излучения, не могли воспользоваться индивидуальными дозиметрами и средствами защиты, у них не было оперативного доступа к мощным радиометрам. Передаваемые в Москву поначалу данные также не отражали всей полноты катастрофы — ни уровень излучения, ни масштаб разрушений.
Комментарий «Росатома». Радиационный контроль на АЭС осуществляет отдел радиационной безопасности. Наблюдение за радиационной обстановкой в санитарно-защитной зоне и зоне наблюдения АЭС осуществляется с использованием автоматизированной системы контроля радиационной обстановки (АСКРО), передвижных лабораторий, установок радиационного контроля атмосферного воздуха, переносных приборов.
Система АСКРО позволяет получать информацию по всем радиационным параметрам в режиме онлайн. В 2020 году разработана научно обоснованная методика размещения постов АСКРО вокруг АЭС, направленная на повышение эффективности системы новых и действующих АЭС.
Основные требования к организации, номенклатуре контролируемых параметров, периодичности, средствам и методам радиационного контроля объектов окружающей среды в районах расположения АЭС определены методическими указаниями, согласованными ФМБА России. Радиационный контроль окружающей среды в районах расположения проводится в соответствии с соответствующими регламентами, с учетом типа реакторных установок и особенностей районов их расположения. Результаты радиационного контроля окружающей среды представляются в радиационно-гигиенических паспортах организаций и в ежегодных отчетах о радиационной обстановке в районах расположения АЭС.
Для информирования населения о радиационной обстановке в пристанционном городе и крупных населенных пунктах пятикилометровой зоны установлены информационные табло, показывающие значение мощности эквивалентной дозы в реальном масштабе времени.
Организация радиационного контроля (объем, периодичность, точки контроля, исполнители, учет результатов) на АЭС определена соответствующими регламентами, согласованными региональными управлениями ФМБА России. Кроме того, ими проводится независимый выборочный радиационный контроль объектов окружающей среды и продуктов питания местного производства.
Личный состав аварийно-спасательных формирований АЭС оснащен индивидуальными дозиметрами, средствами индивидуальной защиты (СИЗ), медицинскими аптечками, приборами радиационного контроля. Персонал АЭС обеспечен СИЗ (противогазы, респираторы) в соответствии с нормативными требованиями. Личный состав аварийно-спасательных формирований АЭС обеспечен СИЗ согласно нормативам, утвержденным МЧС России.
На АЭС для проведения йодной профилактики всему персоналу выдан препарат стабильного йода (калий йодид) из расчета потребления на пять-семь суток. Препарат хранится на рабочих местах. Персонал АЭС, входящий в аварийно-спасательные формирования, обеспечен медицинскими СИЗ (комплекты индивидуальные гражданской защиты, противорадиационные аптечки).
Для защиты персонала от всех видов ионизирующего излучения, паров радиоактивного йода и др. используются защитные сооружения ГО. Фонд защитных сооружений обеспечивает укрытие персонала максимальной работающей смены АЭС, личного состава воинской и пожарной частей, работников подрядных организаций.
Предусмотрено дистанционное управление АЭС из так называемых защищенных пунктов управления противоаварийными действиями АЭС, которые находятся в специализированных помещениях, защищенных от внешних воздействий. Например, на Ленинградской АЭС таких пунктов три: на первой очереди с реакторами РБМК, на новых блоках типа ВВЭР и в пристанционном городе.
Все данные о радиационной обстановке из системы АСКРО поступают в единый кризисный центр «Росэнергоатома», а также размещаются в открытом доступе на сайте www.russianatom.ru.
Дозовые нагрузки персонала АЭС регламентированы федеральным законом РФ «О радиационной безопасности населения». Регламентируемые значения основных пределов доз облучения не включают дозы, создаваемые естественным радиационным и техногенно измененным радиационным фоном, а также дозы, получаемые гражданами (пациентами) при проведении медицинских рентгенорадиологических процедур и лечения.
На каждой АЭС осуществляется учет индивидуальной дозы облучения работника в течение года, а также в течение пяти лет и за весь период трудовой деятельности (в соответствии с законодательством).
Все АЭС укомплектованы дозиметрами в количествах, достаточных для контроля доз облучения всего персонала, который должен стоять на дозиметрическом учете.
Информация о дозах облучения фиксируется в карточках учета индивидуальных доз облучения, а также в автоматизированной системе индивидуального дозиметрического контроля (АСИДК) концерна «Росэнергоатом», предназначенной для управления дозовыми нагрузками персонала. Детальная информация о дозах облучения персонала АЭС предоставляется в территориальные органы государственного санитарно-эпидемиологического надзора и в «Росатом», а также в Единую государственную систему контроля и учета доз облучения персонала и населения ФМБА.
На АЭС России в течение длительного периода продолжается процесс снижения облучаемости персонала. Основные дозовые пределы соблюдаются на всех АЭС, исключено несанкционированное превышение контрольного уровня индивидуальной дозы облучения на АЭС, равного 18 мЗв.
Неотъемлемой частью обеспечения радиационной безопасности на АЭС является непрерывный радиационный контроль, в том числе контроль целостности защитных барьеров посредством эксплуатации Системы радиационного контроля (СРК) АЭС. Эксплуатируемые на атомных станциях СРК обеспечивают получение и обработку информации о параметрах, характеризующих радиационное состояние АЭС и окружающей среды, в том числе в случае проектных и запроектных аварий, а также состояние станции при выводе из эксплуатации. СРК АЭС включают автоматизированные системы радиационного контроля, контроля радиационной обстановки, индивидуального дозиметрического контроля, а также оборудование оперативного радиационного контроля и лабораторного анализа. Для соответствия современным требованиям на все этапах жизненного цикла станций системы радиационного контроля на всех российских АЭС модернизируются в плановом порядке.
7. Проблемы в работе пожарных на АЭС
Прибывшие для тушения пожара на ЧАЭС служащие военизированной пожарной части № 2, обслуживавшей станцию, также не представляли всю опасность ситуации. У них не было дозиметров, радиометров, они носили обыкновенную пожарную форму, использовали стандартное оборудование, их рации из-за огромного радиационного фона перестали работать. Присоединившиеся к ним пожарные Киевской области находились в таком же положении. При этом последние было слабо осведомлены об особенностях работы на АЭС — совместные учения проводились раз в год.
Комментарий «Росатома». Подготовка работников пожарно-спасательной службы осуществляется в соответствии с программой, утвержденной приказом МЧС России (от 26.10.2017 № 472) «Об утверждении порядка подготовки личного состава пожарной охраны». Обучение особенностям технологических процессов на АЭС осуществляется на базе учебно-тренировочных подразделений АЭС.
При этом на АЭС одобрено применение автоматических установок водяного, пенного, газового пожаротушения, а также основной и специальной пожарной техники, мобильных роботизированных установок пожаротушения и установок формирования и подачи компрессионной пены.
Подразделения пожарной охраны АЭС оснащены пожарными автоцистернами, насосно-рукавными автомобилями, автомобилями воздушно-пенного тушения, аварийно-спасательными автомобилями, в том числе радиационной и химической разведки, пожарными коленчатыми подъемниками, автомобилями-базами газодымозащитной службы, штабными автомобилями и другой специальной техникой.
Максимальное расстояние от очага возгорания, на котором могут работать пожарные, зависит от интенсивности теплового и ионизирующего излучения. Радиационная защита обеспечена на аварийно-спасательном автомобиле радиационной и химической разведки, оснащенном радиационно-защитными костюмами для личного состава.
Учения специализированных подразделений пожарно-спасательной службы проводятся не реже одного раза в квартал совместно с персоналом подразделений АЭС.
Совместные учения с привлечением гражданских пожарно-спасательных подразделений ближайших населенных пунктов проводятся не реже одного раза в год, специальных требований по оснащению последних экипировкой и техникой не установлено.
8. Проблемы с информированием гражданского населения
Население Припяти было официально проинформировано властями об аварии только через 36 часов, все это время оно жило обычной жизнью и подвергалось серьезному облучению. Тогда же началась «временная» эвакуация города. Для нее пришлось использовать общественный транспорт Киева и других ближайших городов, что привело к частичному параличу автобусного сообщения в регионе.
Комментарий «Росатома». В случае ухудшения радиационной обстановки система АСКРО переходит в режим ускоренного обмена информацией. При достижении соответствующих критериев на АЭС вводится план мероприятий по защите персонала, осуществляется оповещение пятикилометровой зоны по локальной системе оповещения. Также в соответствии с планом оповещаются все заинтересованные стороны (органы местного самоуправления, «Росатом», Ростехнадзор, МЧС России и др.).
Эвакуация населения требуется в случае, если прогнозируемые уровни облучения в результате аварии могут достигнуть значений, при которых возникает угроза жизни или здоровью. При этом рассматриваются как клинически определяемые эффекты (детерминированные), так и возможные вероятностные (стохастические) негативные последствия, которые могут возникнуть в отдаленный период. Соответствующие критерии установлены в Санитарных правилах и нормах Российской Федерации.
Ежегодно на одной из АЭС концерна «Росэнергоатом» проводятся комплексные противоаварийные учения с привлечением всех участников аварийного реагирования, как на атомной станции, так и в районе ее расположения, в том числе органы местного самоуправления, МЧС России, МВД России, Министерство обороны. В рамках таких учений отрабатывается полный комплекс вопросов противоаварийного реагирования, в том числе вопросы логистики привлекаемых сил и средств, а также эвакуации населения.