Деление окружности на восемь равных частей производится в следующей последовательности:
Проводят две перпендикулярные оси, которые пересекая окружность в точках 1,2,3,4 делят ее на четыре равные части;
Применяя известный прием деления прямого угла на две равные части при помощи циркуля или угольника строят биссектрисы прямых углов, которые пересекаясь с окружностью в точках 5, 6, 7, и 8 делят каждую четвертую часть окружности пополам.
Деление окружности на три, шесть и двенадцать равных частей
Деление окружности на три, шесть и двенадцать равных частей выполняется в следующей последовательности:
Выбираем в качестве точки 1, точку пересечения осевой линии с окружностью
Из точки 4 пересечения осевой линии с окружностью проводим дугу радиусом равным радиусу окружности R до пересечения с окружностью в точках 2 и 3;
Точки 1, 2 и 3 делят окружность на три равные части;
Из точки 1 пересечения осевой линии с окружностью проводим дугу радиусом равным радиусу окружности R до пересечения с окружностью в точках 5 и 6;
Дуги радиусом R, проведенные из точек 7 и 8 пересекут окружность в точках 9, 10, 11 и 12;
Деление окружности на пять равных частей
Деление окружности на пять равных частей выполняется в следующей последовательности:
Из точки А радиусом, равным радиусу окружности R, проводим дугу, которая пересечет окружность в точке В;
Из точки В опускают перпендикуляр на горизонтальную осевую линию;
Из точки 1 радиусом равным D1, проводят дугу до пересечения с окружностью в точке 2, дуга 12 равна 1/5 длины окружности;
Точки 3, 4 и 5 находят откладывая циркулем по данной окружности хорды, равные D1.
Деление окружности на семь равных частей
Деление окружности на семь равных частей выполняется в следующей последовательности:
Из точки А радиусом, равным радиусу окружности R, проводим дугу, которая пересечет окружность в точке В;
Из точки В опускают перпендикуляр на горизонтальную осевую линию;
Очень многие из нас, учась в школе, думали, что очень многие предметы школьной программы в жизни нам никогда не понадобятся. Я так думала про геометрию. Однако жизнь сложилась так, что именно геометрия мне оказалась и нужна.
Одной из основных сложностей при создании круглого орнаменты является его симметричность. Иногда хочется, чтобу у нас был точный 8-ми гранник, иногда 5-ти конечная звезда, а иногда нужен 7-ми конечный цветок.
Эту глобальную проблему симметричного деления окружности на равное количество частей можно решить просто при помощи циркуля, линейки, листа бумаги и геометрии.
Деление окружности на 3 равных сектора.
Для начала нам понадобиться сама окружность. Рисуем ее при помощи циркуля
Ставим наш циркуль с набранным радиусом в точку, которую мы на окружности отметили и проводим дугу до пересечения с нашей основной окружностью.
Через точку на окружности и центр окружность проводим линию до пересечения с гранью.
Таким образом мы получили 3 точки на нашей окружности.
Теперь из центра проводим линии, соединяя центр с этими точками и у нас образовались 3 одинаковых сектора.
Деление окружности на 4 равных сектора.
Начинаем опять с окружности, необходимого нам диаметра. Назову ее окружность 1.
Через центр окружности 1 проводим линию до пересечения с обеими сторонами окружности 1.
Ставим ножку циркуля в точку на пересечении наше прямой линии и окружности 2 и из нее проводим дугу. Расстояние от точки на окружности до дуги равно диаметру окружности 1. (диаметр = 2 радиусам). Ту же процедуру повторяем с точкой на другой стороны окружности.
У нас есть 2 новые точки, появившиеся на пересечении дуг. Соединяем их и получаем окружность, разбитую на 4 ровных сектора.
Деление окружности на 5 равных секторов.
Начало работы с делением окружности на 5 частей очень схожа с делением окружности на 4 части, поэтому я начну уже с разделенного круга на 4 части.
Циркулем набираем радиус нашей окружности и ставим ножку в одну из имеющихся у нас точек. В моем случае это левая точка. Проводим дугу до пересечения ее с основной линии окружности.
Соединяем получившиеся точки при помощи линейки и находим новую точку пересечения (точка Н)
Циркулем набираем расстояние от верхний точки на окружности до точки Н. Ставим ножку в точку Н и проводим дугу и получаем еще одну точку (точка М)
Ставим ножку циркуля в верхнюю точку окружности и набираем расстояние до точки М.
Ставим ножку циркуля в верхнюю точку и откладываем набранное нами расстояние на нашей окружности.
Ставим циркуль в получившуюся точку и еще раз откладываем это расстояние. Таким же образом ставим еще 2 точки.
У нас получилось 4 отложенных точки и 1 верхняя точка окружности. Соединяем центр окружности с этими точками и получаем 5 равных секторов.
Деление окружности на 6 равных секторов.
Нам снова нужна окружность.
Берем любую точку на этой окружности, ставим в нее ножку циркуля с набранным расстоянием радиуса и проводим дугу до пересечения с нашей окружностью.
Далее соединяем выбранную нами точку с центром окружности и находим еще одну точку с противоположной стороны.
Из этой точки таким же расстоянием проводим еще одну дугу.
Деление окружности на 7 равных секторов.
Чтобы не повторяться и не описывать уже знакомые алгоритмы, берем за основу момент нахождения точки Н для разбития окружности на 5 частей.
Отмеряем циркулем расстояние от точки Н до точки на окружности.
Ставим ножку циркуля в верхнюю точку и набранным на циркуле расстоянием откладываем точки, аналогично как мы делали в случае разбивки окружности на 5 частей
Соединяем наши новые точки с центром и получаем 7 равных секторов.
Используя эти простые приемы можно создавать геометрические орнаменты различной сложности
Какие точки делят окружность на 2 равные части на 3 равные части
Некоторые детали машин и приборов имеют элементы, равномерно расположенные по окружности, например, детали на рис. 52—59. При выполнении чертежей подобных деталей необходимо знать правила деления окружности на равное количество частей.
Деление окружности на четыре и восемь равных частей. На рис. 52, а показана крышка, в которой имеется восемь отверстий, равномерно расположенных по окружности. При построении чертежа контура крышки (рис. 52 г) необходимо разделить окружность на восемь равных частей. Это можно сделать с помощью угольника с углами 45° (рис. 52, в), гипотенуза угольника должна проходить через центр окружности, или построением.
Два взаимно перпендикулярных диаметра окружности делят ее на четыре равные части (точки 7, 3, 5, 7 на рис. 52, б). Чтобы разделить окружность на восемь равных частей, применяют известный прием деления прямого угла с помощью циркуля на две равные части. Получают точки 2, 4, 6, 8.
Деление окружности на три, шесть и двенадцать равных частей. Во фланце (рис. 53, а) имеется три отверстия, равномерно расположенных по окружности. При выполнении чертежа контура фланца (рис. 53, г) нужно разделить окружность на три равные части.
Для нахождения точек, делящих окружность радиуса R на три равные части, достаточно из любой точки окружности, например точки А, провести дугу радиусом R. Пересечения дуги с окружностью дают две искомые точки 2 и 3; третья точка деления будет находиться на пересечении оси окружности, проведенной из точки Л, с окружностью (рис. 53, б).
Разделить окружность на три равные части можно также угольником с углами 30 и 60° (рис. 53, в), гипотенуза угольника должна проходить через центр окружности.
Разделить окружность на шесть равных частей можно и угольником с углами 30 и 60° (рис. 54, в). На рис. 54, а показана крышка, при выполнении чертежа которой необходимо выполнить деление окружности на шесть частей.
Чтобы выполнить чертеж детали (рис. 55, а), которая имеет 12 отверстий, равномерно расположенных по окружностям, нужно разделить осевую окружность на 12 равных частей (рис. 55, г).
При делении окружности на 12 равных частей с помощью циркуля можно использовать тот же прием, что и при делении окружности на шесть равных частей (рис. 54, б),но дуги радиусом R описывать четыре раза из точек 1, 7, 4и 10 (рис. 55, б).
Используя угольник с углами 30 и 60° с последующим поворотом его на 180°, делят окружность на 12 равных частей (рис. 55, в).
Деление окружности на пять, десять и семь равных частей. В плашке (рис. 56, а) имеется пять отверстий, равномерно расположенных по окружности. Выполняя чертеж плашки (рис. 56, в), необходимо разделить окружность на пять равных частей. Через намеченный центр О (рис. 56, б)
Деталь «звездочка» (рис. 57, а) имеет 10 одинаковых элементов, равномерно расположенных по окружности. Чтобы выполнить чертеж звездочки (рис. 57, я), следует окружность разделить на 10 равных частей. В этом случае следует применить то же построение, что и при делении окружности на пять частей (см. рис. 56, б). Отрезок п1 будет равняться хорде, которая делит окружность на 10 равных частей.
На рис. 58, а изображен шкив, а на рис. 58, в — чертеж шкива, где окружность разделена на семь равных частей.
Деление окружности на любое число равных частей. С достаточной точностью можно делить окружность на любое число равных частей, пользуясь таблицей коэффициентов для подсчета длины хорды (табл. 9).
При построении чертежа кольца (рис. 59, а) необходимо окружность диаметра D=142 мм разделить на 32 равные части. Количеству частей окружности n=32 соответствует коэффициент k=0,098. Подсчитав длину хорды l=Dk=142×0,098= 13,9 мм, ее циркулем откладывают на окружности 32 раза (рис. 59, б и в).
Как разделить окружность на заданное количество одинаковых частей, терминология при построении окружности, деление окружности на 3, 4, 5, 6, 8, 10 частей.
Термины при построениях окружности
Окружностью называется замкнутая кривая линия, каждая точка которой расположена на одинаковом расстоянии от одной точки О, называемой центром.
Прямые линии, соединяющие любую точку окружности с её центром, называют радиусами R.
Прямая АВ, соединяющая две точки окружности и проходящая через её центр О, называется диаметром D.
Части окружностей называются дугами.
Прямая СD, соединяющая две точки на окружности, называется хордой.
Прямая МN,которая имеет только одну общую точку с окружностью называется касательной.
Часть круга, ограниченная хордой СD и дугой, называется сигментом.
Часть круга, ограниченная двумя радиусами и дугой, называется сектором.
Две взаимно перпендикулярные горизонтальная и вертикальная линии, пересекающиеся в центре окружности, называются осями окружности.
Угол, образованный двумя радиусами КОА, называется центральным углом.
Два взаимно перпендикулярных радиуса составляют угол в 90 0 и ограничивают 1/4 окружности.
Деление окружности на 4 и 8 одинаковых частей
Деление окружности на 3 и 6 равных частей (кратные 3 трём)
Для деления окружности на 3, 6 и кратное им количество частей, проводим окружность заданного радиуса и соответствующие оси. Деление можно начинать от точки пересечения горизонтальной или вертикальной оси с окружностью. Заданный радиус окружности последовательно откладывается 6-ть раз. Затем полученные точки на окружности последовательно соединяются прямыми линиями и образуют правильный вписанный шести-угольник. Соединение точек через одну даёт равносторонний треугольник, и деление окружности на три равные части.
Деление окружности на 5 и 10 равных частей
Построение правильного пятиугольника выполняется следующим образом. Проводим две взаимно перпендикулярные оси окружности равные диаметру окружности. Делим правую половину горизонтального диаметра пополам с помощью дуги R1. Из полученной точки «а» в середине этого отрезка радиусом R2 проводим дугу окружности до пересечения с горизонтальным диаметром в точке «b». Радиусом R3 из точки «1» проводят дугу окружности до пересечения с заданной окружностью (т.5) и получают сторону правильного пятиугольника. Расстояние «b-О» даёт сторону правильного десятиугольника.
Деление окружности на N-ное количество одинаковых частей (построение правильного многоугольника с N сторон)
Выполняется следующим образом. Проводим горизонтальную и вертикальную взаимно перпендикулярные оси окружности. Из верхней точки «1» окружности проводим под произвольным углом к вертикальной оси прямую линию. На ней откладываем равные отрезки произвольной длины, число которых равно числу частей на которое мы делим данную окружность, например 9. Конец последнего отрезка соединяем с нижней точкой вертикального диаметра. Проводим линии, параллельные полученной, из концов отложенных отрезков до пересечения с вертикальным диаметром, разделив таким образом вертикальный диаметр данной окружности на заданное количество частей. Радиусом равным диаметру окружности, из нижней точки вертикальной оси проводим дугу MN до пересечения с продолжением горизонтальной оси окружности. Из точек M и N проводим лучи через чётные ( или нечётные) точки деления вертикального диаметра до пересечения с окружностью. Полученные отрезки окружности будут являться искомыми, т.к. точки 1, 2, …. 9 делят окружность на 9-ть ( N ) равных частей.
Нахождение центра дуги окружности
Для нахождения центра дуги окружности нужно выполнить следующие построения: на данной дуге отмечаем четыре произвольные точки А, В, С, D и соединяем их попарно хордами АВ и СD. Каждую из хорд при помощи циркуля делим пополам, получив, таким образом, перпендикуляр, проходящий через середину соответствующей хорды. Взаимное пересечение этих перпендикуляров даёт центр данной дуги и соответствующей ей окружности.
Какие точки делят окружность на 2 равные части? На 3 равные части?
Какие точки делят окружность на 2 равные части? диаметра На 3 равные части? лучи углов 120град.
Другие вопросы из категории
смотрел в окно. сколько времени коля просто смотрел в окно?
Читайте также
а) Ленту длиной 14 м разрезали на 4 равные части. Чему равна длина одной такой части?
2) Сколько порций получится, если трёхкилограммовый пирог разрезать на порции: а) по 1/5 кг б) по 1/4 кг в) по 1/8 кг
3) Проволоку длиной 7 1/2 м разделили на куски по 50 см. Сколько получилось кусков? а) В мешке 5 1/2 кг семян травы. Все семена надо разложить в пакеты, по 250 г в каждый. Сколько потребуется пакетов?
4) В чайнике 2 1/5 л воды. В каждую чашку хотят налить 1/4 л воды. Сколько полных чашек получится? а) Для перевязки одной посылки требуется 2 1/2 м верёвки. Сколько таких посылок нужно перевязать,используя клубок, в котором 17 м верёвки?
5) Мама сварила 2 кг варенья и хочет разложить его в банки, каждая из которых вмещает 3/10 кг варенья. Сколько таких банок потребуется? а) В одну бутылку помещается 3/5 кг подсолнечного масла. Сколько понадобится бутылок, чтобы разлить 8 кг масла?
6) За 2/3 ч автомобиль прошёл 40 1/2 км. Найдите скорость автомобиля. а) Скорость велосипедиста 10 1/2 км/ч. За какое время он проедет 7 км? б) За 2 2,3 ч велосипедист проехал 24 км. За какое время он проедет 30 км?
P.S: Решите, то что получится, с решением. Спасибо заранее.
бревно. новичок Бревно длиной 4м распилили на 6 равных частей, а бревно длиной 5м-на 10 частей. какая из частей длиннее и на сколько? Надо решить целыми числами, можно дробями
на 2 равные части. Запишите числа, соответствующие точкам деления
Рыболовную леску, длина которой 11 м, разрезали на 4 равные части. Какова длина каждой части?