ΠΊΠ°ΠΊΠΈΠ΅ ΡΠΎΡΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π°Π·ΡΠ²Π°ΡΡΡΡ ΡΡΠ°ΡΠΈΠΎΠ½Π°ΡΠ½ΡΠΌΠΈ
ΠΠ°ΠΊΠΈΠ΅ ΡΠΎΡΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π°Π·ΡΠ²Π°ΡΡΡΡ ΡΡΠ°ΡΠΈΠΎΠ½Π°ΡΠ½ΡΠΌΠΈ
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ:
ΠΠΊΡΡΡΠ΅ΠΌΡΠΌΠΎΠΌ Π½Π°Π·ΡΠ²Π°ΡΡ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ ΠΈΠ»ΠΈ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° Π·Π°Π΄Π°Π½Π½ΠΎΠΌ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅.
Π’ΠΎΡΠΊΠ° ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ° β ΡΡΠΎ ΡΠΎΡΠΊΠ°, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ Π΄ΠΎΡΡΠΈΠ³Π°Π΅ΡΡΡ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ ΠΈΠ»ΠΈ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ.
Π’ΠΎΡΠΊΠ° ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° β ΡΡΠΎ ΡΠΎΡΠΊΠ°, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ Π΄ΠΎΡΡΠΈΠ³Π°Π΅ΡΡΡ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ.
Π’ΠΎΡΠΊΠ° ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ° β ΡΡΠΎ ΡΠΎΡΠΊΠ°, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ Π΄ΠΎΡΡΠΈΠ³Π°Π΅ΡΡΡ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ Π² ΠΎΠΊΡΠ΅ΡΡΠ½ΠΎΡΡΠΈ ΡΠΎΡΠΊΠΈ Ρ = 3 ΡΡΠ½ΠΊΡΠΈΡ Π΄ΠΎΡΡΠΈΠ³Π°Π΅Ρ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ (ΡΠΎ Π΅ΡΡΡ Π² ΠΎΠΊΡΠ΅ΡΡΠ½ΠΎΡΡΠΈ ΠΈΠΌΠ΅Π½Π½ΠΎ ΡΡΠΎΠΉ ΡΠΎΡΠΊΠΈ Π½Π΅Ρ ΡΠΎΡΠΊΠΈ Π²ΡΡΠ΅). Π ΠΎΠΊΡΠ΅ΡΡΠ½ΠΎΡΡΠΈ Ρ = 8 ΠΎΠ½Π° ΠΎΠΏΡΡΡ ΠΆΠ΅ ΠΈΠΌΠ΅Π΅Ρ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ (ΡΠ½ΠΎΠ²Π° ΡΡΠΎΡΠ½ΠΈΠΌ: ΠΈΠΌΠ΅Π½Π½ΠΎ Π² ΡΡΠΎΠΉ ΠΎΠΊΡΠ΅ΡΡΠ½ΠΎΡΡΠΈ Π½Π΅Ρ ΡΠΎΡΠΊΠΈ Π²ΡΡΠ΅). Π ΡΡΠΈΡ ΡΠΎΡΠΊΠ°Ρ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΠ΅ ΡΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΡΠ±ΡΠ²Π°Π½ΠΈΠ΅ΠΌ. ΠΠ½ΠΈ ΡΠ²Π»ΡΡΡΡΡ ΡΠΎΡΠΊΠ°ΠΌΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ°:
Π ΠΎΠΊΡΠ΅ΡΡΠ½ΠΎΡΡΠΈ ΡΠΎΡΠΊΠΈ Ρ = 5 Π΄ΠΎΡΡΠΈΠ³Π°Π΅ΡΡΡ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ (ΡΠΎ Π΅ΡΡΡ Π² ΠΎΠΊΡΠ΅ΡΡΠ½ΠΎΡΡΠΈ Ρ =5 ΡΠΎΡΠΊΠΈ Π½ΠΈΠΆΠ΅ Π½Π΅Ρ). Π ΡΡΠΎΠΉ ΡΠΎΡΠΊΠ΅ ΡΠ±ΡΠ²Π°Π½ΠΈΠ΅ ΡΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΠ΅ΠΌ. ΠΠ½Π° ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠΎΡΠΊΠΎΠΉ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ°:
Π’ΠΎΡΠΊΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ° ΡΠ²Π»ΡΡΡΡΡ ΡΠΎΡΠΊΠ°ΠΌΠΈ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΈ, Π° Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΡΡΠΈΡ ΡΠΎΡΠΊΠ°Ρ β Π΅Π΅ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ°ΠΌΠΈ.
Π’ΠΎΡΠΊΠ° xΠΎ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠΎΡΠΊΠΎΠΉ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ°, Π΅ΡΠ»ΠΈ Ρ Π½Π΅Π΅ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΠΎΠΊΡΠ΅ΡΡΠ½ΠΎΡΡΡ, Π²ΠΎ Π²ΡΠ΅Ρ ΡΠΎΡΠΊΠ°Ρ ΠΊΠΎΡΠΎΡΠΎΠΉ f(x) ΠΌΠ΅Π½ΡΡΠ΅ ΠΈΠ»ΠΈ ΡΠ°Π²Π½ΠΎ f(xΠΎ):
Π£ΠΏΡΠΎΡΠ΅Π½Π½Π°Ρ ΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²ΠΊΠ° : Π΅ΡΠ»ΠΈ Π² ΡΠΎΡΠΊΠ΅ xΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΌΠ΅Π½ΡΠ΅Ρ Π·Π½Π°ΠΊ Ρ ΠΏΠ»ΡΡΠ° Π½Π° ΠΌΠΈΠ½ΡΡ, ΡΠΎ xΠΎ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠΎΡΠΊΠΎΠΉ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ°.
Π’ΠΎΡΠΊΠ° Ρ ΠΎ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠΎΡΠΊΠΎΠΉ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ°, Π΅ΡΠ»ΠΈ Ρ Π½Π΅Π΅ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΠΎΠΊΡΠ΅ΡΡΠ½ΠΎΡΡΡ, Π²ΠΎ Π²ΡΠ΅Ρ ΡΠΎΡΠΊΠ°Ρ ΠΊΠΎΡΠΎΡΠΎΠΉ f(x) Π±ΠΎΠ»ΡΡΠ΅ ΠΈΠ»ΠΈ ΡΠ°Π²Π½ΠΎ f(xΠΎ):
Π£ΠΏΡΠΎΡΠ΅Π½Π½Π°Ρ ΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²ΠΊΠ° : Π΅ΡΠ»ΠΈ Π² ΡΠΎΡΠΊΠ΅ xΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΌΠ΅Π½ΡΠ΅Ρ Π·Π½Π°ΠΊ Ρ ΠΌΠΈΠ½ΡΡΠ° Π½Π° ΠΏΠ»ΡΡ, ΡΠΎ xΠΎ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠΎΡΠΊΠΎΠΉ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ°.
ΠΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈ ΡΡΠ°ΡΠΈΠΎΠ½Π°ΡΠ½ΡΠ΅ ΡΠΎΡΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ:
ΠΠ½ΡΡΡΠ΅Π½Π½ΠΈΠ΅ ΡΠΎΡΠΊΠΈ ΠΎΠ±Π»Π°ΡΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ, Π² ΠΊΠΎΡΠΎΡΡΡ ΡΡΠ½ΠΊΡΠΈΡ Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½Π°, Π½ΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π½Π΅ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ, Π½Π°Π·ΡΠ²Π°ΡΡ ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΠΎΡΠΊΠ°ΠΌΠΈ.
ΠΠ½ΡΡΡΠ΅Π½Π½ΠΈΠ΅ ΡΠΎΡΠΊΠΈ ΠΎΠ±Π»Π°ΡΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ, Π½Π°Π·ΡΠ²Π°ΡΡΡΡ ΡΡΠ°ΡΠΈΠΎΠ½Π°ΡΠ½ΡΠΌΠΈ ΡΠΎΡΠΊΠ°ΠΌΠΈ.
ΠΠ΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ°:
ΠΡΠ»ΠΈ xΠΎ β ΡΠΎΡΠΊΠ° ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΈ f (x), ΡΠΎ Π² ΡΡΠΎΠΉ ΡΠΎΡΠΊΠ΅ Π»ΠΈΠ±ΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΎΠ±ΡΠ°ΡΠ°Π΅ΡΡΡ Π² Π½ΡΠ»Ρ (ΠΈ ΡΡΠΎ ΡΡΠ°ΡΠΈΠΎΠ½Π°ΡΠ½Π°Ρ ΡΠΎΡΠΊΠ°), Π»ΠΈΠ±ΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π½Π΅ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ (ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠΎΡΠΊΠ°).
ΠΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ°:
ΠΡΡΡΡ xΠΎ β ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠΎΡΠΊΠ°. ΠΡΠ»ΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ f β²(x) ΠΏΡΠΈ ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄Π΅ ΡΠ»Π΅Π²Π° Π½Π°ΠΏΡΠ°Π²ΠΎ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΡ xΠΎ ΠΌΠ΅Π½ΡΠ΅Ρ Π·Π½Π°ΠΊ ΠΏΠ»ΡΡ Π½Π° ΠΌΠΈΠ½ΡΡ, ΡΠΎ xΠΎ β ΡΠΎΡΠΊΠ° ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ°:
ΠΡΠ»ΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ f β²(x) ΠΏΡΠΈ ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄Π΅ ΡΠ»Π΅Π²Π° Π½Π°ΠΏΡΠ°Π²ΠΎ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΡ xΠΎ ΠΌΠ΅Π½ΡΠ΅Ρ Π·Π½Π°ΠΊ ΠΌΠΈΠ½ΡΡ Π½Π° ΠΏΠ»ΡΡ, ΡΠΎ xΠΎ β ΡΠΎΡΠΊΠ° ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ°:
ΠΡΠ»ΠΈ ΠΏΡΠΈ ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄Π΅ ΡΠ΅ΡΠ΅Π· ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΡΡ ΡΠΎΡΠΊΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π½Π΅ ΠΌΠ΅Π½ΡΠ΅Ρ Π·Π½Π°ΠΊ, ΡΠΎ Π² ΡΠΎΡΠΊΠ΅ xΠΎ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ° Π½Π΅Ρ.
ΠΠ° ΠΎΡΡΠ΅Π·ΠΊΠ΅ [a,b] ΡΡΠ½ΠΊΡΠΈΡ y = f(x) ΠΌΠΎΠΆΠ΅Ρ Π΄ΠΎΡΡΠΈΠ³Π°ΡΡ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π³ΠΎ ΠΈΠ»ΠΈ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π»ΠΈΠ±ΠΎ Π² ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠΎΡΠΊΠ°Ρ , Π»ΠΈΠ±ΠΎ Π½Π° ΠΊΠΎΠ½ΡΠ°Ρ ΠΎΡΡΠ΅Π·ΠΊΠ° [a,b].
ΠΠ»Π³ΠΎΡΠΈΡΠΌ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ y = f(x) Π½Π° ΠΌΠΎΠ½ΠΎΡΠΎΠ½Π½ΠΎΡΡΡ ΠΈ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΡ:
2) ΠΠ°ΠΉΡΠΈ ΡΡΠ°ΡΠΈΠΎΠ½Π°ΡΠ½ΡΠ΅ (f β²(x) = 0) ΠΈ ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ (f β²(x) Π½Π΅ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ) ΡΠΎΡΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ y = f(x).
3) ΠΡΠΌΠ΅ΡΠΈΡΡ ΡΡΠ°ΡΠΈΠΎΠ½Π°ΡΠ½ΡΠ΅ ΠΈ ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΡΠΊΠΈ Π½Π° ΡΠΈΡΠ»ΠΎΠ²ΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π·Π½Π°ΠΊΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π½Π° ΠΏΠΎΠ»ΡΡΠΈΠ²ΡΠΈΡ ΡΡ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ°Ρ .
4) Π‘Π΄Π΅Π»Π°ΡΡ Π²ΡΠ²ΠΎΠ΄Ρ ΠΎ ΠΌΠΎΠ½ΠΎΡΠΎΠ½Π½ΠΎΡΡΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈ Π΅Π΅ ΡΠΎΡΠΊΠ°Ρ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ°.
ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ
ΠΠ½ΡΠ΅ΡΠ²Π°Π»Ρ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΡ ΠΈ ΡΠ±ΡΠ²Π°Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠ»Ρ ΡΠΎΠ³ΠΎ, ΡΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Ρ, Π½Π° ΠΊΠΎΡΠΎΡΡΡ ΡΡΠ½ΠΊΡΠΈΡ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π΅Ρ ΠΈΠ»ΠΈ ΡΠ±ΡΠ²Π°Π΅Ρ, ΡΠ°ΡΡΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ ΠΌΠ΅ΡΠΎΠ΄, ΠΎΡΠ½ΠΎΠ²Π°Π½Π½ΡΠΉ Π½Π° Π°Π½Π°Π»ΠΈΠ·Π΅ Π·Π½Π°ΠΊΠΎΠ² ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ. Π‘ΡΡΡ ΡΡΠΎΠ³ΠΎ ΠΌΠ΅ΡΠΎΠ΄Π° ΡΠΎΡΡΠΎΠΈΡ Π² ΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΌ.
ΠΡΠ»ΠΈ Π½Π° ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅ (a, b) ΡΡΠ½ΠΊΡΠΈΡ y = f (x) ΡΡΡΠΎΠ³ΠΎ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π΅Ρ ΠΈ Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΠΎΡΠΊΠ΅ x0 ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π° ΠΈΠΌΠ΅Π΅Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ, ΡΠΎ, ΠΊΠ°ΠΊ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅ 1, Π° ΡΠ°ΠΊΠΆΠ΅ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅ 2,
ΡΠ³ΠΎΠ» Ξ± Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΊ Π³ΡΠ°ΡΠΈΠΊΡ ΡΡΠ½ΠΊΡΠΈΠΈ Π±ΡΠ΄Π΅Ρ ΠΎΡΡΡΡΠΌ, ΠΎΡΠΊΡΠ΄Π° Π²ΡΡΠ΅ΠΊΠ°Π΅Ρ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ:
ΠΡΠ»ΠΈ ΠΆΠ΅ Π½Π° ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅ (a, b) ΡΡΠ½ΠΊΡΠΈΡ y = f (x) ΡΡΡΠΎΠ³ΠΎ ΡΠ±ΡΠ²Π°Π΅Ρ ΠΈ Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΠΎΡΠΊΠ΅ x0 ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π° ΠΈΠΌΠ΅Π΅Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ, ΡΠΎ, ΠΊΠ°ΠΊ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ°Ρ 3 ΠΈ 4,
ΡΠ³ΠΎΠ» Ξ± Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΊ Π³ΡΠ°ΡΠΈΠΊΡ ΡΡΠ½ΠΊΡΠΈΠΈ Π±ΡΠ΄Π΅Ρ ΡΡΠΏΡΠΌ, ΠΎΡΠΊΡΠ΄Π° Π²ΡΡΠ΅ΠΊΠ°Π΅Ρ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ:
Π°). ΠΡΠ»ΠΈ Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΠΎΡΠΊΠ΅ x ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π° (a, b) ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ f ‘ (x) ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΠΈ ΡΠ΄ΠΎΠ²Π»Π΅ΡΠ²ΠΎΡΡΠ΅Ρ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²Ρ
Π±). ΠΡΠ»ΠΈ Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΠΎΡΠΊΠ΅ x ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π° (a, b) ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ f ‘ (x) ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΠΈ ΡΠ΄ΠΎΠ²Π»Π΅ΡΠ²ΠΎΡΡΠ΅Ρ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²Ρ
Π²). ΠΡΠ»ΠΈ Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΠΎΡΠΊΠ΅ x ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π° (a, b) ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ f ‘ (x) ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΠΈ ΡΠ΄ΠΎΠ²Π»Π΅ΡΠ²ΠΎΡΡΠ΅Ρ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²Ρ
Π³). ΠΡΠ»ΠΈ Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΠΎΡΠΊΠ΅ x ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π° (a, b) ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ f ‘ (x) ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΠΈ ΡΠ΄ΠΎΠ²Π»Π΅ΡΠ²ΠΎΡΡΠ΅Ρ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²Ρ
ΠΠΊΡΡΡΠ΅ΠΌΡΠΌΡ (ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΡ ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΡ) ΡΡΠ½ΠΊΡΠΈΠΈ
.
.
Β«ΠΠΎΠ΄ΠΎΠ·ΡΠΈΡΠ΅Π»ΡΠ½ΡΠ΅Β» Π½Π° Π½Π°Π»ΠΈΡΠΈΠ΅ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ° ΡΠΎΡΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ.
Π’Π΅ΠΎΡΠ΅ΠΌΠ° Π€Π΅ΡΠΌΠ°
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ 4. Π‘ΡΠ°ΡΠΈΠΎΠ½Π°ΡΠ½ΠΎΠΉ ΡΠΎΡΠΊΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π°Π·ΡΠ²Π°ΡΡ ΡΠ°ΠΊΡΡ ΡΠΎΡΠΊΡ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ.
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ 5. ΠΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΎΡΠΊΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π°Π·ΡΠ²Π°ΡΡ ΡΠ°ΠΊΡΡ ΡΠΎΡΠΊΡ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ ΠΈΠ»ΠΈ Π½Π΅ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ.
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π΅ΡΠ»ΠΈ ΡΠΎΡΠΊΠ° x0 ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΎΡΠΊΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ, ΡΠΎ ΡΠΎΡΠΊΠ° x0 Π»ΠΈΠ±ΠΎ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΡΠ°ΡΠΈΠΎΠ½Π°ΡΠ½ΠΎΠΉ ΡΠΎΡΠΊΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ, Π»ΠΈΠ±ΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΡΠΎΡΠΊΠ΅ x0 Π½Π΅ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ.
.
.
ΠΠΎΡΡΠ°ΡΠΎΡΠ½ΡΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΡ Π΄Π»Ρ ΡΡΡΠ΅ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΡ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΈ
Π ΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΌ ΡΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΠΈ, Π΄ΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΡΡΠ²ΠΎ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π²ΡΡ ΠΎΠ΄ΠΈΡ Π·Π° ΡΠ°ΠΌΠΊΠΈ ΡΠΊΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΠΊΡΡΡΠ° ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ ΠΈ Π² Π½Π°ΡΠ΅ΠΌ ΡΠΏΡΠ°Π²ΠΎΡΠ½ΠΈΠΊΠ΅ Π½Π΅ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡΡΡ, ΡΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π½Ρ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΡΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΡ Π΄Π»Ρ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΈ.
Π°). ΠΡΠ»ΠΈ Π΄Π»Ρ ΡΠΎΡΠ΅ΠΊ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΎ ΡΡΠ»ΠΎΠ²ΠΈΠ΅:
Π±). ΠΡΠ»ΠΈ Π΄Π»Ρ ΡΠΎΡΠ΅ΠΊ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΎ ΡΡΠ»ΠΎΠ²ΠΈΠ΅:
ΠΡΠΈΠΌΠ΅Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠΈΠΌΠ΅Ρ. ΠΠ°ΠΉΡΠΈ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Ρ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΡ, ΡΠ±ΡΠ²Π°Π½ΠΈΡ ΠΈ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΡ ΡΡΠ½ΠΊΡΠΈΠΈ
Π Π΅ΡΠ΅Π½ΠΈΠ΅. ΠΡΡΠ»Π΅Π΄ΡΠ΅ΠΌ ΡΠ½Π°ΡΠ°Π»Π° Π½Π° Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΠ΅, ΡΠ±ΡΠ²Π°Π½ΠΈΠ΅ ΠΈ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΡ ΡΡΠ½ΠΊΡΠΈΡ
ΠΈ ΠΏΠΎΡΡΡΠΎΠΈΠΌ Π΅Π΅ Π³ΡΠ°ΡΠΈΠΊ. ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΠΌ ΡΠΎΡΠΌΡΠ»Ρ (2) Π² Π²ΠΈΠ΄Π΅
(3) |
ΠΈ ΡΠ°Π·Π»ΠΎΠΆΠΈΠΌ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ ΠΏΡΠ°Π²ΡΡ ΡΠ°ΡΡΡ ΡΠΎΡΠΌΡΠ»Ρ (3):
(4) |
ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ 8 ΠΏΡΠΈ ΠΏΠΎΠΌΠΎΡΠΈ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»ΠΎΠ² ΠΈΠ·ΠΎΠ±ΡΠ°Π·ΠΈΠΌ Π½Π° ΡΠΈΡΠ»ΠΎΠ²ΠΎΠΉ ΠΎΡΠΈ Π·Π½Π°ΠΊΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ (4)
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²Π°
(5) |
ΡΠΎ Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΡΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΠ΅ΠΌ 1 ΡΡΠ½ΠΊΡΠΈΡ y1 Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π΅Ρ Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΈΠ· ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»ΠΎΠ² ΠΈ
.
Π‘ Π΄ΡΡΠ³ΠΎΠΉ ΡΡΠΎΡΠΎΠ½Ρ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²Π°
Π’Π°ΠΊ ΠΊΠ°ΠΊ ΡΠ΅ΡΠ΅Π½ΠΈΡΠΌΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
ΠΠ°ΠΌΠ΅ΡΠΈΠΌ, ΡΡΠΎ ΠΏΡΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎ Π·Π½Π°ΠΊΠ°ΠΌ Π΅Π΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ, ΡΠ΄ΠΎΠ±Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΡΠ»Π΅Π΄ΡΡΡΡΡ Π΄ΠΈΠ°Π³ΡΠ°ΠΌΠΌΡ, Π½Π° ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΡΡΠ΅Π»ΠΊΠ°ΠΌΠΈ ΡΠΊΠ°Π·Π°Π½Ρ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Ρ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΡ ΠΈ ΡΠ±ΡΠ²Π°Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ (ΡΠΈΡ. 9).
Π ΡΠΈΠ»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΌΠΎΠ΄ΡΠ»Ρ, ΡΠΏΡΠ°Π²Π΅Π΄Π»ΠΈΠ²ΠΎ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ
Π ΡΠΎΡΠΊΠ΅ x = β 3 ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΠΈ y = | x 3 + 3x 2 | Π½Π΅ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ. ΠΠΎ Π²ΡΠ΅Ρ ΠΎΡΡΠ°Π»ΡΠ½ΡΡ ΡΠΎΡΠΊΠ°Ρ ΡΠΈΡΠ»ΠΎΠ²ΠΎΠΉ ΠΎΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΠΈ y = | x 3 + 3x 2 | ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ.
Π€ΡΠ½ΠΊΡΠΈΡ y = | x 3 + 3x 2 | Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π΅Ρ Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΈΠ· ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»ΠΎΠ² (β 3, β 2) ΠΈ .
ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΡΡΠ½ΠΊΡΠΈΠΉ
ΠΠΎΠ½ΡΡΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ
Π€ΡΠ½ΠΊΡΠΈΡ β ΡΡΠΎ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ y ΠΎΡ x, Π³Π΄Π΅ x ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ»ΠΈ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ, Π° y β Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ»ΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠ°Π΄Π°ΡΡ ΡΡΠ½ΠΊΡΠΈΡ Π·Π½Π°ΡΠΈΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ, Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΠΊΠΎΡΠΎΡΡΠΌ ΠΏΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠ΅ Π΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ. ΠΠΎΡ, ΠΊΠ°ΠΊΠΈΠΌΠΈ ΡΠΏΠΎΡΠΎΠ±Π°ΠΌΠΈ Π΅Π΅ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°Π΄Π°ΡΡ:
ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ β ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Ρ , ΡΠΎ Π΅ΡΡΡ ΠΎΠ±Π»Π°ΡΡΡ Π΄ΠΎΠΏΡΡΡΠΈΠΌΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π·Π°ΠΏΠΈΡΠ°Π½ΠΎ Π² ΡΠΎΡΠΌΡΠ»Π΅.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΄Π»Ρ ΡΡΠ½ΠΊΡΠΈΠΈ Π²ΠΈΠ΄Π° ΠΎΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ°ΠΊ
ΠΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ β ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Ρ, ΡΠΎ Π΅ΡΡΡ ΡΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΠΎΠΆΠ΅Ρ ΠΏΡΠΈΠ½ΠΈΠΌΠ°ΡΡ ΡΡΠ½ΠΊΡΠΈΡ.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½Π°Ρ ΠΎΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ y = xΒ² β ΡΡΠΎ Π²ΡΠ΅ ΡΠΈΡΠ»Π° Π±ΠΎΠ»ΡΡΠ΅ Π»ΠΈΠ±ΠΎ ΡΠ°Π²Π½ΡΠ΅ Π½ΡΠ»Ρ. ΠΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ Π²ΠΎΡ ΡΠ°ΠΊ: Π (Ρ): Ρ β₯ 0.
ΠΠΎΠ½ΡΡΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ y = f(x) Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ ΡΠΎΡΠ΅ΠΊ (x; y), ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΊΠΎΡΠΎΡΡΡ ΡΠ²ΡΠ·Π°Π½Ρ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ y = f(x). Π‘Π°ΠΌΠΎ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ y = f(x) Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ Π΄Π°Π½Π½ΠΎΠ³ΠΎ Π³ΡΠ°ΡΠΈΠΊΠ°.
ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ β ΡΡΠΎ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ ΡΠΎΡΠ΅ΠΊ (x; y), Π³Π΄Π΅ x β ΡΡΠΎ Π°ΡΠ³ΡΠΌΠ΅Π½Ρ, Π° y β Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ Π΄Π°Π½Π½ΠΎΠΌΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΡ.
ΠΡΠΎΡΠ΅ Π³ΠΎΠ²ΠΎΡΡ, Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Π²ΡΠ΅Ρ ΡΠΎΡΠ΅ΠΊ, ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΊΠΎΡΠΎΡΡΡ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ, ΠΏΡΠΎΡΡΠΎ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΠ² Π² ΡΡΠ½ΠΊΡΠΈΡ Π»ΡΠ±ΡΠ΅ ΡΠΈΡΠ»Π° Π²ΠΌΠ΅ΡΡΠΎ x.
ΠΠ»Ρ ΠΏΡΠΈΠΌΠ΅ΡΠ° Π²ΠΎΠ·ΡΠΌΡΠΌ ΡΠ°ΠΌΡΡ ΠΏΡΠΎΡΡΡΡ ΡΡΠ½ΠΊΡΠΈΡ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ Π°ΡΠ³ΡΠΌΠ΅Π½Ρ ΡΠ°Π²Π΅Π½ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ, ΡΠΎ Π΅ΡΡΡ y = x.
Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Π½Π°ΠΌ Π½Π΅ ΠΏΡΠΈΠ΄ΡΡΡΡ Π²ΡΡΠΈΡΠ»ΡΡΡ Π΄Π»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΠΎΠ½ΠΈ ΡΠ°Π²Π½Ρ, ΠΏΠΎΡΡΠΎΠΌΡ Ρ Π²ΡΠ΅Ρ ΡΠΎΡΠ΅ΠΊ Π½Π°ΡΠ΅Π³ΠΎ Π³ΡΠ°ΡΠΈΠΊΠ° Π°Π±ΡΡΠΈΡΡΠ° Π±ΡΠ΄Π΅Ρ ΡΠ°Π²Π½Π° ΠΎΡΠ΄ΠΈΠ½Π°ΡΠ΅.
ΠΡΠ»ΠΈ ΠΌΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ ΠΎΡ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° ΠΊ Π±ΠΎΠ»ΡΡΠ΅ΠΌΡ ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΠΎΡΠΌΠ΅ΡΠ΅Π½Π½ΡΠ΅ ΡΠΎΡΠΊΠΈ, ΡΠΎ Ρ Π½Π°Ρ ΠΏΠΎΠ»ΡΡΠΈΡΡΡ ΠΏΡΡΠΌΠ°Ρ Π»ΠΈΠ½ΠΈΡ. ΠΠ½Π°ΡΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ y = x ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΡΠΌΠ°Ρ. ΠΠ° Π³ΡΠ°ΡΠΈΠΊΠ΅ ΡΡΠΎ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ°ΠΊ:
ΠΠ°Π΄ΠΏΠΈΡΡ Π½Π° ΡΠ΅ΡΡΠ΅ΠΆΠ΅ y = x β ΡΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠ°. Π‘ΡΠ°Π²ΠΈΡΡ Π½Π°Π΄ΠΏΠΈΡΡ Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ Π½Π° ΡΠ΅ΡΡΠ΅ΠΆΠ΅ ΡΠ΄ΠΎΠ±Π½ΠΎ, ΡΡΠΎΠ±Ρ Π½Π΅ Π·Π°ΠΏΡΡΠ°ΡΡΡΡ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ.
ΠΠ°ΠΆΠ½ΠΎ ΠΎΡΠΌΠ΅ΡΠΈΡΡ, ΡΡΠΎ ΠΏΡΡΠΌΠ°Ρ Π»ΠΈΠ½ΠΈΡ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½Π° Π² ΠΎΠ±Π΅ ΡΡΠΎΡΠΎΠ½Ρ. Π₯ΠΎΡΡ ΠΌΡ ΠΈ Π½Π°Π·ΡΠ²Π°Π΅ΠΌ ΡΠ°ΡΡΡ ΠΏΡΡΠΌΠΎΠΉ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ, Π½Π° ΡΠ°ΠΌΠΎΠΌ Π΄Π΅Π»Π΅ Π½Π° ΡΠ΅ΡΡΠ΅ΠΆΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Π° ΡΠΎΠ»ΡΠΊΠΎ ΠΌΠ°Π»Π°Ρ ΡΠ°ΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠ°.
ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠ°ΠΆΠ½ΡΠ΅ ΡΠΎΡΠΊΠΈ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ y = f(x):
Π‘ΡΠ°ΡΠΈΠΎΠ½Π°ΡΠ½ΡΠ΅ ΡΠΎΡΠΊΠΈ β ΡΠΎΡΠΊΠΈ, Π² ΠΊΠΎΡΠΎΡΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΠΈ f(x) ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ.
ΠΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΡΠΊΠΈ β ΡΠΎΡΠΊΠΈ, Π² ΠΊΠΎΡΠΎΡΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΠΈ f(x) ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ Π»ΠΈΠ±ΠΎ Π½Π΅ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ. Π‘ΡΠ°ΡΠΈΠΎΠ½Π°ΡΠ½ΡΠ΅ ΡΠΎΡΠΊΠΈ ΡΠ²Π»ΡΡΡΡΡ ΠΏΠΎΠ΄ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎΠΌ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π° ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠΎΡΠ΅ΠΊ.
ΠΠΊΡΡΡΠ΅ΠΌΡΠΌ Π² ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ β ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ ΠΈΠ»ΠΈ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° Π·Π°Π΄Π°Π½Π½ΠΎΠΌ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅. Π’ΠΎΡΠΊΠ°, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ Π΄ΠΎΡΡΠΈΠ³Π°Π΅ΡΡΡ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌ, Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠΎΡΠΊΠΎΠΉ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ°. Π‘ΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ, Π΅ΡΠ»ΠΈ Π΄ΠΎΡΡΠΈΠ³Π°Π΅ΡΡΡ ΠΌΠΈΠ½ΠΈΠΌΡΠΌ β ΡΠΎΡΠΊΠ° ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ° Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠΎΡΠΊΠΎΠΉ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ°, Π° Π΅ΡΠ»ΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌ β ΡΠΎΡΠΊΠΎΠΉ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ°.
ΠΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ β ΡΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ°, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΡΡ ΡΡΠ½ΠΊΡΠΈΡ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ.
ΠΡΠΈΠΌΠΏΡΠΎΡΠ° β ΠΏΡΡΠΌΠ°Ρ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ ΡΠ°ΠΊΠΈΠΌ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎΠΌ, ΡΡΠΎ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΎΡ ΡΠΎΡΠΊΠΈ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ Π΄ΠΎ ΡΡΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ Π½ΡΠ»Ρ ΠΏΡΠΈ Π½Π΅ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π½ΠΎΠΌ ΡΠ΄Π°Π»Π΅Π½ΠΈΠΈ ΡΠΎΡΠΊΠΈ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΎΡ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ. ΠΠΎ ΡΠΏΠΎΡΠΎΠ±Π°ΠΌ ΠΈΡ ΠΎΡΡΡΠΊΠ°Π½ΠΈΡ Π²ΡΠ΄Π΅Π»ΡΡΡ ΡΡΠΈ Π²ΠΈΠ΄Π° Π°ΡΠΈΠΌΠΏΡΠΎΡ: Π²Π΅ΡΡΠΈΠΊΠ°Π»ΡΠ½ΡΠ΅, Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½ΡΠ΅, Π½Π°ΠΊΠ»ΠΎΠ½Π½ΡΠ΅.
Π€ΡΠ½ΠΊΡΠΈΡ Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½Π° Π² ΡΠΎΡΠΊΠ΅ k, Π΅ΡΠ»ΠΈ ΠΏΡΠ΅Π΄Π΅Π» ΡΡΠ½ΠΊΡΠΈΠΈ Π² Π΄Π°Π½Π½ΠΎΠΉ ΡΠΎΡΠΊΠ΅ ΡΠ°Π²Π΅Π½ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΡΡΠΎΠΉ ΡΠΎΡΠΊΠ΅:
ΠΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΡ f(x) Π½Π΅ ΡΠ²Π»ΡΠ΅ΡΡΡ Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½ΠΎΠΉ Π² ΡΠΎΡΠΊΠ΅ x = a, ΡΠΎ Π³ΠΎΠ²ΠΎΡΡΡ, ΡΡΠΎ f(x) ΠΈΠΌΠ΅Π΅Ρ ΡΠ°Π·ΡΡΠ² Π² ΡΡΠΎΠΉ ΡΠΎΡΠΊΠ΅.
ΠΡΠ»ΠΈ Π½Π°ΠΌ Π½ΡΠΆΠ½ΠΎ ΠΏΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ Π½Π΅Π·Π½Π°ΠΊΠΎΠΌΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ, ΠΊΠΎΠ³Π΄Π° Π·Π°ΡΠ°Π½Π΅Π΅ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΡ Π²ΠΈΠ΄ Π³ΡΠ°ΡΠΈΠΊΠ°, ΠΏΠΎΠ»Π΅Π·Π½ΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ ΡΡ Π΅ΠΌΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ²ΠΎΠΉΡΡΠ² ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΠ½Π° ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ ΡΠΎΡΡΠ°Π²ΠΈΡΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΎ Π³ΡΠ°ΡΠΈΠΊΠ΅ ΠΈ ΠΏΡΠΈΡΡΡΠΏΠΈΡΡ ΠΊ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΏΠΎ ΡΠΎΡΠΊΠ°ΠΌ.
Π‘Ρ Π΅ΠΌΠ° ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ:
Π£ Π½Π°Ρ Π΅ΡΡΡ ΠΎΡΠ»ΠΈΡΠ½ΡΠ΅ ΠΎΠ½Π»Π°ΠΉΠ½ Π·Π°Π½ΡΡΠΈΡ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ Π΄Π»Ρ ΡΡΠ΅Π½ΠΈΠΊΠΎΠ² Ρ 1 ΠΏΠΎ 11 ΠΊΠ»Π°ΡΡΡ! ΠΡΠΈΡ ΠΎΠ΄ΠΈ Π½Π° ΠΏΡΠΎΠ±Π½ΠΎΠ΅ Π·Π°Π½ΡΡΠΈΠ΅ Ρ Π½Π°ΡΠΈΠΌΠΈ Π»ΡΡΡΠΈΠΌΠΈ ΠΏΡΠ΅ΠΏΠΎΠ΄Π°Π²Π°ΡΠ΅Π»ΡΠΌΠΈ!
ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ
Π§ΡΠΎΠ±Ρ ΠΏΠΎΠ½ΡΡΡ, ΠΊΠ°ΠΊ ΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΉ, ΠΏΠΎΡΡΠ΅Π½ΠΈΡΡΠ΅ΠΌΡΡ Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ°Ρ .
ΠΠ°Π΄Π°ΡΠ° 1. ΠΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΡΠΎΡΠΌΡΠ»Ρ ΡΡΠ½ΠΊΡΠΈΠΈ:
ΠΠ°Π΄Π°ΡΠ° 2. ΠΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠ΄Π΅Π»ΠΈΠΌ Π² ΡΠΎΡΠΌΡΠ»Π΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ΅Π»ΡΡ ΡΠ°ΡΡΡ:
ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ β Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»Π°, ΡΠ΄Π²ΠΈΠ½ΡΡΠ°Ρ Π½Π° 3 Π²ΠΏΡΠ°Π²ΠΎ ΠΏΠΎ x ΠΈ Π½Π° 2 Π²Π²Π΅ΡΡ
ΠΏΠΎ y ΠΈ ΡΠ°ΡΡΡΠ½ΡΡΠ°Ρ Π² 10 ΡΠ°Π· ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠ΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠ΅Π»ΠΎΠΉ ΡΠ°ΡΡΠΈ β ΠΏΠΎΠ»Π΅Π·Π½ΡΠΉ ΠΏΡΠΈΠ΅ΠΌ, ΠΊΠΎΡΠΎΡΡΠΉ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ², ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠΈ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΠΈ ΠΎΡΠ΅Π½ΠΊΠ΅ ΡΠ΅Π»ΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½.
ΠΠ°Π΄Π°ΡΠ° 3. ΠΠΎ Π²ΠΈΠ΄Ρ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π·Π½Π°ΠΊΠΈ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ² ΠΎΠ±ΡΠ΅Π³ΠΎ Π²ΠΈΠ΄Π° ΡΡΠ½ΠΊΡΠΈΠΈ y = ax2 + bx + c.
ΠΡΠΏΠΎΠΌΠ½ΠΈΠΌ, ΠΊΠ°ΠΊ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ a, b ΠΈ c ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ.
ΠΠ΅ΡΠ²ΠΈ Π²Π½ΠΈΠ·, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, a 0.
Π’ΠΎΡΠΊΠ° ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Ρ ΠΎΡΡΡ Oy β c = 0.
ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° Π²Π΅ΡΡΠΈΠ½Ρ , Ρ.ΠΊ. Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ ΠΏΡΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π½Π° ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π΄Π°Π΅Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ, ΡΠΎ ΡΡΠΎ ΡΠΈΡΠ»ΠΎ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, b > 0.
ΠΠ΅ΡΠ²ΠΈ Π²Π½ΠΈΠ·, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, a 0.
ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° Π²Π΅ΡΡΠΈΠ½Ρ , Ρ.ΠΊ. Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ ΠΏΡΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π½Π° ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π΄Π°Π΅Ρ Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅, ΡΠΎ ΡΡΠΎ ΡΠΈΡΠ»ΠΎ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, b
x | y |
0 | -1 |
1 | 2 |
x | y |
0 | 2 |
1 | 1 |
x | y |
0 | 0 |
1 | 2 |
k = 2 > 0 β ΡΠ³ΠΎΠ» Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΊ ΠΎΡΠΈ Ox ΠΎΡΡΡΡΠΉ, B = 0 β Π³ΡΠ°ΡΠΈΠΊ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΡΠ΅ΡΠ΅Π· Π½Π°ΡΠ°Π»ΠΎ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.
ΠΠ°Π΄Π°ΡΠ° 5. ΠΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠΎ Π΄ΡΠΎΠ±Π½ΠΎ-ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ. ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ D(y): x β 4; x β 0.
ΠΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ: 3, 2, 6.
ΠΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π·Π½Π°ΠΊΠΎΠΏΠΎΡΡΠΎΡΠ½ΡΡΠ²Π° ΡΡΠ½ΠΊΡΠΈΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»ΠΎΠ².
ΠΠ΅ΡΡΠΈΠΊΠ°Π»ΡΠ½ΡΠ΅ Π°ΡΠΈΠΌΠΏΡΠΎΡΡ: x = 0, x = 4.
ΠΡΠ»ΠΈ x ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠΈ, ΡΠΎ Ρ ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ 1. ΠΠ½Π°ΡΠΈΡ, y = 1 β Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½Π°Ρ Π°ΡΠΈΠΌΠΏΡΠΎΡΠ°.
ΠΠΎΡ ΡΠ°ΠΊ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ Π³ΡΠ°ΡΠΈΠΊ:
ΠΠ°Π΄Π°ΡΠ° 6. ΠΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΉ:
Π±)
Π³)
Π΄)
ΠΠΎΠ³Π΄Π° ΡΠ»ΠΎΠΆΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π° ΠΈΠ· ΠΏΡΠΎΡΡΠ΅ΠΉΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π· Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ, ΡΠΎ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΠΏΠΎΠ»Π½ΠΈΡΡ Π² ΠΏΠΎΡΡΠ΄ΠΊΠ΅ Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΠΉ Ρ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠΌ.
Π°)
ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π² ΠΎΠ΄Π½ΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΡΠΈΠΏΠ° f(x) + a.
Π‘Π΄Π²ΠΈΠ³Π°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ Π²Π²Π΅ΡΡ Π½Π° 1:
Π±)
Π‘Π΄Π²ΠΈΠ³Π°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ Π²ΠΏΡΠ°Π²ΠΎ Π½Π° 1:
Π‘Π΄Π²ΠΈΠ³Π°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ Π²ΠΏΡΠ°Π²ΠΎ Π½Π° 1:
Π‘Π΄Π²ΠΈΠ³Π°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ Π²Π²Π΅ΡΡ Π½Π° 2:
Π³)
ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π² ΠΎΠ΄Π½ΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΡΠΈΠΏΠ°
Π Π°ΡΡΡΠ³ΠΈΠ²Π°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ Π² 2 ΡΠ°Π·Π° ΠΎΡ ΠΎΡΠΈ ΠΎΡΠ΄ΠΈΠ½Π°Ρ Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ Π°Π±ΡΡΠΈΡΡ:
Π΄)
Π§ΡΠΎΠ±Ρ Π²ΡΠΏΠΎΠ»Π½ΠΈΡΡ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ, ΠΏΠΎΡΠΌΠΎΡΡΠΈΠΌ Π½Π° ΠΏΠΎΡΡΠ΄ΠΎΠΊ Π΄Π΅ΠΉΡΡΠ²ΠΈΠΉ: ΡΠ½Π°ΡΠ°Π»Π° ΡΠΌΠ½ΠΎΠΆΠ°Π΅ΠΌ, Π·Π°ΡΠ΅ΠΌ ΡΠΊΠ»Π°Π΄ΡΠ²Π°Π΅ΠΌ, Π° ΡΠΆΠ΅ ΠΏΠΎΡΠΎΠΌ ΠΌΠ΅Π½ΡΠ΅ΠΌ Π·Π½Π°ΠΊ. Π§ΡΠΎΠ±Ρ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΡΡ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠΎ Π²ΡΠ΅ΠΌΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΡ ΠΌΠΎΠ΄ΡΠ»Ρ Π² ΡΠ΅Π»ΠΎΠΌ, Π²ΡΠ½Π΅ΡΠ΅ΠΌ Π΄Π²ΠΎΠΉΠΊΡ Π·Π° ΡΠΊΠΎΠ±ΠΊΠΈ Π² ΠΌΠΎΠ΄ΡΠ»Π΅.
Π‘ΠΆΠΈΠΌΠ°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ Π² Π΄Π²Π° ΡΠ°Π·Π° Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ Π°Π±ΡΡΠΈΡΡ:
Π‘Π΄Π²ΠΈΠ³Π°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ Π²Π»Π΅Π²ΠΎ Π½Π° 1/2 Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ Π°Π±ΡΡΠΈΡΡ:
ΠΡΡΠ°ΠΆΠ°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡΠ½ΠΎ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΎΡΠΈ Π°Π±ΡΡΠΈΡΡ:
ΠΠ΅ΡΠΏΠ»Π°ΡΠ½ΡΠΉ ΠΌΠ°ΡΠ°ΡΠΎΠ½: ΠΊΠ°ΠΊ ΡΠ°ΠΌΠΎΠΌΡ ΡΠΎΠ·Π΄Π°Π²Π°ΡΡ ΠΈΠ³ΡΡ, Π° Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ ΠΈΠ³ΡΠ°ΡΡ Π² Π½ΠΈΡ (βα΄β)
ΠΠ°ΠΏΠΈΡΠ°ΡΡΡΡ Π½Π° ΠΌΠ°ΡΠ°ΡΠΎΠ½
ΠΠ΅ΡΠΏΠ»Π°ΡΠ½ΡΠΉ ΠΌΠ°ΡΠ°ΡΠΎΠ½: ΠΊΠ°ΠΊ ΡΠ°ΠΌΠΎΠΌΡ ΡΠΎΠ·Π΄Π°Π²Π°ΡΡ ΠΈΠ³ΡΡ, Π° Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ ΠΈΠ³ΡΠ°ΡΡ Π² Π½ΠΈΡ (βα΄β)