какие транзисторы используются в процессорах

Как это устроено: транзисторы

Наши компьютеры основаны на транзисторах. Но на чём основаны транзисторы?

Процессоры в компьютерах, телефонах и любой электронике состоят из транзисторов. В процессоре Apple A13 Bionic, который стоит внутри одиннадцатого айфона, 8,5 миллиарда транзисторов, а в Core i7 4790, который стоял внутри многих настольных компьютеров в 2014 году, — в 6 раз меньше.

Именно транзисторы выполняют всю компьютерную работу: считают, запускают программы, управляют датчиками и отвечают за работу устройства в целом.

При этом сам транзистор — простейший прибор, который по сути похож на кран или электрические ворота. Через транзистор идёт какой-то один ток, а другим током этот поток можно либо пропустить, либо заблокировать. И всё.

Вот примерная схема. В жизни ножки транзистора могут быть расположены не так, как на схеме, но для наглядности нам надо именно так:

какие транзисторы используются в процессорах. Смотреть фото какие транзисторы используются в процессорах. Смотреть картинку какие транзисторы используются в процессорах. Картинка про какие транзисторы используются в процессорах. Фото какие транзисторы используются в процессорах

Ток пытается пройти сквозь транзистор, но транзистор «закрыт»: на его управляющую ногу не подан другой ток.

какие транзисторы используются в процессорах. Смотреть фото какие транзисторы используются в процессорах. Смотреть картинку какие транзисторы используются в процессорах. Картинка про какие транзисторы используются в процессорах. Фото какие транзисторы используются в процессорах

А теперь мы подали на управляющую ногу немного тока, и теперь транзистор «открылся» и пропускает через себя основной ток.

Из миллиардов таких простейших кранов и состоит любая современная вычислительная машина: от чайника с электронным управлением до суперкомпьютера в подвалах Пентагона. И до чипа в вашем смартфоне.

В середине XX века транзисторы были большими: сотней транзисторов можно было набить карман, их продавали в радиотехнических магазинах, у них были прочные корпуса и металлические ножки, которые нужно было паять на плате. Такие транзисторы до сих пор продаются и производятся, но в микроэлектронике они не используются — слишком большие.

какие транзисторы используются в процессорах. Смотреть фото какие транзисторы используются в процессорах. Смотреть картинку какие транзисторы используются в процессорах. Картинка про какие транзисторы используются в процессорах. Фото какие транзисторы используются в процессорахЭто один из вариантов исполнения транзистора: пластиковый корпус и три ноги для соединения с платой.

Современный транзистор уменьшен в миллионы раз, у него нет корпуса, а процесс его монтажа можно сравнить скорее с процессом лазерной печати. Транзисторы размером несколько нанометров в буквальном смысле печатают поверх пластин, из которых потом получаются наши процессоры и память. Такие пластины называют вафлями, и если смотреть на них без микроскопа, это будут просто такие радужные поверхности. Радужные они потому, что состоят из миллиардов маленьких выемок — транзисторов, резисторов и прочих микрокомпонентов:

какие транзисторы используются в процессорах. Смотреть фото какие транзисторы используются в процессорах. Смотреть картинку какие транзисторы используются в процессорах. Картинка про какие транзисторы используются в процессорах. Фото какие транзисторы используются в процессорахВафля из миллиардов транзисторов. Если её разрезать в правильных местах, получатся наши микропроцессоры.

Что внутри транзистора

Если бы мы могли разрезать один транзистор в микропроцессоре, мы бы увидели что-то вроде этого:

какие транзисторы используются в процессорах. Смотреть фото какие транзисторы используются в процессорах. Смотреть картинку какие транзисторы используются в процессорах. Картинка про какие транзисторы используются в процессорах. Фото какие транзисторы используются в процессорах

Слева — проводник, по которому бежит ток, справа — просто проводник, пока без тока. Между ними находится проводящий канал — те самые «ворота». Когда ворота открыты, ток из левого проводника поступает в правый. Когда закрыты — правый остаётся без тока. Чтобы ворота открылись, на них нужно подать ток откуда-то ещё. Если тока нет, то ворота закрыты.

Теперь, если грамотно посоединять тысячу транзисторов, мы получим простейшую вычислительную машину. А если посоединять миллиард транзисторов, получим ваш процессор.

Почему все так полюбили транзисторы

До транзисторов у учёных уже было некое подобие вычислительных машин. Например, счёты: там оператор управлял перемещением бусин в регистрах и складывал таким образом числа. Но оператор медленный и может ошибаться, поэтому система была несовершенной.

Были механические счётные машины, которые умели складывать и умножать числа за счёт сложных шестерней, бочонков и пружин, — например, арифмометр. Они работали медленно и были слишком дорогими для масштабирования.

Были вычислительные машины на базе механических переключателей — реле. Они были очень большими — те самые «залы, наполненные одним компьютером». Их могли застать наши родители, бабушки и дедушки.

Позже придумали электронные лампы: там управлять током уже можно было с помощью другого тока. Но лампы перегревались, ломались, на них мог прилететь мотылёк.

какие транзисторы используются в процессорах. Смотреть фото какие транзисторы используются в процессорах. Смотреть картинку какие транзисторы используются в процессорах. Картинка про какие транзисторы используются в процессорах. Фото какие транзисторы используются в процессорах

И только в конце сороковых учёные изобрели твердотельные транзисторы: вся кухня с включением и выключением тока проходила внутри чего-то твёрдого, устойчивого и безопасного, не привлекающего внимания мотыльков. За основу взяли германий и кремний и стали развивать эту технологию.

Кайф твердотельных транзисторов в том, что взаимодействия там происходят на скоростях, близких к скорости света. Чем меньше сам транзистор, тем быстрее по нему пробегают электроны, тем меньше времени нужно на вычисления. Ну и сломать твердотельный транзистор в хорошем прочном корпусе намного сложнее, чем хрупкую стеклянную лампу или механическое реле.

Как считают транзисторы

Транзисторы соединены таким хитрым образом, что, когда на них подаётся ток в нужных местах, они выдают ток в других нужных местах. И всё вместе производит впечатление полезной для человека математической операции.

Пока что не будем думать, как именно соединены транзисторы. Просто посмотрим на принцип.

Допустим, нам надо сложить числа 4 и 7. Нам, людям, очевидно, что результат будет 11. Закодируем эти три числа в двоичной системе:

ДесятичнаяДвоичная
40100
70111
111011

Теперь представим, что мы собрали некую машину, которая получила точно такой же результат: мы с одной стороны подали ей ток на входы, которые соответствуют первому слагаемому; с другой стороны — подали ток на входы второго слагаемого; а на выходе подсветились выходы, которые соответствовали сумме.

какие транзисторы используются в процессорах. Смотреть фото какие транзисторы используются в процессорах. Смотреть картинку какие транзисторы используются в процессорах. Картинка про какие транзисторы используются в процессорах. Фото какие транзисторы используются в процессорах

Смотрите, что тут происходит: есть восемь входов и четыре выхода. На входы подается электричество. Это просто электричество, оно не знает, что оно обозначает числа. Но мы, люди, знаем, что мы в этом электричестве зашифровали числа.

Так же на выходе: электричество пришло на какие-то контакты. Мы как-то на них посмотрели и увидели, что эти контакты соответствуют какому-то числу. Мы делаем вывод, что эта простейшая машина сложила два числа. Хотя на самом деле она просто хитрым образом перемешала электричество.

Вот простейший пример компьютера, собранного на транзисторах. Он складывает два числа от 0 до 15 и состоит только из транзисторов, резисторов (чтобы не спалить) и всяких вспомогательных деталей типа батарейки, выключателей и лампочек. Можно сразу посмотреть концовку, как он работает:

Вот ровно это, только в миллиард раз сложнее, и происходит в наших компьютерах.

Что мы знаем на этом этапе:

В следующей части разберем, как именно соединены эти транзисторы и что им позволяет так интересно всё считать.

Источник

Как разрабатываются и создаются процессоры? Часть 2: Процесс проектирования процессора

Теперь, когда мы знаем, как работают процессоры на высоком уровне, пришло время заглянуть внутрь процессора, чтобы понять, как устроены его внутренние компоненты. Эта статья является второй частью нашей серии, посвященной устройству процессоров. Если вы не читали первую часть, советуем ознакомиться с ней прежде, чем вы начнете читать дальше, поскольку в этой статье мы будем использовать понятия, освещенные ранее.

Как вы, вероятно, знаете, процессоры и большинство других современных цифровых технологий основаны на транзисторах. Самый простой способ представить транзистор – это управляемый переключатель с тремя контактами. Когда затвор включен, ток пропускается через транзистор. А когда выключен, транзистор ток не проводит. Точно так же, как и выключатель света на вашей стене, только транзистор гораздо меньше, гораздо быстрее и может управляться электрически.

какие транзисторы используются в процессорах. Смотреть фото какие транзисторы используются в процессорах. Смотреть картинку какие транзисторы используются в процессорах. Картинка про какие транзисторы используются в процессорах. Фото какие транзисторы используются в процессорах

В современных процессорах используются два основных типа транзисторов: pMOS и nMOS. Транзистор nMOS позволяет току течь, когда подается ненулевое напряжение на затвор, а транзистор pMOS – наоборот, проводит ток, когда напряжение на затворе стремится к нулю. Комбинируя эти типы транзисторов, мы можем создать логические вентили CMOS. В третьей части серии мы ещё остановимся подробней на физике работы процессоров.

Логический вентиль (логический элемент, гейт) – это простейшее устройство, которое принимает входной сигнал, выполняет некоторые операции и выводит результат в виде выходного сигнала. Например, вентиль AND (И) включит свой выход тогда и только тогда, когда все входы в вентиль включены. Инвертор или вентиль отрицания NOT (НЕ) включит свой выход, если вход отключен. Объединив эти два гейта, мы получим логический элемент NAND (И-НЕ), который включает свой выход, если и только если ни один из входов не включен. К другим логическим гейтам, с иной логической функциональностью, относятся OR (ИЛИ), NOR (ИЛИ-НЕ), XOR (Исключающее ИЛИ) и XNOR (Исключающее ИЛИ с инверсией).

Ниже показаны схемы двух основных логических элементов, реализованных с помощью транзисторов: вентиль отрицания (инвертор) и вентиль NAND (И-НЕ). В инверторе сверху находится транзистор pMOS, подключенный к питанию, а снизу транзистор nMOS, подключенный к земле. Транзисторы pMOS обозначаются с небольшим кружочком на затворе. Поскольку устройства pMOS срабатывают при отключенном входе, а устройства nMOS наоборот – при включенном, то несложно понять, что сигнал на выходе всегда будет противоположным сигналу на входе. Глядя на вентиль NAND, мы видим, что для него требуются четыре транзистора и что выход будет включен, пока хотя бы один из входов отключен. По такому же принципу, как формируются приведенные примеры элементарных транзисторных схем, проектируются и более сложные логические гейты и прочие схемы внутри процессоров.

какие транзисторы используются в процессорах. Смотреть фото какие транзисторы используются в процессорах. Смотреть картинку какие транзисторы используются в процессорах. Картинка про какие транзисторы используются в процессорах. Фото какие транзисторы используются в процессорах

Трудно представить, как из таких простейших кирпичиков – логических элементов – может получиться функционирующий компьютер. Сперва из нескольких отдельных вентилей создаётся простейшее устройство, способное выполнять какую-то простую функцию. Затем из нескольких таких простых устройств создаётся более сложное, выполняющее более сложную задачу. Процесс объединения отдельных компонентов для получения требуемой функциональности – это именно то, что применяется сегодня при создании чипов. Современные чипы имеют миллиарды транзисторов.

В качестве примера, взглянем на простой полный одноразрядный сумматор. Он имеет три входа – А, B и Вход переноса (Cin), и два выхода – Сумма (Sum) и Выход переноса (Carry out). Базовая схема такого сумматора строится на пяти логических гейтах, которые можно сгруппировать для получения сумматора требуемого размера. Современные схемы вносят некоторые улучшения, оптимизируя работу логики и работу с переносами, но суть остаётся прежней.

Вывод Суммы (Sum) включается, если A или B включены (но не оба сразу), либо если есть сигнал переноса (Cin), при этом A и B одновременно включены или выключены. Вывод переноса (Carry out) функционирует несколько сложнее – он срабатывает либо при одновременном включении A и B, либо если есть сигнал переноса и один из A или B (но не оба сразу). Чтобы соединить несколько однобитных сумматоров в один более широкий, нам попросту нужно последовательно соединить вывод переноса предыдущего бита с входом переноса текущего бита. Чем сложнее схемы, тем сложнее логика, но это самый простой способ сложить два числа. Современные процессоры используют более сложные сумматоры, рассматривать их в нашем обзоре будет излишним. Помимо сумматоров, процессоры также содержат узлы для деления и умножения, включая версии всех этих операций с плавающей запятой.

какие транзисторы используются в процессорах. Смотреть фото какие транзисторы используются в процессорах. Смотреть картинку какие транзисторы используются в процессорах. Картинка про какие транзисторы используются в процессорах. Фото какие транзисторы используются в процессорах

Объединение групп логических элементов для выполнения какой-либо функции, подобное этому, называется комбинационной логикой. Но этот тип логики не единственный, что встречается в компьютерах. Было бы мало толку, если бы мы не могли хранить данные или отслеживать состояние чего-либо. Для этого нам нужна секвенциальная логика, которая обеспечивает возможность хранить данные.

Секвенциальная логика строится путем подключения инверторов и других гейтов таким образом, что их выходы возвращают сигналы на вход гейтов. Эти контуры обратной связи используются для хранения одного бита данных и известны как статическое ОЗУ или SRAM (Static RAM). Статическим оно называется в противоположность динамическому (DRAM), поскольку сохраняемые в нём данные всегда напрямую связаны с положительным напряжением или землей.

Ниже показан стандартный способ имплементации одного бита SRAM на шести транзисторах. Верхний сигнал WL (Word Line, словная линия) является адресным, и когда он включен, данные, хранящиеся в этой 1-битной ячейке, подаются на битовую линию BL (Bit Line). Вывод BLB (Bit Line Bar, шина битовой линии) это просто инвертированное значение битовой линии, но физически это одна и та же линия. Помимо двух типов транзисторов, мы видим и знакомые нам схемы инверторов, выполненные на транзисторах M3/M1 и M2/M4.

какие транзисторы используются в процессорах. Смотреть фото какие транзисторы используются в процессорах. Смотреть картинку какие транзисторы используются в процессорах. Картинка про какие транзисторы используются в процессорах. Фото какие транзисторы используются в процессорах

SRAM используется для создания сверхбыстрых кэшей и регистров внутри процессоров. Такая память очень стабильна, но требует от шести до восьми транзисторов для хранения каждого бита данных. Это делает его чрезвычайно дорогим по стоимости, сложности и площади чипа по сравнению с Dynamic RAM. DRAM, в свою очередь, хранит данные в крошечном конденсаторе, а не с помощью логических вентилей. Динамическим оно называется потому, что напряжение на конденсаторе может динамически изменяться, поскольку оно не подключено напрямую к питанию или земле.

Поскольку для доступа к данным, хранящимся в конденсаторе, требуется только один транзистор на бит и конструкция схемы очень масштабируема, DRAM может быть «упакован» компактно и дешево. Одним из недостатков DRAM является то, что заряд в конденсаторе настолько мал, что его необходимо постоянно поддерживать. Именно поэтому при выключении компьютера все конденсаторы разряжаются и данные в оперативной памяти теряются.

какие транзисторы используются в процессорах. Смотреть фото какие транзисторы используются в процессорах. Смотреть картинку какие транзисторы используются в процессорах. Картинка про какие транзисторы используются в процессорах. Фото какие транзисторы используются в процессорах

Принципиальная схема DRAM. Address Line – адресная шина (словная линия); Bit Line – битовая шина (битовая линия); Transistor – транзистор; Storage capacitor – конденсатор; Ground – земля.

Такие производители, как Intel, AMD и Nvidia, не публикуют схем работы своих процессоров, поэтому и мы не можем предоставить точные схемы узлов современных процессоров. Однако этот простой сумматор позволяет получить достаточное представление о том, как даже самые сложные части процессора можно разбить на составляющие логические элементы, элементы памяти, и в конечном итоге – на транзисторы.

Теперь, когда мы знаем об устройстве некоторых компонентов процессора, нам нужно выяснить, как они соединяются и согласуются между собой. Все важнейшие узлы процессора подключены к тактовому сигналу (синхросигналу), который представляет собой чередование верхнего и нижнего уровня сигнала с заданным интервалом, называемым частотой. Логика внутри процессора обычно переключает значения и выполняет вычисления в момент переключения синхросигнала с низкого уровня на высокий. Синхронизируя все вместе, мы можем быть уверены, что данные всегда распределяются корректно по времени, тем самым исключая сбои в работе процессора.

Многие, наверное, слышали о так называемом «разгоне» – увеличении тактовой частоты процессора с целью повысить его производительность. Этот выигрыш в производительности достигается за счет более быстрого переключения транзисторов и внутрипроцессорной логики, чем предусмотрено производителем. Поскольку число тактов в секунду становится больше, то и операций может быть произведено больше, отчего и повышается производительность процессора. Но это справедливо лишь до определенного предела. Большинство современных процессоров работают с частотой от 3,0 до 4,5 ГГц, и за последнее десятилетие ситуация не сильно изменилась. Точно так же, как металлическая цепь не прочнее её самого слабого звена, процессор не может быть быстрее его самой медленной части. К концу каждого такта каждый из элементов процессора должен завершить свою работу. Если какой-то элемент не успевает, значит заданная частота слишком высока, и процессор не сможет работать. Разработчики называют эту самую медленную часть «критическим путем», и именно по ней производителем задаётся максимальная частота процессора. Выше определенной частоты транзисторы просто не могут переключаться достаточно быстро и начинают глючить или давать неправильные выходные сигналы.

Мы можем ускорить переключение транзисторов, повысив напряжение питания процессора, но это тоже срабатывает до определённого предела. Если подать слишком большое напряжение, то мы рискуем сжечь процессор. При увеличении частоты или повышении напряжения процессора, усиливаются его нагрев и потребляемая мощность. Это происходит потому, что мощность процессора прямо пропорциональна частоте и пропорциональна квадрату напряжения. Чтобы определить энергопотребление процессора, мы рассматриваем каждый транзистор как маленький конденсатор, который нужно заряжать или разряжать при изменении его значения.

Тактовый сигнал в современных процессорах отнимает примерно 30-40% от его общей мощности, потому что он очень сложен и должен управлять множеством различных устройств. Для сохранения энергии большинство процессоров с низким потреблением отключают части чипа во время их бездействия. Это реализуется отключением тактового сигнала (Clock Gating) или отключением питания (Power Gating).

Тактовые сигналы имеют ещё одну сложность при разработке процессора: так как их частоты постоянно растут, на их пути начинают вставать законы физики. Хоть скорость света и чрезвычайно высока, она недостаточно высока для высокопроизводительных процессоров. Если подключить тактовый сигнал к одному из концов чипа, то ко времени, когда сигнал достигнет другого конца, он уже будет значительно рассинхронизован. Чтобы синхронизировать все части чипа, тактовый сигнал распределяется при помощи так называемого H-дерева (H-Tree). Это структура, обеспечивающая равноудаленность всех конечных точек от центра.

какие транзисторы используются в процессорах. Смотреть фото какие транзисторы используются в процессорах. Смотреть картинку какие транзисторы используются в процессорах. Картинка про какие транзисторы используются в процессорах. Фото какие транзисторы используются в процессорах

Может показаться, что проектирование каждого отдельного транзистора, тактового сигнала и контакта питания в чипе – чрезвычайно монотонная и сложная задача, и это в самом деле так. Даже несмотря на то, что в таких компаниях, как Intel, Qualcomm и AMD работают тысячи инженеров, они не смогли бы вручную спроектировать каждый аспект чипа. Для их проектирования они используют различные специальные инструменты, помогающие создавать необходимые конструкции и схемы к ним. Такие инструменты обычно получают высокоуровневое описание того, что должен делать компонент, и определяют наилучшую аппаратную конфигурацию, удовлетворяющую этим требованиям. Зародилось технологическое направление под названием «Синтез высокого уровня» (High Level Synthesis), которое позволяет разработчикам задавать в коде желаемую функциональность, после чего компьютеры определяют, как оптимально достичь её в оборудовании.

Точно так же, как вы можете описывать компьютерные программы с помощью кода, проектировщики могут описывать кодом аппаратные устройства. Такие языки, как Verilog и VHDL позволяют разработчикам оборудования выражать функциональность любой создаваемой ими электрической схемы. После успешного выполнения симуляций и верификации таких проектов их можно материализовать в конкретные транзисторы, из которых будет состоять электрическая схема. Хоть этап верификации и не кажется столь же увлекательным, как проектирование нового кэша или ядра, он значительно важнее их. На каждого нанимаемого компанией инженера-проектировщика может приходиться пять или более инженеров по верификации.

Верификация нового проекта чипа зачастую требует гораздо больше времени и денег, чем создание самого чипа. Компании тратят так много времени и средств на верификацию, потому что после отправки чипа в производство его невозможно исправить. В случае ошибки в ПО, можно просто выпустить патч, а вот с ошибками в оборудовании такого не сделаешь. Например, компания Intel обнаружила баг в модуле деления с плавающей запятой у некоторых чипов Pentium, и теперь этот баг обошёлся компании в 2 миллиарда долларов.

Непросто осмыслить то, что в одном чипе может быть несколько миллиардов транзисторов и понять, что все они делают. Если разбить чип на его отдельные внутренние компоненты, становится немного легче. Из транзисторов составляются логические вентили, логические вентили соединяются в функциональные модули, выполняющие определённую задачу, а эти функциональные модули собираются вместе, образуя архитектуру компьютера, о которой мы говорили в первой части серии.

Бо́льшая часть работ по проектированию автоматизирована, но изложенное выше позволяет нам осознать, насколько сложен только что купленный нами новый процессор.

Эта вторая часть нашей серии посвящена процессу проектирования процессора. Мы рассмотрели транзисторы, логические элементы (они же вентили, гейты), подачу питания и синхронизирующих сигналов, синтез конструкции и верификацию. В третьей части мы узнаем, что требуется для физического производства чипа. Все компании любят хвастаться тем, насколько современен их техпроцесс (Intel 10 нм, Apple и AMD 7 нм, и т.д.), но что же на самом деле означают эти числа? Об этом мы расскажем в следующей части.

Источник

Как устроен процессор? Разбираемся вместе

какие транзисторы используются в процессорах. Смотреть фото какие транзисторы используются в процессорах. Смотреть картинку какие транзисторы используются в процессорах. Картинка про какие транзисторы используются в процессорах. Фото какие транзисторы используются в процессорах

Современного потребителя электроники очень сложно удивить. Мы уже привыкли к тому, что наш карман законно занимает смартфон, в сумке лежит ноутбук, на руке послушно отсчитывают шаги «умные» часы, а слух ласкают наушники с активной системой шумоподавления.

Забавная штука, но мы привыкли носить с собой не один, а сразу два, три и более компьютеров. Ведь именно так можно назвать устройство, у которого есть процессор. И вовсе неважно, как выглядит конкретный девайс. За его работу отвечает миниатюрный чип, преодолевший бурный и стремительный путь развития.

Почему мы подняли тему процессоров? Все просто. За последние десять лет произошла настоящая революция в мире мобильных устройств.

Между этими устройствами всего 10 лет разницы. Но Nokia N95 тогда нам казалась космическим девайсом, а на ARKit сегодня мы смотрим с определенным недоверием

какие транзисторы используются в процессорах. Смотреть фото какие транзисторы используются в процессорах. Смотреть картинку какие транзисторы используются в процессорах. Картинка про какие транзисторы используются в процессорах. Фото какие транзисторы используются в процессорах

А ведь все могло бы сложиться иначе и потрепанный Pentium IV так бы и остался пределом мечтаний рядового покупателя.

Мы постарались обойтись без сложных технических терминов и рассказать, как работает процессор, и выяснить, за какой архитектурой будущее.

1. С чего все началось

какие транзисторы используются в процессорах. Смотреть фото какие транзисторы используются в процессорах. Смотреть картинку какие транзисторы используются в процессорах. Картинка про какие транзисторы используются в процессорах. Фото какие транзисторы используются в процессорах

Первые процессоры были абсолютно не похожи на то, что вы можете видеть, приоткрыв крышку системного блока вашего ПК.

Вместо микросхем в 40-е годы XX века использовались электромеханические реле, дополненные вакуумными лампами. Лампы выполняли роль диода, регулировать состояние которого можно было за счет понижения или повышения напряжения в цепи. Выглядели такие конструкции так:

какие транзисторы используются в процессорах. Смотреть фото какие транзисторы используются в процессорах. Смотреть картинку какие транзисторы используются в процессорах. Картинка про какие транзисторы используются в процессорах. Фото какие транзисторы используются в процессорах

Для работы одного исполинского компьютера нужны были сотни, иногда тысячи процессоров. Но, при этом, вы не смогли бы запустить на таком компьютере даже простенький редактор, как NotePad или TextEdit из штатного набора Windows и macOS. Компьютеру банально не хватило бы мощности.

2. Появление транзисторов

какие транзисторы используются в процессорах. Смотреть фото какие транзисторы используются в процессорах. Смотреть картинку какие транзисторы используются в процессорах. Картинка про какие транзисторы используются в процессорах. Фото какие транзисторы используются в процессорах

Первые полевые транзисторы появились еще в 1928 году. Но мир изменился лишь после появления так называемых биполярных транзисторов, открытых в 1947-м.

В конце 40-х физик-экспериментатор Уолтер Браттейн и теоретик Джон Бардин разработали первый точечный транзистор. В 1950 его заменил первый плоскостной транзистор, а в 1954 году небезызвестный производитель Texas Instruments анонсировал уже кремниевый транзистор.

Но настоящая революция наступила в 1959 году, когда ученый Жан Энри разработал первый кремниевый планарный (плоский) транзистор, который стал основой для монолитных интегральных схем.

Да, это немного сложно, поэтому давайте копнем немного глубже и разберемся с теоретической частью.

3. Как работает транзистор

какие транзисторы используются в процессорах. Смотреть фото какие транзисторы используются в процессорах. Смотреть картинку какие транзисторы используются в процессорах. Картинка про какие транзисторы используются в процессорах. Фото какие транзисторы используются в процессорах

Итак, задача такого электрического компонента как транзистор заключается в управлении током. Проще говоря, этот немного хитрый переключатель, контролирует подачу электричества.

Основное преимущество транзистора перед обычным переключателем в том, что он не требует присутствия человека. Т.е. управлять током такой элемент способен самостоятельно. К тому же, он работает намного быстрее, чем вы бы самостоятельно включали или отключали электрическую цепь.

какие транзисторы используются в процессорах. Смотреть фото какие транзисторы используются в процессорах. Смотреть картинку какие транзисторы используются в процессорах. Картинка про какие транзисторы используются в процессорах. Фото какие транзисторы используются в процессорах

Из школьного курса информатики вы, наверняка, помните, что компьютер «понимает» человеческий язык за счет комбинаций всего двух состояний: «включено» и «выключено». В понимании машины это состояние «0» или «1».

Задача компьютера заключается в том, чтобы представить электрический ток в виде чисел.

И если раньше задачу переключения состояний выполняли неповоротливые, громоздкие и малоэффективные электрические реле, то теперь эту рутинную работу взял на себя транзистор.

С начала 60-х транзисторы стали изготавливать из кремния, что позволило не только делать процессоры компактнее, но и существенно повысить их надежность.

Но сначала разберемся с диодом

Кремний (он же Si – «silicium» в таблице Менделеева) относится к категории полупроводников, а значит он, с одной стороны, пропускает ток лучше диэлектрика, с другой, – делает это хуже, чем металл.

какие транзисторы используются в процессорах. Смотреть фото какие транзисторы используются в процессорах. Смотреть картинку какие транзисторы используются в процессорах. Картинка про какие транзисторы используются в процессорах. Фото какие транзисторы используются в процессорах

Хочется нам того или нет, но для понимания работы и дальнейшей история развития процессоров придется окунуться в строение одного атома кремния. Не бойтесь, сделаем это кратко и очень понятно.

Задача транзистора заключается в усилении слабого сигнала за счет дополнительного источника питания.

У атома кремния есть четыре электрона, благодаря которым он образует связи (а если быть точным – ковалентные связи) с такими же близлежащими тремя атомами, формируя кристаллическую решетку. Пока большинство электронов находятся в связи, незначительная их часть способна двигаться через кристаллическую решетку. Именно из-за такого частичного перехода электронов кремний отнесли к полупроводникам.

Но столь слабое движение электронов не позволило бы использовать транзистор на практике, поэтому ученые решили повысить производительность транзисторов за счет легирования, а проще говоря – дополнения кристаллической решетки кремния атомами элементов с характерным размещением электронов.

Так стали использовать 5-валентную примесь фосфора, за счет чего получили транзисторы n-типа. Наличие дополнительного электрона позволило ускорить их движение, повысив пропуск тока.

При легировании транзисторов p-типа таким катализатором стал бор, в который входят три электрона. Из-за отсутствия одного электрона, в кристаллической решетке возникают дырки (выполняют роль положительного заряда), но за счет того, что электроны способны заполнять эти дырки, проводимость кремния повышается в разы.

Предположим, мы взяли кремниевую пластину и легировали одну ее часть при помощи примеси p-типа, а другую – при помощи n-типа. Так мы получили диод – базовый элемент транзистора.

какие транзисторы используются в процессорах. Смотреть фото какие транзисторы используются в процессорах. Смотреть картинку какие транзисторы используются в процессорах. Картинка про какие транзисторы используются в процессорах. Фото какие транзисторы используются в процессорах

Теперь электроны, находящиеся в n-части, будут стремится перейти в дырки, расположенные в p-части. При этом n-сторона будет иметь незначительный отрицательный, а p-сторона – положительный заряды. Образованное в результате этого «тяготения» электрическое поле –барьер, будет препятствовать дальнейшему перемещению электронов.

Если к диоду подключить источник питания таким образом, чтобы «–» касался p-стороны пластины, а «+» – n-стороны, протекание тока будет невозможно из-за того, что дырки притянутся в минусовому контакту источника питания, а электроны – к плюсовому, и связь между электронами p и n стороны будет утеряна за счет расширения объединенного слоя.

какие транзисторы используются в процессорах. Смотреть фото какие транзисторы используются в процессорах. Смотреть картинку какие транзисторы используются в процессорах. Картинка про какие транзисторы используются в процессорах. Фото какие транзисторы используются в процессорах

Но если подключить питание с достаточным напряжением наоборот, т.е. «+» от источника к p-стороне, а «–» – к n-стороне, размещенные на n-стороне электроны будут отталкиваться отрицательным полюсом и выталкиваться на p-сторону, занимая дырки в p-области.

какие транзисторы используются в процессорах. Смотреть фото какие транзисторы используются в процессорах. Смотреть картинку какие транзисторы используются в процессорах. Картинка про какие транзисторы используются в процессорах. Фото какие транзисторы используются в процессорах

Но теперь электроны притягивает к положительному полюсу источника питания и они продолжаются перемещаться по p-дыркам. Это явление назвали прямым смещением диода.

Диод + диод = транзистор

Сам по себе транзистор можно представить как два, состыкованных друг к другу диода. При этом p-область (та, где размещены дырки) у них становится общей и именуется «базой».

У N-P-N транзистора две n-области с дополнительными электронами – они же «эмиттер» и «коллектор» и одна, слабая область с дырками – p-область, именуемая «базой».

какие транзисторы используются в процессорах. Смотреть фото какие транзисторы используются в процессорах. Смотреть картинку какие транзисторы используются в процессорах. Картинка про какие транзисторы используются в процессорах. Фото какие транзисторы используются в процессорах

Если подключить источник питания (назовем его V1) к n-областям транзистора (независимо от полюса), один диод получит обратное смещение и транзистор будет находиться в закрытом состоянии.

Но, как только мы подключим еще один источник питания (назовем его V2), установив «+» контакт на «центральную» p-область (базу), а «–» контакт на n-область (эмиттер), часть электронов потечет по вновь образованной цепи (V2), а часть будет притягиваться положительной n-областью. В результате, электроны потекут в область коллектора, а слабый электрический ток будет усилен.

4. Так как все-таки работает компьютер?

какие транзисторы используются в процессорах. Смотреть фото какие транзисторы используются в процессорах. Смотреть картинку какие транзисторы используются в процессорах. Картинка про какие транзисторы используются в процессорах. Фото какие транзисторы используются в процессорах

Как автор данного материала, я хочу сразу извиниться за утомительное объяснение несколькими абзацами выше. Но именно понимание принципа работы транзистора даст вам понимание того, как работает компьютер.

А теперь самое главное.

В зависимости от подаваемого напряжения, транзистор может быть либо открыт, либо закрыт. Если напряжение недостаточное для преодоления потенциального барьера (того самого на стыке p и n пластин) – транзистор будет находится в закрытом состоянии – в состоянии «выключен» или, говоря языком двоичной системы – «0».
При достаточно напряжении транзистор открывается, а мы получаем значение «включен» или «1» в двоичной системе.
Такое состояние, 0 или 1, в компьютерной индустрии назвали «битом».

Т.е. мы получаем главное свойство того самого переключателя, который открыл человечеству путь к компьютерам!

какие транзисторы используются в процессорах. Смотреть фото какие транзисторы используются в процессорах. Смотреть картинку какие транзисторы используются в процессорах. Картинка про какие транзисторы используются в процессорах. Фото какие транзисторы используются в процессорах

В первом электронном цифровом вычислителе ЭНИАК, а проще говоря – первом компьютере, использовалось около 18 тысяч ламп-триодов. Размер компьютера был сопоставим с теннисным кортом, а его вес составлял 30 тонн.

Для понимания работы процессора нужно понять еще два ключевых момента.

Момент 1. Итак, мы определились с тем, что такое бит. Но с его помощью мы можем лишь получить две характеристики чего-либо: или «да» или «нет». Для того, чтобы компьютер научился понимать нас лучше, придумали комбинацию из 8 битов (0 или 1), которую прозвали байтом.

Используя байт можно закодировать число от нуля до 255. Используя эти 255 чисел – комбинаций нулей и единиц, можно закодировать все что угодно.

Момент 2. Наличие чисел и букв без какой-либо логики нам бы ничего не дало. Именно поэтому появилось понятие логических операторов.

Подключив всего два транзистора определенным образом, можно добиться выполнения сразу нескольких логических действий: «и», «или». Комбинация величины напряжения на каждом транзисторе и тип их подключения позволяет получить разные комбинации нулей и единиц.

какие транзисторы используются в процессорах. Смотреть фото какие транзисторы используются в процессорах. Смотреть картинку какие транзисторы используются в процессорах. Картинка про какие транзисторы используются в процессорах. Фото какие транзисторы используются в процессорах

Стараниями программистов значения нулей и единиц, двоичной системы, стали переводить в десятичную для того, чтобы мы могли понять, что именно «говорит» компьютер. А для ввода команд привычные нами действия, вроде ввода букв с клавиатуры, представлять в виде двоичной цепи команд.

Проще говоря, представьте, что есть таблица соответствия, скажем, ASCII, в которой каждой букве соответствует комбинация 0 и 1. Вы нажали кнопку на клавиатуре, и в этот момент на процессоре, благодаря программе, транзисторы переключились таким образом, чтобы на экране появилась та самая, написанная на клавише буква.

Это довольно примитивное объяснение принципа работы процессора и компьютера, но именно понимание этого позволяет нам двигаться дальше.

5. И началась транзисторная гонка

какие транзисторы используются в процессорах. Смотреть фото какие транзисторы используются в процессорах. Смотреть картинку какие транзисторы используются в процессорах. Картинка про какие транзисторы используются в процессорах. Фото какие транзисторы используются в процессорах

После того, как в 1952 году британский радиотехник Джеффри Дамер предложил размещать простейшие электронные компоненты в монолитном кристалле полупроводника, компьютерная индустрия сделал семимильный шаг вперед.

От интегральных схем, предложенных Дамером, инженеры быстро перешли на микрочипы, в основе которых использовались транзисторы. В свою очередь, нескольких таких чипов уже образовывали сам процессор.

Разумеется, что размеры таких процессоров мало чем схожи с современными. К тому же, вплоть до 1964 года у всех процессоров была одна проблема. Они требовали индивидуального подхода – свой язык программирования для каждого процессора.

А дальше началась гонка техпроцессов. Задачей чипмейкеров стало в производственных масштабах как можно плотнее разместить транзисторы друг возле друга, добившись уменьшенного технологического процесса.

Казалось бы, продолжать список можно было бы до бесконечности, но тут инженеры Intel столкнулись с серьезной проблемой.

6. Закон Мура или как чипмейкерам жить дальше

какие транзисторы используются в процессорах. Смотреть фото какие транзисторы используются в процессорах. Смотреть картинку какие транзисторы используются в процессорах. Картинка про какие транзисторы используются в процессорах. Фото какие транзисторы используются в процессорах

На дворе конец 80-х. Еще в начале 60-х один из основателей компании Intel Гордон Мур формулировал так называемый «Закон Мура». Звучит он так:

Каждые 24 месяца количество транзисторов, размещенных на кристалле интегральной схемы, удваивается.

Назвать этот закон законом сложно. Вернее будет окрестить его эмпирическим наблюдением. Сопоставив темпы развития технологий, Мур сделал вывод, что может сформироваться подобная тенденция.

Но уже во время разработки четвертого поколения процессоров Intel i486 инженеры столкнулись с тем, что уже достигли потолка производительности и больше не могут разместить большее количество процессоров на той же площади. На тот момент технологии не позволяли этого.

В качестве решения был найден вариант с использованием рядом дополнительных элементов:

Часть вычислительной нагрузки ложилась на плечи этих четырех узлов. В результате, появление кэш-памяти с одной стороны усложнило конструкцию процессора, с другой – он стал значительно мощнее.

какие транзисторы используются в процессорах. Смотреть фото какие транзисторы используются в процессорах. Смотреть картинку какие транзисторы используются в процессорах. Картинка про какие транзисторы используются в процессорах. Фото какие транзисторы используются в процессорах

Процессор Intel i486 состоял уже из 1,2 млн транзисторов, а максимальная частота его работы достигла 50 МГц.

В 1995 году к разработке присоединяется компания AMD и выпускает самый быстрый на тот момент i486-совместимый процессор Am5x86 на 32-битной архитектуре. Изготавливался он уже по 350 нанометровому техпроцессу, а количество установленных процессоров достигло 1,6 млн штук. Тактовая частота повысилась до 133 МГц.

Но гнаться за дальнейшим наращиванием количества установленных на кристалле процессоров и развитии уже утопической архитектуры CISC (Complex Instruction Set Computing) чипмейкеры не решились. Вместо этого американский инженер Дэвид Паттерсон предложил оптимизировать работу процессоров, оставив лишь самые необходимые вычислительные инструкции.

Так производители процессоров перешли на платформу RISC (Reduced Instruction Set Computing]. Но и этого оказалось мало.

В 1991 году выходит 64-битный процессор R4000, работающий на частоте 100 МГц. Через три года появляется процессор R8000, а еще через два года – R10000 с тактовой частотой вплоть до 195 МГц. Параллельно развивался рынок SPARC-процессоров, особенностью архитектуры которых стало отсутствие инструкций умножения и деления.

какие транзисторы используются в процессорах. Смотреть фото какие транзисторы используются в процессорах. Смотреть картинку какие транзисторы используются в процессорах. Картинка про какие транзисторы используются в процессорах. Фото какие транзисторы используются в процессорах

Вместо борьбы за количество транзисторов, производители чипов стали пересматривать архитектуру их работы. Отказ от «ненужных» команд, выполнение инструкций в один такт, наличие регистров общего значения и конвейеризация позволили оперативно наращивать тактовую частоту и мощность процессоров, не извращаясь с количеством транзисторов.

Вот лишь некоторые из появившихся с период с 1980 по 1995 год архитектур:

В их основе лежала платформа RISC, а в некоторых случаях и частичное, совмещенное использование CISC-платформы. Но развитие технологий вновь подталкивало чипмейкеров продолжить наращивание процессоров.

В августе 1999 года на рынок выходе AMD K7 Athlon, изготовленный по 250 нанометровому техпроцессу и включающий 22 млн транзисторов. Позднее планку подняли до 38 млн процессоров. Потом до 250 млн.

Увеличивался технологический процессор, росла тактовая частота. Но, как гласит физика, всему есть предел.

7. Конец транзисторных соревнований близко

В 2007 году Гордон Мур выступил с весьма резким заявлением:

Закон Мура скоро перестанет действовать. Устанавливать неограниченное количество процессоров до бесконечности невозможно. Причина тому — атомарная природа вещества.

Невооруженным глазом заметно, что два ведущих производителям чипов AMD и Intel последние несколько лет явно замедлили темпы развития процессоров. Точность технологического процесса выросла всего до нескольких нанометров, но размещать еще больше процессоров невозможно.

И пока производители полупроводников грозятся запустить многослойные транзисторы, проводя параллель с 3DNand памятью, у упершейся в стену архитектуры x86 еще 30 лет назад появился серьезный конкурент.

8. Что ждет «обычные» процессоры

какие транзисторы используются в процессорах. Смотреть фото какие транзисторы используются в процессорах. Смотреть картинку какие транзисторы используются в процессорах. Картинка про какие транзисторы используются в процессорах. Фото какие транзисторы используются в процессорах

«Закон Мура» признан недействительным еще с 2016 года. Об этом официально заявил крупнейший производитель процессоров Intel. Удваивать вычислительную мощность на 100% каждые два года чипмейкеры больше не состоянии.

И теперь у производителей процессоров есть несколько малоперспективных вариантов.

Первый вариант – квантовые компьютеры. Попытки построить компьютер, который использует для представления информации частицы, уже были. В мире существует несколько подобных квантовых устройств, но они способны справляться лишь с алгоритмами небольшой сложности.

К тому же, о серийном запуске подобных устройств в ближайшие десятилетия не может идти и речи. Дорого, неэффективно и… медленно!

Да, квантовые компьютеры потребляют намного меньше энергии, чем их современные коллеги, но при этом работать они будут медленнее до тех пор, пока разработчики и производители комплектующих не перейдут на новую технологию.

Второй вариант – процессоры со слоями транзисторов. О данной технологии всерьез задумались и в Intel, и в AMD. Вместо одного слоя транзисторов планируют использовать несколько. Похоже, что в ближайшие годы вполне могут появится процессоры, в которых будут важны не только количество ядер и тактовая частота, но и количество транзисторных слоев.

Решение вполне имеет право на жизнь, и таким образом монополистам удастся доить потребителя еще пару десятков лет, но, в конце концов, технология опять-таки упрется в потолок.

Сегодня же, понимая стремительное развитие ARM-архитектуры, Intel провела негромкий анонс чипов семейства Ice Lake. Процессоры будут изготавливаться по 10-нанометровому технологическому процессу и станут основой для смартфонов, планшетов и мобильных устройств. Но произойдет это в 2019 году.

9. Будущее за ARM

какие транзисторы используются в процессорах. Смотреть фото какие транзисторы используются в процессорах. Смотреть картинку какие транзисторы используются в процессорах. Картинка про какие транзисторы используются в процессорах. Фото какие транзисторы используются в процессорах

Итак, архитектура x86 появилась в 1978 году и относится к типу платформы CISC. Т.е. сама по себе она предполагает наличие инструкций на все случаи жизни. Универсальность – главный конек x86.

Но, в тоже время, универсальность сыграла с этими процессорами и злую шутку. У x86 есть несколько ключевых недостатков:

За высокую производительность пришлось попрощаться с энергоэффективностью. Более того, над архитектурой x86 сейчас трудятся две компании, которых можно смело отнести к монополистам. Это Intel и AMD. Производить x86-процессоры могут только они, а значит и правят развитием технологий только они.

В тоже время разработкой ARM (Arcon Risk Machine) занимаются сразу несколько компания. Еще в 1985 году в качестве основы для дальнейшего развития архитектуры разработчики выбрали платформу RISC.

В отличие от CISC, RISC предполагает разработку процессора с минимально необходимым количеством команд, но максимальной оптимизацией. Процессоры RISC намного меньше CISC, более энергоэффективны и просты.

Более того, ARM изначально создавался исключительно как конкурент x86. Разработчики ставили задачу построить архитектуру, более эффективную чем x86.

какие транзисторы используются в процессорах. Смотреть фото какие транзисторы используются в процессорах. Смотреть картинку какие транзисторы используются в процессорах. Картинка про какие транзисторы используются в процессорах. Фото какие транзисторы используются в процессорах

Еще с 40-х годов инженеры понимали, что одной из приоритетных задач остается работа над уменьшением габаритов компьютеров, а, в первую очередь — самих процессоров. Но вряд ли почти 80 лет назад кто-либо мог предположить, что полноценный компьютер будет меньше спичечного коробка.

Архитектуру ARM в свое время поддержала компания Apple, запустив производство планшетов Newton на базе семейства ARM-процессоров ARM6.

Продажи стационарных компьютеров стремительно падают, в то время как количество ежегодно реализуемых мобильных устройств уже исчисляется миллиардами. Зачастую, помимо производительности, при выборе электронного гаджета пользователя интересуют еще несколько критериев:

x86 архитектура сильна в производительности, но стоит вам отказаться от активного охлаждения, как мощный процессор покажется жалким на фоне архитектуры ARM.

10. Почему ARM – неоспоримый лидер

Вряд ли вы будете удивлены, что ваш смартфон, будь то простенький Android или флагман Apple 2016 года в десятки раз мощнее полноценных компьютеров эпохи конца 90-х.

Но во сколько мощнее тот же айфон?

Само по себе сравнение двух разных архитектур – штука очень сложная. Замеры здесь можно выполнить лишь приблизительно, но понять то колоссальное преимущество, что дает построенные на ARM-архитектуре процессоры смартфона, можно.

Универсальный помощник в таком вопросе – искусственный тест производительности Geekbench. Утилита доступна как на стационарных компьютерах, так и на Android и iOS платформах.

какие транзисторы используются в процессорах. Смотреть фото какие транзисторы используются в процессорах. Смотреть картинку какие транзисторы используются в процессорах. Картинка про какие транзисторы используются в процессорах. Фото какие транзисторы используются в процессорах

Средний и начальный класс ноутбуков явно отстает от производительности iPhone 7. В топовом сегменте все немного сложнее, но в 2017 году Apple выпускает iPhone X на новом чипе A11 Bionic.

Там, уже знакомая вам архитектура ARM, но показатели в Geekbench выросли почти вдвое. Ноутбуки из «высшего эшелона» напряглись.

какие транзисторы используются в процессорах. Смотреть фото какие транзисторы используются в процессорах. Смотреть картинку какие транзисторы используются в процессорах. Картинка про какие транзисторы используются в процессорах. Фото какие транзисторы используются в процессорах

А ведь прошел всего один год.

Развитие ARM идет семимильными шагами. Пока Intel и AMD год за годом демонстрируют 5 – 10% прирост производительности, за тот же период производители смартфонов умудряются повысить мощность процессоров в два – два с половиной раза.

Скептически настроенным пользователям, которые пройдутся по топовым строчкам Geekbench лишь хочется напомнить: в мобильных технологиях размер – это то, что прежде всего имеет значение.

Установите на стол моноблок с мощным 18-ядерный процессором, который «в клочья разрывает ARM-архитектуру», а затем положите рядом iPhone. Чувствуете разницу?

11. Вместо вывода

какие транзисторы используются в процессорах. Смотреть фото какие транзисторы используются в процессорах. Смотреть картинку какие транзисторы используются в процессорах. Картинка про какие транзисторы используются в процессорах. Фото какие транзисторы используются в процессорах

Объять 80-летнюю историю развития компьютеров в одном материале невозможно. Но, прочитав данную статью, вы сможете понять как устроен главный элемент любого компьютера – процессор, и чего стоит ждать от рынка в последующие годы.

Безусловно, Intel и AMD буду работать над дальнейшим наращиванием количества транзисторов на одном кристалле и продвигать идею многослойных элементов.

Но нужна ли вам как покупателю такая мощность?

Вряд ли вас не устраивает производительность iPad Pro или флагманского iPhone X. Не думаю, что вы недовольны производительностью расположившейся на кухне мультиварки или качеством картинки на 65-дюймовом 4K-телевизоре. А ведь во всех этих устройствах используются процессоры на ARM-архитектуре.

Windows уже официально заявила, что с интересом смотрит в сторону ARM. Поддержку этой архитектуры компания включила еще в Windows 8.1, а ныне активно работает над тандемом с ведущим ARM-чипмейкером Qualcomm.

На ARM успела посмотреть и Google – операционная система Chrome OS поддерживает эту архитектуру. Появились сразу несколько дистрибутивов Linux, которые также совместимы с данной архитектурой. И это только начало.

И лишь попробуйте на минутку представить, каким приятным будет сочетание энергоэффективного ARM-процессора с графеновым аккумулятором. Именно эта архитектура позволит получить мобильные эргономичные гаджеты, которые смогут диктовать будущее.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *